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X-ray spectra of model binary alloys A t B„
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The x-ray photoemission, absorption, and emission spectra of a one-dimensional tight-binding
model for a binary metallic alloy 3

~ „B„areevaluated in a change of mean-field model. The com-
bined effects of disorder and multielectron excitations are included. The extent of the asymmetric
tails of the x-ray photoemission lines depend on the local character of the Fermi-energy states in the
vicinity of the core hole; this effect could explain the long-standing mystery of why Na 1s lines in
Na„WO3 are symmetric. Features in the absorption and emission spectra reminiscent of the
anomalous ramplike thresholds observed for absorption by rare-gas atoms in alkali-metal hosts are
also found.

I. INTRODUCTION

As a first step toward understanding the x-ray absorp-
tion, emission, and photoemission spectra of binary alloys,
we present here the results of model calculations for a
one-dimensional, substitutional, crystalline, binary alloy

B . The model treats a single orbital and a single
electron per site in a nearest-neighbor tight-binding ap-
proximation. Many-electron effects due to the final-state
interactions of the electrons with the core hole are treated
in a change-of-mean-field approximation. ' Hence, the
model exhibits features associated with both the "x-ray
edge anomalies" and binary-alloy disorder. To our
knowledge, this is the first study of the combined effects
on x-ray spectra of disorder in a binary-alloy and many-
electron recoil.

II. MODEL

where we have

h'=h+ Vo
~

R)(R ~, (4)

with
~

R) referring to the orbital centered on the core-hole
site; Vo is the electron-hole interaction strength (and a
negative number). The initial many-electron state of the
electron gas

~

I ), in this model, is a Slater determinant of
the lowest-energy single-particle eigenstates

~
P) of h; the

final states
~

Fv) are all the various determinants of the
eigenstates

~
g) of h'.

The x-ray photoemission spectrum is
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changes suddenly as a result of the removal of the core
electron to the final-state Hamiltonian
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The one-electron Hamiltonian governing the behavior
of the alloy is
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~

n)(n
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Here we have M sites,
~

n ) refers to the one-electron orbi-
tal centered at the nth site, p is the nearest-neighbor
transfer matrix element, and e(n) is a random variable
which takes on the values ez (with probability 1 —x) and
ez (with probability x).

In the case of x-ray photoemission the band has X elec-
trons in both the initial and final states, but the initial-
state 2V-electron Hamiltonian

HI= gh;

where the summation is over all possible final-state con-
figurations. The photoemission recoil energy is

N A'

EF EJ—= ge; —g—e;,

where the sums are over all occupied one-electron states in
the electronic configurations

~

Fv) and I ), respectively.
The photoemission line shape has contributions from both
spin-up and spin-down channels. It can be shown, howev-
er, that one can evaluate the line shapes for each of these
channels independently and that the two-channel line
shape is a convolution of the single-channel shapes. '

Hence, for simplicity of presentation we consider here
only the spin-up channel; and we have M =2iV.

X-ray emission of a photon of energy E can be treated
in a manner completely analogous to photoemission, and
has a line shape
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~«)= g I
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where the final states
~

I'v) are Stater determinants of
X

~

P)'s and one core orbital and the initial state is a
I

determinant of %+1
~

g)'s. A similar expression holds
for x-ray absorption. We assume that the core hole has a
negligible radius, in which case the dipole matrix element
M can be simplified, and we have

gi(R) $2(R)

(F IM II) =M (p„2l p, ).

@+i(R)
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J X(E)dE= g ~

i)'j;(R)
~

(10)

are adequately exhausted (the sum is over occupied
initial-state orbitals 1tj;). The calculations are repeated for
(typically =100) different atomic configurations and (typ-
ically =10 per atomic configuration) different core-hole
sites, Gaussian broadened and ensemble averaged. The
ensemble-averaged spectra are displayed in Figs. 1 to 6 for

Here g(R) is proportional to the overlap of
~ f) with the

core hole at site R, Mo is a constant, (P
~
g) is a scalar

product, and we have assumed that the core hole has a
negligible radius.

The line shapes I(E) and X(E)=sc(E)/M—o are calculat-
ed as follows: The eigenstates

~
P) and

~
P) and the corre-

sponding eigenvalues are evaluated for a one-dimensional
lattice with M =40 sites occupied by a specific configura-
tion of atoms A and 8, as determined by a random-
number generator. The core hole is confined to one of the
ten innermost sites. The matrix elements between deter-
minants, such as (I

~
Fv), are evaluated for many elec-

tronic configurations v and the spectra are calculated.
The calculation of a given spectrum is terminated (i.e., no
more configurations v are included) when the sum rules
for x-ray photoemission spectra' (XPS)

J I(E)dE = 1 (9)

and for emission

I

Vo = —2
I & I &a =2

I & I
an«~ = —2

I & I
for

x =0.2, 0.4, 0.6, and 0.8.

III. RESULTS

The results can best be understood in terms of the
broadened densities of states displayed in Fig. 7. In all
cases the Fermi surface lies within a band and the system
is metallic.

A. X-ray photoemission spectra

For a core hole created at an A site (Fig. 1), the x-ray
photoemission spectra exhibit long tails associated with
low-energy excitation of Fermi-surface electrons for
x =0.2 and 0.4, but not for x =0.8 or 0.6. The reason
for this is that the one-electron states near the Fermi sur-
face are A-like for x =0.2 and 0.4, but are 8-like for
x =0.8 or 0.6 (see Fig. 7). Only the A-like states are effi-
ciently excited as the shock wave due to the 3-site core-
hole creation propagates outward. The B-like electron
states at the Fermi energy for x =0.6 and 0.8 do not
thoroughly overlap with and couple to the A-site core
hole, and are not so easily excited as a result of the core-
hole creation. Hence, the A-site XPS lines for x =0.6
and 0.8 do not have long tails for negative E—Ace —e„„,
but the lines for x =0.2 and 0.4 do. (Similarly, creation
of a 8-site core hole produces a long XPS tail for x & 0.S
but not for x &0.5, as shown in Fig. 2.) Thus we have a
clear dependence of the shape of the XPS line on the char-
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FIG. 1. Predicted x-ray photoemission spectra for core exci-
tation of the A site in Al „8 as a function of the emitted
electron's energy E, for x =—0.2 {dash-dotted line), x =0.4 {dot-
ted line), x =0.6 {dashed line), and x =0.S {solid line).

0
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( E -bee- e„„)/
FIG. 2. Predicted B-site x-ray photoemission spectra, as in

Fig. 1.
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FIG. 3. Predicted x-ray absorption spectra P(E) for excita-
tion of a core level at the A site, with notation as in Fig. 1.
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FIG. 5. Predicted A-site x-ray emission spectra.

aeter of the Fermi-energy electrons at the site of the core
hole.

The asymptotic theory of Doniach and Sunjic for exci-
tation of a free-electron gas is valid for electron energies
E near the photoemission threshold energy ET and gives
an XPS line shape

I(E) ~ (E, E) '+'e(E—, -E), —
where e is the unit step function and the exponent 5 is
expressible in terms of 5~, the change of Fermi-energy
phase shifts of an electron as a result of the potential of
the core hole:

b, = g 2(2l + 1)(5I/~)' .
1=0

(12)

This asymptotic line shape does not depend on the charac-
ter or density of states near the Fermi energy, except
through the phase shifts 6~. Nevertheless, our calcula-
tions, which solve a Doniach-Sunjic type of model for all
energies (not just for E +ET ), show tha—t the extent of the
XPS tail does indeed depend on the character of the
Fermi-energy states.

This behavior may have been observed in sodium-
tungsten bronzes: Campagna et ai. and Chazalviel
eI al. have reported both an asymmetric W XPS line and
an excessively symmetric Na 1s XPS line in Na WO3, the
latter cannot be explained by the asymptotic theory, [Eq.
(11)].' It is noteworthy that in the simplest model the
Na states do not contribute to the conduction band; ' "

hence the Na-like character of the Fermi-energy states in
Na~ WO3 should be small —and by analogy with the
present results we expect the Na XPS line to be quite sym-
metric. Hence, the present theory indicates that the large
asymmetric tail predicted on the basis of the asymptotic
Doniach-Sunjic theory should not necessarily be expected
when the amplitude of the Fermi-energy one-electron
states at the core-hole site is not large —because the
electron-hole pair excitations of those states (which are re-
sponsible for the long tail) cannot be efficiently achieved.

A second interesting feature of the A-site XPS spectra
is the small bomp for x =0.2 and 0.4 near E—fm
—e„„=—2

~
P

~
( =

~
Vo

~

here), which we associate. with
transitions of the electron gas that leave a hole in the
bound state below the A band. (This bound state always
occurs in one dimension and is caused by the attractive
electron-hole interaction; it lies of order =

~

Vo
~

below
the band bottom. )

The XPS spectra at the B site are especially interesting.
The lines for x = 0.2 and 0.4 are nearly symmetric be-
cause the Fermi-energy states are largely A-like and not
efficiently excited by a B-site core hole. They are also al-
most recoilless (viz. , at zero energy) because the B-like
states that are perturbed by the core hole are unoccupied
and therefore do not contribute to the recoil energy [Eq.
(6)]. The x =0.4 spectrum has, in addition to its recoil-
less peak, a weak high-energy peak associated with recoil:
The on-site level at ez is pulled below the Fermi level by
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FIG. 4. Predicted 8-site x-ray absorption spectra. FIG. 6. Predicted 8-site x-ray emission spectra.
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absorption edges and bumps at higher energy that are de-
rived from the hole-perturbed bumps in the densities of
states. [The van Hove singularity' at the band maximum
is weakened both by the matrix element, Eq. (8), and the
alloy disorder. ]

An especially interesting feature of the calculated 8-site
spectrum for x =0.2 is its low-energy edge —which does
not show the expected ' peaked threshold behavior
(predicted for free-electron metals):

X(E) O- (E ET)—'e(E ET)—, (13)

O

I.O

0.8
0.6
0.4

where Ez is the threshold energy and o.o is the x-ray edge
exponent. ' Instead, the threshold line shape is very near-
ly a linear function of energy, ao——1. Such behavior is
what has been observed for rare-gas atoms in alkali-metal
hosts by Flynn and co-workers, ' and has remained a ma-
jor unexplained anomaly for years. ' The present work
suggests that the anomaly" may be a consequence of the
non-8 character of the Fermi-surface states.

C. Emission spectra

0.2
0.0

Eiffel

FIG. 7. One-electron density of states (times 2
f p f

) of
„8„vs E (in units of 2

f P f
) for x =0, 0.2, 0.4, 0.6, 0.8, and

1.0. The Fermi energies are denoted by EF and occupied one-
electron states are shaded. Note that the one-electron states at
the Fermi energy are A-like for x & 0.5 and 8-like for x & 0.5.

the electron-hole interaction, becomes occupied, and con-
tributes to the recoil energy. (This effect was predicted
first for d states by Kotani and Toyozawa' and then, in a
different context, by Mehreteab and Dow. '

) As the alloy
composition x and the Fermi energy increase, local alloy
configurations which lead to recoil become more probable
and the recoil peak grows as the recoilless peak decreases
in amplitude. For x=0.8 the Fermi energy lies within

f
Vo of ez and the recoil peak is dominant. Bumps

below the main peak are associated with the alloy disor-
der.

B. Absorption spectra

The absorption spectra for the core hole on an A site
(Fig. 3) are generally weak because of the predominantly
B-like character of the unoccupied one-electron states.
The strongest spectrum is for x =0.2 and corresponds to
a case in which there is a reasonable amount of 3 charac-
ter to the final state.

For a core hole at a 8 site the absorption spectra (Fig.
4) are stronger because the 8 hole couples strongly to the
B-like unoccupied electron states. Even for x =0.2 there
is some B character to the Fermi-energy states, and the
absorption edge (at the left of Fig. 4) becomes more
abrupt as x and the B character of the Fermi-energy
states increases. In general the spectra exhibit low-energy

The emission spectra for an 3-site core hole evolve in
an interesting fashion as a function of composition x. For
small x, x =0.2, the spectrum exhibits a low-energy peak
associated with a band-bottom van Hove singularity' (see
Figs. 5 and 7) that has been partially amputated by disor-
der; it also has a high-energy edge with a peak reminiscent
of an x-ray edge anomaly [Eq. (13), with E and ET re-
versed]. For x =0.4, 0.6, and 0.8, additional features as-
sociated with alloy disorder as manifested in the densities
of states (Fig. 7) are reflected in the spectra. In addition,
the x =0.6 and 0.8 spectra have weak high-energy edges
(that are more or less ramplike functions of energy) be-
cause the Fermi-energy states are B-like and do not couple
effectively to an A hole.

On the B site the spectra are dramatically different,
showing bumps associated with the alloy disorder (shifted
by the electron-hole interaction), high-energy x-ray edges
[Eq. (13)], for x =0.8 and x =0.6 that weaken as the 8
character of the Fermi-energy states is lost with decreas-
ing x. For x =0.8 there is a high-energy x-ray edge (near
E+e„„,=0), the remnants of a van Hove singularity in
the density of states (near E+e„„=—13

f
), and a weak

low-energy peak (near E+e„„=—4
f P ) associated with

the density of states: 8 character is mixed into the A-hke
states by the alloy. The prominent x-ray edge occurs be-
cause the 8 hole efficiently excites the 8-like Fermi-
surface particle-hole excitations. For x =0.6 to x =0.2,
qualitatively similar structures appear, most of which are
peaks shifted by the electron-hole interaction, but associ-
ated with the disorder as reflected also in the densities of
states. The strength of the emission weakens as the B
character of the Fermi surface is lost (as x decreases).
Also, the high-energy x-ray edge weakens and becomes
ramplike for x =0.2.

D. Summary

In summary the predicted x-ray spectra of one-
dimensional 3

&
B substitutional alloys are rich in
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features that are associated with alloy disorder, x-ray edge
effects, and van Hove singularities. The effects of alloy
disorder found here are probably more pronounced than
one would find in three-dimensional alloys; owing to the
lack of multiple paths circumventing any highly disor-
dered region. Two particularly interesting features of the
calculated spectra appear to hold promise for explaining
some old mysteries: (i) The anomalously symmetric XPS
lines of sodium-tungsten bronzes appear to be related to
the fact that the character of the one-electron states at the
Fermi energy is such that these states are not efficiently
excited by a Na-site core hole, and (ii) the ramplike linear
absorption thresholds of rare-gas atoms in alkali-metal

hosts appear to be related to the fact that the Fermi-
surface states at the rare-gas site do not have sufficient
alkali-metal character. An interesting prediction of the
model is that the emission spectrum from rare-gas atoms
in alkali-metal hosts should also have ramplike thresholds
rather than edge anomalies. It would be gratifying if this
prediction were verified experimentally.
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