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We investigate the properties of p-polarized nonlinear surface polaritons (NLSP) propagating

along the interfaces of optically nonlinear materials.

We show that Maxwell’s equations for the

NLSP can be solved exactly in quadratures for optically isotropic media with dielectric functions
which can be an arbitrary function of the field intensity. The required boundary conditions can be
imposed readily, and a form of the dispersion relation for the NLSP is obtained without the need to
solve for the field profile first. The general results are then applied to a specific model in which the
material has a nonlinear dielectric function proportional to the electric field intensity. Both the
self-focusing and self-defocusing cases are studied, as well as different values of the linear dielectric
functions inside and outside the material. The physically allowed regions in parameter space and
the nonlinear surface-plasmon resonance conditions are examined. The field profile in each region is

also investigated.

I. INTRODUCTION

The primary concern in the area of nonlinear optics has
been on nonlinear processes involving the generations and
interactions of waves of different frequencies. Examples
are harmonic generation, modulation and demodulation of
light, mixing of light waves in parametric up and down
conversions, and stimulated Brillouin and Raman scatter-
ing.! The theoretical treatment for these phenomena
often rests on the assumption that the nonlinearities in-
volved are sufficiently weak; the calculations are therefore
almost exclusively perturbative in nature.

Recently there are some growing interests in the study
of intrinsically nonlinear effects on the propagation of
electromagnetic waves, all at a single frequency, along the
interfaces of optically nonlinear media.? The conventional
quasilinear approximation cannot be used. The solutions
to Maxwell’s equations must be calculated in a fully non-
perturbative fashion and the necessary electromagnetic
boundary conditions must be matched across the inter-
faces. A number of exact model calculations have re-
vealed many remarkable results of these nonlinear elec-
tromagnetic waves which have no counterpart whatsover
in the linear theory. With the electromagnetic energy flux
as an additional physical parameter which actively
changes the effective value of the dielectric functions of
the nonlinear media, a host of entirely new phenomena are
potentially possible.

Among these unexpected results is the existence of p-
polarized (TM) nonlinear surface polaritons (NLSP) at the
interface of two media whose dielectric functions at the
polariton frequency are of the same sign.® The case stud-
ied by Agranovich et al.’® consists of a linear medium and
a nonlinear medium in contact at a single (z=0) plane.
However, in order to obtain analytical solutions to the
problem the component of the dielectric function for the
nonlinear medium perpendicular to 2, €,,, was taken to be
field independent. Moreover, the other two field-
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dependent components of the dielectric functions were as-
sumed not to be dependent on the z component of the
electric field. With this simplified form of the nonlinear
dielectric functions, p-polarized NLSP have also been
studied in a variety of different configurations. The case
in which both media are nonlinear was studied by Lom-
tev.* Fedyanin and Mihalache’® investigated the surface
localized modes in three-layer dielectric structures, and
the waveguide modes in such structures were reported by
Lederer, Langbein, and Ponath,® and by Stegeman and
Seaton.” However, for the case in which the nonlinear
dielectric is sandwiched between two linear-dielectrics,
only the “zero-energy solution” was investigated.5 The
use of a somewhat oversimplified form for the nonlinear
dielectric function in all these studies has recently been
improved to include cases where €, can also be non-
linear.®°. Moreover, the nonlinear dielectric functions can
be arbitrary functions of the electric field intensity. How-
ever, like previous works, only the dependence on the elec-
tric field components parallel to the interface was con-
sidered. This somewhat artificial restriction will be elim-
inated in the present work.

The first experimental results that bear on the existence
of p-polarized NLSP were reported by Chen and Car-
ter.!®!! They investigated the propagation of p-polarized
NLSP at the interface of Ag and semiconducting non-
linear media. Both GaAs and Si have been studied. By
measuring the intensity of the reflected laser beam as a
function of the incident angle, the dispersion relation of
the NLSP is deduced.!®!! From the dependence of this
relation on the intensity of the incident beam, the authors
were able to obtain both the signs and the magnitudes of
the degenerate third-order susceptibility for Si and GaAs.
One can also see from their results that the effects of the
nonlinearities that are possible in these two materials are
rather small. In fact, their analyses of the data were based
on the use of a nonlinear dispersion relation which was
derived assuming weak nonlinearities.!®!! A slightly
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more refined perturbative calculation which yields exactly
the same expression was later carried out by Agranovich
and Chernyak.!?

~ However, a number of materials whose nonlinear coef-
ficients are a few order of magnitudes larger than that of
Si are currently available. They include 4-methoxy-
benzulidene-4'-n-butylaniline (MBBA) liquid crystal,!3
GaAs/Ga;_,Al,As multiple-quantum-well structure, !4
semiconductors such as InSb (Refs. 14 and 15) and
HgCdTe (Ref. 16), and artificial Kerr media.!”-18 Quite
larger relative changes in refractive indices can be induced
in these materials with modest laser powers. The waves
propagating in such media are then not just small exten-
sions of the linear ones, but must be regarded as separate
independent entities, with their own unique properties
which cannot be treated using the conventional quasilin-
ear approach.

In this work we investigate the properties of p-polarized
NLSP propagating along the surface of materials whose
dielectric functions depend on the electric field intensity.
In Sec. II we show that Maxwell’s equations for the NLSP
can be solved exactly in quadratures for optically isotropic
media with dielectric functions which can depend on the
field intensity in quite an arbitrary way. The required
boundary conditions can be imposed readily, and a form
of the dispersion relation for the NLSP is obtained
without having to solve for the field profile first. Section
III is devoted to an application of the general result
developed here to specific model in which the material has
a nonlinear dielectric function proportional to the electric
field intensity. Both the self-focusing and self-defocusing
cases are studied, as well as different values of the linear
dielectric functions inside and outside the material. The
physically allowed regions in parameter space and the
nonlinear surface-plasmon resonance conditions are exam-
ined. The field profile in each region is also investigated.
In Sec. IV we conclude by pointing out the limitations of
our present model and rooms for further studies. Results
for the corresponding linear case are contained in the Ap-
pendix to facilitate making detailed comparisons with
those of the NLSP. The corresponding investigations for
the s-polarized NLSP are equally as interesting,>!>? but
will not be discussed here at all because they lie outside
the scope of the present paper.

II. GENERAL RESULTS

Consider a nonlinear material with a plane surface per-
pendicular to one of its optical axes. Let this be the z =0
plane. We consider here a p-polarized electromagnetic
wave propagating in the X direction along the surface.
The wave is assumed to have an x dependence of the form
of a plane wave, ~e'k"x, and no y dependence. The field
components E,, By, and B, are all zero, and the remain-
ing components obey the set of equations:

(2.1a)

—0,B,(z,t)=0,;[ €, Ex(2,t)] ,
ikyB,(z,t)=38,[€,E,(z1)] , (2.1b)
9,E,(z,t)—ikE,(z,t)=—9,By(z,t) , (2.1¢)

where the magnetic permeability u has been taken to be

unity. If we further assume the wave be monochromatic,
~e " and that €’s depend on the intensity |E |2 only,
then the €’s do not depend on ¢. We can rewrite the above
Maxwell’s equations in the form

By (&) =ie€Ex(§), (2.2a)

1B, (§)=€E,(§) , (2.2b)

E,(£)—inE,(§)=iB,(§), (2.2¢)
where |

E=wz/c, (2.3)

n=kyc/o, (2.4)

and the prime denotes differentiation with respect to the
dimensionless variable £. We find it convenient here to
express E, and E, in terms of B, so that we obtain from
Egs. (2.2a)—(2.2¢) the second-order nonlinear differential
equation

’

B 2
=2 1 _1|B,. 2.5
exx 622

Note that the dielectric functions depend on & only
through their dependence on the electric field intensity
2 2

nB B;
'E|2=IExIZ+IEzIZ= z z
GZZ 6xx

Now assuming a lossless medium we see that B, can only
be determined up to a constant phase factor. Without loss
of generality we can take B, to be real and non-negative.
Then B, is always in phase with E, but is always 90° out
of phase with E,.

For simplicity, and in order that our results will apply
directly to the case studied experimentally,'!? we consid-
er here only optically isotropic systems and put
€=€,, =€5. Our problem now is to solve for B from the
following set of equations:

| 2
B [—’1——1 B, (2.6a)
€ €
e=¢y+6(E?), (2.6b)
B 2 B’ 2
E2=172 — |+ |, (2.6¢)
€ €

where €,(E?) is an arbitrary function of E? and vanishes
when E =0, and we put B=B, to simplify our notations.
It turns out that our problem can be solved exactly in
quadratures for arbitrary form of €,(E?). To do so, let
I(e—¢;) be the inverse function of e,(E?) so that in the
linear limit, € approaches €3, and I(0)=0. To simplify

“our analysis, we further assume that in the range of inten-

sities of interest €,(/) is a monotonic function of 7, and so
I(e—¢€p) is uniquely defined. From Egs. (2.6b) and (2.6¢)
we have

B
€

2
=I(e—€y)—7

2
2

(2.7)




32 p-POLARIZED NONLINEAR SURFACE POLARITONS IN . .. 5095

Differentiating this equation once and making use of
(2.6a), we obtain the result

2
1y ]=1'~n2§3—<e3'—e'3) . 2.8)
€ €

2BB’
€

Multiplying (2.8) by €, we can put it into the form

2
2 —€ —el’, (2.9)

€

BZ

which can immediately be integrated once to give
€

Bl=———T[el(e—€)—J(e—¢))] , (2.10)
2n°—e
where
E-—Eo
Je—e)= [ “dxItx), (2.11)

and the integration constant has been set equal to zero.
This choice is appropriate when the material extends to
- infinity where B=B’'=0, and therefore I =0 and e=e¢,.
Since € is a function of B and B’, (2.10) is a first integral
of our problem. '
In order to calculate B as a function of £ it is difficult
to work directly with (2.10), instead we use (2.6b) and
(2.6¢) to write

(B’ =€ (e—ey)—n*B?, 2.12)
which then leads to
B
E=sgn(B’) fB(o)dB[ezl(e——eo)—nZBZ]l/Z (2.13a)
€
—=sgn(e') fe(o)de[-—-2V(e)]"/2, (2.13b)
where
-2
V(e):—:—% Z—g [d(e—e)—7?BY],  (2.130)

and B(0) and €(0) are, respectively, the magnetic field and
the dielectric function at the surface, £=0. In (2.13c) we
must use (2.10) to express B and dB/de in terms of e.
Note that with € interpreted as the coordinate and § as the
time, Eq. (2.13b) describes the classical motion of a unit
mass moving in a one-dimensional potential V with zero
total energy.”’ Performing the integral in (2.13b) and then
inverting the result gives us e=¢(§), and finally putting it
in (2.10) yields the magnetic field profile B=B(£). Thus
our problem has been reduced to quadratures. The values
of B(0) and €(0) must be determined by boundary condi-
tions which we will discuss next.

The boundary conditions are obtained from the require-
ment that the tangential field components be continuous
across z =0, i.e.,?!

[E.]=[B,]=0, (2.14)
or in terms of B,:
(8]=0, |£ |=o. (2.15)

To be more specific, let us consider the case where region
I with z <0 is occupied by a linear isotropic medium with
€=¢€,=const, and region II with z >0 is occupied by the
nonlinear medium of interest. Thus in region I (2.6) be-
comes

B"=(n*—€)B (z<0). (2.16)

In order for a localized mode to exist at the interface, it is
clear that we must have 7> —e; > 0. The solution to (2.16)
that approaches zero as z— — oo is given by

B(£)=B(0)e"* 2.17)
with
K=+ (n?—e)?, (2.18)

The boundary condition [ B]=0 is satisfied automatically.
The remaining boundary condition can be written with
the help of (2.17) as

B'(0) B(0)x,

€0~ & (2.19)
Use of (2.19) in (2.7) gives
2 2 2 2
B'(0) | BYOki 2 | B(O)
6(0) = e% ——I(e(o)'—fo)—‘f] e‘(o)
(2.20)

We find it convenient to eliminate all explicit dependences
on B by using (2.10). The result is some kind of disper-
sion relation connecting 7=k,c /@ with the value of the
dielectric function at the surface of the nonlinear medium,
€(0):

0 | -
21726(—6)(0)[6(0)1(6(0)—60)—“6(0) €)]
ki 2
n I(e(0)— . 2.21
ef+62(0) (el0—e) 2

Solving for 7 gives the result

- €,6%0){[€(0)—€, 1 (e(0) —€p) —J(€(0) —€p)}
= €(0)[€X(0)— 31 (e(0) —€p) — [€2(0) + €31 (e(0) —€p)

(2.22)

Note that if medium II is also linear than J=O0, and
€(0)=¢, and (2.22) reduces to the well-known result for
the dispersion relation for p-polarized waves??

2

kxc €€
p= || =—. (2.23)
@ € +€1
Equation (2.22) expresses the intensity-dependent

dispersion relation for the p-polarized NLSP. However,
instead of €(0) or B(0), it is the energy flux that is often
more directly controllable experimentally. We now ex-
press the Poynting vector in terms of B using (2.2a) and
(2.2b) as
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2 p*
S(z)= - Re(ExH*)=-S-Re [ B1- o, ;BB
8 8 € €
¢ B?,
= 817-7’ - X (2.24)

Note that S is entirely directed along X, as it should be.
We are interested in the total energy flux per unit length
in the y direction, S, which is defined by the equation

+
[ dzs=s:%,
=(S1+Shz, (2.25)

where S. and S are the contributions from regions I and
II, respectively. Using (2.17), (2.10), and (2.24), we find

f c* B*0)
—o € 87w 2€ik,

__cn c_ €0
l6mek; o 2n>—€(0)

X [€(0)I(e(0)—€p) —J(€(0)—€p)] -

(2.26)
To find S)%, which is defined as
c + o0
T = N dz-—— ——-—n f §—~ (2.27)

there is no need to first calculate B(£) and €(£) and then
perform the necessary integral over z. A more direct way
is to express all relevant quantities in terms of €. There-
fore in (2.27) we make use of (2.13c) to write

dé=de/e'=+[—2V(e)]" e,

and express B in terms of € using (2.10). The resulting in-
tegral is given by

feo el(e—ep)—J(e—¢p)
€ ’
€0 " (292 —e)[ —2V(e)]}7?

where the + (—) sign is to be used for the portion of the
integral where €’ is positive (negative).

Since €(0) can be written in terms of 7 by inverting
(2.22), Eq. (2.28) expresses a relationship among S,, k,,
and w. For a given functional form of €,(x), the pro-
cedure to compute this relationship is as follows. For a
fixed value of w, we assume some value for €(0).2*> This
immediately specifies the value for n by (2.22). With this
€(0) we compute the integral in (2.29) to get S,. We re-
peat this for other values of €(0). In other words, we con-
sider S, and 7 as parametrically dependent on €(0). In
this way we can plot S, as a function of 7. In general,
different curves will be generated depending on the value
of w.

However, note that if one works in a frequency region
where the frequency dependences in €;, €y, and the form
of €;(x) can be neglected, then the combination wS, de-
pends on the wave vector k, and frequency @ only
through the dimensionless combination (k.c¢/w)*=n?

SII_+ e
87Tn @

(2.28)
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Thus all the curves collapse into a single one when wS, is
plotted versus 77. A specific example will be given in the
following section.

III. SPECIFIC EXAMPLES

We now apply the results developed in Sec. II to a
specific case of interest. We consider a material whose
dielectric function has a nonlinear part proportional to the
intensity, i.e.,

€(E*)=aE? . 3.1

Both the self-focusing (a >0) and self-defocusing (a <0)
cases will be considered, as well as different signs in €
and €.

The function I(e—¢g) is then given by

€—€p
I(e—e€y)= R (3.2)
a
from which J(e—¢p) defined in (2.11) can be obtained,
(e—ep)?
J(e—ep)= (3.3)
2a
Equation (2.10) then gives B as a function € in the form
ele?—€})
B=—— 3.4
2a(2n°—e€)

The form of the “potential” V(e) in (2.13c) can be ob-
tained, using (2.13c), (3.2), and (3.4), with the result

1 (e+€0)€ (27 — €)X (e — €)*(3n’e— 26— n’€y)

Vie)=—
© 2 [€2n*—e)+nH 2 —ed)]?

(3.5)

Note that asymptotically away from the interface
(|z]| —+ ) B and B’ must go to 0 and so € must go to
€o. In that limit we find

Vie)— —2(n*—e€p)e—e€p)?, €—€p. (3.6)

It is clear that in order for € to have a finite deviation
from ¢, for finite £ we must have 7% > ¢;,. Combining this
condition with a 31m11ar condition obtained prevmusly for
region I, ie., 7?>€;, we see that there is a long-
wavelength cutoff for the existence of the present p-
polarized NLSP, i.e., 7> > max(0,€,€;). Below this cutoff
the mode is no longer localized near the interface, but be-

' comes radiative. From the Appendix we can see that this

is true for the linear case as well.

The asymptotic form of V(e) also determines the width
of the NLSP in the direction perpendicular to the in-
terface. 2 From (3.6) this width is given by
+(ky —weo/c)~ /2 in region II. The corresponding width
in region I is given by (k, —we;/c)~1/? as can be seen
from (2.17) and (2.18).

Putting (3.2) and (3.3) in (2.22) gives the result

2 €€ (0)[e(0)—2¢+6] 3.2
T €X0)+€X0)ey—3e(0)ei + €€y :
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To analyze the behavior in the weak field limit we put
€(0)=€y+a | E(0) |2 (3.8)

in (3.7) and expand the result to first order in
a | E(0) | */¢, to obtain

€, | E(0) |2
2ep(€;+€p)

€1€p
€1+¢€o

,)72

(3.9)

i

The dispersion relation when expressed in terms of the de-
generate nonlinear susceptibility X‘*' is then given by
2 rex™|E(0) |2

k=9 _61€0
*= 60(€1+€0)

4 €1+ €p

J . (3.10)

If one starts from (A3) for the p-polarized LSP, sets ey
equal to the right-hand side of (3.8), and expands the re-
sult to first order in a | E(0) | /e Eq. (3.10) can also be
obtained provided one uses an effective intensity which is
half as large as the actual value.!""!? This equation was
used successfully by Chen and Carter to extract the mag-
nitudes as well as the signs of X'® for GaAs and Si from
the experimentally determined intensity-dependent disper-
sion relations. However, we must point out that (3.10)
was derived in the quasilinear limit with the expansion pa-
rameter X® | E(0)|?%/(e;+¢€,) which may not be small
near very strong resonances where €, + €y~0, even though

|X¥| | E(0)|? may be small compared to unity. Thus
(3.10) cannot be used in that case. The experiment of
Chen and Carter!"!2 was conducted not very close to the
plasmon resonance and the nonlinearities involved were
sufficiently weak that nonlinear shifts of the plasmon res-
onance frequency described by (3.7) need not be con-
sidered.

A. Wave profiles

We see in Secs. II and III that in order for the existence
of p-polarized NLSP we must have 7> €;, 7*>€,. Thus
we must work within the parameter regions given by the
condition

7% > max(0,€,€0) (3.11)

To find the wave profiles we need to know more about
the form of the “potential” ¥V(e) in (3.5). It is clear that
V(€e) has simple roots at — €, and at

e+ =[372+9(9%—8¢y)' /%) /4, (3.12)

and has double roots at 0, €y, and 2792, The cases €,>0
and €y <0 lead to different results and will be discussed
separately.

Case (I): €,>0

For €3> 0 the real roots of V(e) are distributed as fol-
lows: —€p<0<e_ <€ <€, <2n?® regardless of the value
of €(0), as long as (3.11) is satisfied. However, because
asymptotically B and B’ must vanish and € must ap-
proach €, (or in other words, the “particle” must return to
€p eventually as “time”— + o), the physically accessible
region is given by €_ <€<¢; for <0 and by eg<e<e,

for a>0. Note that €4, 17, and thus the form of ¥V all de-
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pend on €(0), and therefore can all be modified by varying
the field intensity. We also see that for €,>0, €(£) and
therefore €(0) must be positive. Since we have taken B(0)
to be non-negative one can see from (2.19) that

sgn[B'(0)]=sgn[€,€(0)] (3.13)

=sgn(e€;) . (3.14)

(A) First we consider a > 0. In this case one can show
from Eq. (3.14) that B’(£) and €'(§) always have the same
sign.

(i) If €, is positive then from (3.14) we have B’(0) and
therefore €'(0) positive. The only possible classical
motion with this initial condition in the nonlinear region
is to have € start from €(0) at time £=0, increase to €,
turn around and eventually arrive at € as §— + oo [Fig.
1(a)]. Thus in region I B increases from zero at §=— o
to B(0) at £=0, and continues into region II with a
change of slope, but still keeps on increasing until it
reaches its maximum value

27t —e,

€4

B ==

and then it decreases to zero exponentially as £— + oo
[Fig. 1(a)]. The presence of a peak within region II is
clearly a manifestation of the intrinsic nonlinearities of
the system, and the excitation of this wave will therefore
require a minimum threshold power.

(ii) On the other hand, if €, is negative then so is €'(0).
Thus after rising from zero at £= — « to B(0) at £=0, B
decreases as soon as it enters region II and continues to
decrease to zero as £— + . Therefore there is a cusp in
B at the interface and no other peaks [Fig. 1(b)]. From
the Appendix we see that this wave is qualitatively the

(a) (a)
€(o0)

€(0) B8(0)
(b) (b)

€l m - - - o - — €,
) /’T € LI

" /fd

FIG. 1. Profiles of the dielectric function and the y com-
ponent of the magnetic field along 2. The physical parameters
are (a) €>0,a>0, €,>0; (b) €>0, >0, €, <0; (c) €>0, 2 <O,
€1<0, € <e0)<ey (d) €<0, a>0, >0, 6<e0)<e; ()
€<0, <0, €, >0. The magnetic field profiles for cases (c), (d),
and (e) are qualitatively similar to that for case (b).
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same as for the linear case. This is understandable since
now €; and €, have opposite signs and thus p-polarized
LSP are allowed.

(B) Next we consider a <0. In this case one can show
that dB /de vanishes at a single point €; which is given by
7°[ 142 cos(8+47/3)] with

0=+cos™'[1—(ep/n?)?/2] .

Moreover ¢; lies between €_ and €,, and dB /d¢ is positive
for e_ <€ < €; and negative for €; <€ <€;. At €; we have

€ —3np%e+n%i=0, (3.15)

and therefore ¥ goes to — «. For €, < € <¢€y.0one can find
a suitable solution for B from (3.4). However, that solu-
tion disappears as soon as € is larger than ¢, or
equivalently that solution is not defined (or leads to com-
plex values for €) for B > B, where

B, ={e,(e5—€2) /[2a(2n*—¢€,)]} /2.

(i) For €; >0, we find from (3.14) that B’(0)>0. (a) If
€; < €(0) < €, then €'(0) is negative. The particle will tend
to move past €; and therefore we do not have any suitable
solution. (b) The case where €_ < €(0) < €; can also be ig-
nored.

(ii) For €; <0, we have B'(0)<0. (a) If €, <€(0) <€,
then dB/de <0, and so €'(0) > 0. The profiles for € and B
are shown in Fig. 1(c). This mode is qualitatively similar
to that found in the linear case, and thus we do not expect
a minimum threshold power for it excitation. Note that
€o and €, have opposite signs here so that p-polarized LSP
can in fact exist in the zero intensity limit. (b) However,
the case where €_ < €(0) < ¢; is clearly not allowed.

Case (II): €,<0

For €3 <0, the distribution of the zeros of V(e) is given
by €<€_<0<<€e<e,<2n? if 29*> —¢€, and by
€p<€_<0<2n’<e, < —¢ if 27> < —€p. In cither case,
we only need to consider values of € below €_. Thus ¢,
and therefore €(0), are always negative. From (3.13) we
find that

sgn[B'(0)] = —sgn(e,) . (3.16)

€, which is determined by (3.15), exists and lies between
€ and €_. One can also show that dB/de is >0 for
€g<€<€, and is <0 for €, <e<e_. When B <B; one
can find a real solution to € which lies between €; and ¢;.
This is not so, however, for B > B,.

(A) Consider first the case a > 0.

(i) In addition, if €,>0, then from (3.15) we have
B'(0) <0. (a) The situation where €; < €(0) <€_ is clearly
not allowed. (b) On the other hand, if €;<€(0) <¢,, then
€'(0) <0. The results for € and B as shown in Fig. 1(d)
clearly may have a linear analog.

(ii) For €; <0, we have B'(0)>0. (a) Again the case
€;<€(0)<e_ needs not be considered. (b) But if
€9 < €(0) < €, then €'(0) is positive and thus € can become
larger than €;. This case must also be ignored.

(B) Next consider a <0. € is then never larger than e,
and therefore dB /de is always negative.
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(i) For €,;>0, B'(0) is negative and therefore €'(0) is
positive. The result for € and B as shown in Fig. 1(e)
clearly may have a linear analog.

(ii) For €; <0, we have B’(0)>0 and so €'(0) <0. The
classical motion is unbounded as the particle can move off
to — . This case does not correspond to any physically
realizable situation and must be ignored.

B. Allowed physical regions
and nonlinear surface plasmon

Next, we want to show that the modes discussed above
do in fact exist, and we map out the regions in parameter
space where they are allowed. To compute the allowed re-
gions we need to simultaneously impose various condi-
tions, and to check for internal consistencies. First we
have the condition specified in (3.11) for the existence of
surface modes. We find it more convenient to carry out
our analysis in terms of the variables.

x=e€(0)/€; and p=¢€y/e; .

This condition can be broken down to three subcases. For
max(0,e1,69) =0, i.e., €; and €, are both negative, we want
only the regions where

(x—=24p)/(x34px?—3x+p)=r<0 and p>0.

On the other hand, if max(0,e,,65) =€y, i.e., € is positive
and larger than €, we must require x%»>1 and p <O.
And for max(0,e,€) =0, i.e., € is positive and larger than -
€1, we want x%r>p>1if €,>0, and x% <p <0 if € <0.
The “resonance curve” is given by x3+px2—3x+p, or
equivalently by p=x(3—x?)/(1+4x?), and is plotted as a
solid curve in Fig. 2.

Next, we recall that to determine the possible wave pro-
files for each case, the form of V(e) as well as the boun-

- FIG. 2. The physical allowed regions are shaded. Except at
the point x =p =1, nonlinear plasmon resonances occur every-
where on ‘the solid =zigzag curve which is given by
p=x(3—x2)/(14x?%). The dashed curve is given by
p=x(3—2x) and the dotted curve is given by p=p_ [Eq.
(3.19)], where x =€(0)/€; and p =€p/€;.
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dary conditions must be known. However, all these quan-
tities depend on €(0) either explicitly or implicitly through
their dependences on 7). The wave profile deduced above
must be consistent with the value of €(0) assumed, i.e., the
classical motions in potential ¥ must start out at €(0) in
the nonlinear medium.

To be more specific, let us consider, for example, the
case (IA1) in which € is restricted to lie between €, and
€,. Thus we must require that €, <€(0)<e,. To see if
this condition is met, let us consider the situation where
€(0)=e€,. Using Egs. (3.12) and (3.7), we obtain a rela-
tionship between x and p which can be put into the form

(14+x2)p3+x(2x3—x242x —5)p?
+x%(4x3—5x%—4x+3)p

4+x32x3—-3x%—6x+9)=0. (3.17)

This equation turns out to be completely reducible yield-
ing the result

x(3—x?)
pP—————5

(14+xH)(p+x)
14+x

[p—x(3—2x)]=0

(3.18)

The dashed curve in Fig. 2 is given by p =x (3 —2x).

There is one more problem left for cases (IBiia) and
(IT Aib), where €(0) must be larger than €, for the former,
but less than €, for the latter. For given values of x and
p, we must find the transition lines in parameter space
which are determined by the condition €(0)=¢,. To do
so, we substitute n from (3.7) into (3.15), and replace €(0)
by €, everywhere. Dividing the resulting equation by e,
we obtain a polynomial involving the parameters
x;=¢€,/€; and p. Again it is more convenient to consider
p as the variable with coefficients which are functions of
xs. The resulting cubic equation is again completely redu-
cible with the result

P34 (xs—2)p2+x,(x2—3x,+ 1)p +xXx2—3x,—3)
=(p+x)p—py Np—p_)=0,

where (3.19)
pe=[1+1—x,(xZ—3x,+3)]"/%.
The solutions given by p= —x, and p=p_ do not lie in

the physically allowed region and can be ignored. The
solution p=p _ is plotted as a dotted curve in Figs. 2 and
3.

Combining all the above results, we finally obtain the
complete map of physically allowed regions in parameter

space for the various modes. Only the labeled regions

shown in Fig. 2 are allowed.

For the linear case, surface-plasmon resonance happens
only at the point x =p = — 1, but the situation in the non-
linear case is rather rich. We find that, with the exception
of the point x =p =1, plasmon resonance happens every-
where on the solid curve which is given by
p=x(3—x2)/(14+x?). As in the linear case, as the reso-
nance is approached, 17— + «, and for a given value of
B(0), the electric fields at the interface become very large,

£4-0.05

4-0.10

FIG. 3. Finer structures in the region where x and p are both
small and negative.

and at the same time the wave forms along Z become very
narrow, and eventually collapse to the point z=0 in such
a way that the energy flux remains finite.

For the case (1A i), Eq. (2.13b) with V(e) given by (3.5)
can in fact be integrated to obtain e(§), which then gives
B(&) from (3.4). However, the resulting expression is too
lengthy and will not be written out here. We believe that
the integrals for the other cases can also be integrated, al-
though we have not attempted to do so.

IV. DISCUSSION

There are a large number of problems left for future
studies, some of them have already been pointed out by
Maradudin.2 Among these are those that can be readily
treated by using the results developed here, or by straight-
forward extensions thereof. For example, we can easily
study the effects due to saturations of the dielectric con-
stants. It is important to consider these effects since the
dielectric constant of a real material cannot increase (or
decrease) indefinitely with increasing intensity, but must
level off to some value depending on the particular ma-
terial one is considering. By simply altering the appropri-
ate boundary conditions we can also study the propaga-
ting of NLSP in layered dielectrics and waveguides.

Some problems, however, will require major modifica-
tions of our results. For example, instead of considering
only the intensity dependence of the nonlinear dielectric
function, one should consider all forms of electric field
dependences that are allowed by crystal symmetries. Even
if one confines to terms in the nonlinear polarization of
order less than or equal to three, this problem has not
been attempted. The effects due to dielectric losses have
only been discussed within perturbation theory.? The ef-
fects of harmonic distortions, i.e., the presence of higher
harmonic terms, have also not been treated. Most impor-
tantly, the question of stability of these nonlinear modes
has not yet been addressed at all. A linear stability
analysis similar to that applied to soliton studies should be
extremely valuable.?* As by-products of such an analysis
the behavior of these waves in the presence of small
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perturbations such as surface irregularities, surface
roughnesses, dielectric inhomogeneities, and additional
external modulating fields can also be studied. It is possi-
ble that the nonlinear surface-guided wave discussed here
may then lose some of its energy by emitting radiation
away from the interface. Radiative solutions to the non-
linear Maxwell equations have in fact been discussed by
Kaplan®*?® in connection with the bistable reflection and
refraction of light from nonlinear interfaces. It is clear
that NLSP should play a major role in such phenomenon
since experimentally the sum of reflected and transmitted
energies at a nonlinear interface was observed to be less
than the incident energy.?’

The tremendous potential devices based on nonlinear
interfaces have for fast, compact and relatively low-energy
optical switching, and signal processing application has
already been emphasized by Smith' and Tomlinson.?’
Various waveguide configurations of nonlinear interface
devices exhibiting optical triode and optical delimiter
characteristics have been proposed and demonstrated ex-
perimentally using moderate-power cw lasers.?”!® How-
ever, many important questions remain to be investigated.
Much additional theoretical as well as experimental work
will be needed to fully answer these questions.
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APPENDIX: p-polarized LSP

This appendix establishes some of the well-known re-
sults for the p-polarized LSP for comparisons with those
of the corresponding NLSP. Such comparisons will help
to bring out the unique features possessed by the nonlinear
modes. Moreover, these result will be derived using our
present approach, and in doing so, will illustrate in a sim-
ple way its usefulness.

Consider two linear media, one occupying. region I, and
the other region II. Their dielectric functions €; and ey
are therefore constants, and without loss of generality we
can take €;>e€p. The first integral can be found from
(2.16), with the result

2
B)” +V(B)=0,

> (Ala)

where
(772—61,11)

5 B?. (A1b)

Vin(B)=—
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The integration constant which plays the role of the total

' energy must be zero since asymptotically B and B’ must

vanish. It is clear that in order for B to assume nonzero
values at finite £, we must require that 7% > €.

Next we must consider the boundary conditions in
(2.15). The first condition implies that the “particle”
jumps from Vi to Vy at time £=0, where the particle is
at the location B;=B(0)=Byp. The second condition
gives the relationship of the particle’s velocity before and
jump:

’ ’
By Bq
€1 €11

(A2)

Note that both potentials are unbound for |B|— oo,
since B must be positive, or else the particle starting
from £=— « can never roll away from the origin down
V1, and By must be negative, so that the particle will roll
up Vy to reach the origin eventually at £=+ «. Thus
we obtain the well-known fact that a necessary condition
for the existence of p-polarized LSP is that €; and €;; must
have opposite signs.

In addition, if we square both sides of (A2) and then
make use of (Al) we obtain in a simple way the well-
known dispersion relation for p-polarized LSP:

2 _Er€n

= . (A3)
€1+€n

The integrated Poynting vector along X can be readily cal-
culated to give

172
c2B¥0) | €l +ei
Sx = 3 3 (A4)
167w —Ei€n
The electric field intensity is given by
2n%—e¢
E¥g) =11 p2(g)e *int (A5)
€L
with
KI,IIE(WZ—GI,H)V2 . (A6)

Since we have taken €; to be larger than €y, in order to
support a p-polarized wave € must be negative. The
surface-plasmon resonance condition is then given by

1 1
.—-Z_.—_'

€1 €11

(A7)

From (A5), (A6), and (A3) we see that as we approach the
resonance condition the field intensity grows very rapidly,
at the same time the intensity becomes more and more lo-
calized at the interface, i.e., kij—0. As a result S,
remains finite there.
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