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Calculation of elastic strain and electronic effects on surface segregation
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We present an electronic theory for calculating the heat of i~purity segregation at metal surfaces
by considering both the electronic contribution to the surface energy and the size-mismatch energy.
The attractive part of the total energy is described by a multiband tight-binding Hartree Hamiltoni-
an, and for the repulsive part Born-Mayer-type interatomic repulsions are assumed, which may de-

pend on charge transfer. With simplifying assumptions about the density of states and the charge
transfer, the heat of segregation and the equilibrium geometry can be obtained from an expression
which depends only on the bulk cohesive energy, the bulk modulus, and the atomic size of the alloy
components. Using this theory, we calculate the heat of segregation of Rh, Cu, and Au impurities
on different Pt single-crystal surfaces and make a comparison with existing experimental data.

I. INTRODUCTION

It is well established' that the surface-segregation
behavior in binary alloys is determined mainly by the dif-
ferent surface energies of the pure constituents and the
size-mismatch energy. Venule both these effects have been
considered in phenomenological theories of surface segre-
gation, ' existing electronic theories restricted them-
selves to systems with components of same atomic size
and treated the size-mismatch energy in a rather crude
way within the continuum theory. ' Only recently has
bulk strain energy due to interstitial impurities been calcu-
lated within an electronic model. Of course, an accurate
estimate of both effects is necessary in systems where one
component tends to segregate to the surface because of its
lower surface energy and the other component due to its
larger atomic size. In contrast to previous calculations,
which assumed the surface part of the size-mismatch en-

ergy to vanish, ' it seems necessary to consider such
terms and their dependence on the surface considered.
Hence, in Sec. II we present a theory which describes the
electronic and the size-mismatch parts of the surface ener-

gy on a microscopic footing. In Sec. III we use this
theory to calculate the heat of segregation of Rh, Cu, and
Au impurities in Pt, where the electronic and the size-
mismatch effects compete, and compare the results with
experimental observations. In Sec. IV we discuss the limi-
tations and a possible generalization of our theory.

II. THEORY

For low concentrations x of the solute 2 in the alloy
A„Bj „,its surface concentration x, is given by

Qses E'"(A im——purity at the surface of 8)
E'"(A —impurity in the bulk of 8) . (2.2)

For a given geometry, the total energy E"' of the system
is given by the band-structure energy Eas and the repul-
sive energy E~", as '

Etot +Etot
BS R (2.3)

The conduction electrons are described by a multiband
tight-binding Hartree Hamiltonian with intra-atomic
Coulomb interactions U as

H g Ejgni~g + g rig egg cJg QE«(i) (2.4)
i,a,o &~J~~P~&

(~+j)

where c;~ (c;~~) is the creation (annihilation} operator of an
electron in the Wannier state corresponding to the site i
(occupied by an A or 8 atom), the band a and spin o., and
n; =c; c; . t,J~ is the hopping integral between the site
i, band a, and the nearest-neighbor site j, band P. e; is
the Hartree-Pock single-site energy in the alloy. The
latter can be related to its value e;~ in the pure metal
atoms by

&i~c =&~la+ Ui~{rii~ ~) ~— (2.5)

where UP takes the value Uz (Ug), if the site i is occu-
pied by an 2 (8) atom. The quantity E«(i) is given by

E„(i)=—,'g(e; —e; ){n; ) .
a, cr

(2.6)

The local density of states NP(E} for the band a at the
site i is determined by the corresponding diagonal element
of the one-particle Green's function as

X Qseg /kT

1 —x
(2.1)

N; (E)=——Im+G;; (E) . (2.7)

where the heat of segregation Q„s is the work involved in
exchanging a surface B atom and a bulk A atom. In the
dilute case, Q«s is given by

For nonmagnetic elements, the average occupancy of the
band a and spin ir at the site i can be obtained from

(ni~~)= —,
' f Ni(E)dE, (2.8)
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and the band-structure energy Ez& is given up to a con-
stant by

to the valence charge in pure element s by

(2.15}
EF

E'ns =Q f EN; (E)dE —QE„(i) .
i,a l

(2.9)
The charge-dependent atomic radii can be estimated from

In order to account for possible atomic relaxations near
the impurity and at the surface, we assume an exponential
distance dependence for both the hopping integrals tz~(r)
and the Pair bond energies Ejl,j(r), given by'

tP~~(r) =t J~(r J(5Q =0))exp( —q~jpI [r/r 1 (0)]—1 j )

(2.11)

and

Eji, iJ(r) =E~j(r~j(5Q))exp( pij I [r/rioj(5—Q)]—1 j ) .

(2.12)

In these equations, i and j denote solely the type of atom
occupying the respective sites.

Generally, a charge transfer 5Q has to be considered be-
tween the alloy components, which will modify the equili-
brium distances. Since the hopping integrals in Eq. (2.11)
are assumed independent of 5Q, the equilibrium distance
rij(5Q =0) is given by the sum of the atomic radii
r;(0),rj(0) of the respective pure alloy components, as

rgb(0) =rg(0)+r, (0) . (2.13)

On the other hand, charge transfer is expected to affect
the repulsive interactions in Eq. (2.12) due to its origin in
the compression of valence electrons. We assume that for
the charge-transfer-dependent equilibrium distance

roj(5Q) =r;(5Q;)+rJ(5Qj) . (2.14)

Here, the charge transfer 5Q; at the site i is given relative
I

The repulsive energy E~" is assumed to consist of pair-
wise Born-Mayer-type repulsive interactions between
nearest neighbors, '

(2.10)

r;(5Q;)=r;(0) 5Q—;Dr; (i =A,B) (2.16)

where r;(0) is the atomic radius in the pure component
and hr; is the change in radius from the neutral element i
to a (1 + )-charged ion.

In order to obtain Qees from Eq. (2.2) for the general
case of an impurity with different electronic structure and
atomic size than the solvent, one has to calculate the total
energy of the system from Eqs. (2.3), (2.9), and (2.10) for
the relaxed equilibrium geometry corresponding to the A
impurity at the surface and in the bulk.

Clearly, a self-consistent electronic calculation deter-
mining both the relaxed geometry and the electronic
structure of the alloy is computationally very tedious.
Hence we show how introducing some assumptions that
are not too restrictive can greatly simplify the calculation
of Qseg

We first assume that the Hartree Hamiltonian in Eq.
(2.4) consists of a single "effective" band. Further assum-
ing 5Q =0 and local-charge neutrality at all sites, each en-
ergy term E'" determining Q„g can be expressed by

EFE'"t=$ f (E e; )N;(E)dE—+ —,
' $ Eti;j
j (&i)

(2.17)

Without specific assumptions about the band shape
N;(E), the first term, which is the band-structure energy,
is proportional to the square root of the second moment
M2; of N; (E), which is given by"

M2; ——g ti2j .
j (&i)

(2.18)

For a pure alloy component we further require that Eq.
(2.17) should reproduce the bulk cohesive energy
Eeob(bulk) and the nearest-neighbor distance r;J Then, .
this equation can be simplified to '

E"'=g — gg expI 2q[r;j!r~(0) 1]j— —
' 1/2

g g'exp I p[r;1 /r, oj(0) 1—]j-
(Zbulk) j (~i)

(2.19)

where j is nearest neighbor of i, and

E„b(bulk)
1/2 (2.20)

Here, Zb~k is the bulk coordination number. q and p
describe the distance dependence of the "effective" hop-
ping integrals and the repulsive pair bonds, respectively,
and are related to bulk elastic constants. Note, Eq. (2.19)
relates the total energy to the (correct) bulk cohesive ener-

gy by assuming local-charge neutrality and the same band
shape as in the bulk. The latter seems to avoid some

[Eeob(bulk i )Eeeb(bulk j)]'
~ ~ i=A, B . (2.21)

The use of the total energy expression in Eq. (2.19), which

problems arising from the use of the model Gaussian or
rectangular bands. '

In dilute alloys, p and q corresponding to the solvent
can be used in a good approximation. The quantity g,
which from comparing Eqs. (2.18}and (2.19) is essentially
a hopping integral, can be modified in the alloy as
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contains essentially only thermodynamic parameters,
strongly simplifies the calculation, first by allowing for
geometry optimization. In pure metals, this formula has
been successfully used to predict atomic relaxations at the
surface. ' ' For alloys with a small charge transfer we
further expect good predictions for the heat of segrega
tion, since this expression treats the electronic and size-
mismatch effects on the saine microscopic footing
Hence, it also seems reasonable to use this simplified for
malism in systems with large charge transfer in order to
first determine the atomic structure. In a second step, a
more refined electronic calculation of Q„s can be per
formed with the full multiband Hamiltonian, e.g., by us
ing the recursion technique.

sur face:

bulk:

. solvent B

solute A

III. CALCULATION OF SEGREGATION
IN Pt-BASED ALLOYS

In order to show the usefulness of the presented theory
in the following we calculate the heat of segregation of
substitutional Rh, Cu, and Au impurities in Pt. Of spe
cial interest are the first two systems, since the competi-
tion of size mismatch and electronic forces (solvent segre
gation due to the solute's smaller atomic size, solute segre-
gation due to its smaller surface energy) leads to Pt segre
gation in Rh Pt~ „and to Rh segregation in Rh„pt~
For Au„Pt& „reliable experimental data exist on the heat
of segregation.

Before determining the equilibrium geometry from Eq.
(2.19) and calculating the heat of segregation from Eq
(2.2), we first estimate the parameters p and q. In fcc lat-
tices, p and q are related to the bulk modulus B and the
nearest-neighbor distance r; by

9(r, )'
v 2 E„h(bulk)

From B(Pt)=2.88&&10' dyn/cm and the previously as
sumed ratio' p/q =3, we obtain p =11.1 and q =3.7 for
the "single band solid" Pt, in qualitative agreement with
earlier calculations. ' ' The lattice constants and, bulk
cohesive energies of the considered alloy components are
listed in Table I.

When calculating Q„s at different Pt surfaces, we
modeled the surface and the bulk of the semi-infinite crys
tais by corresponding clusters. These clusters, embedded

FIG. 1. Relaxations near the impurity.

[E"'(A at—B surface)+E"'(B bulk)] . (3.2)

The relaxed geometry is obtained by minimizing E"'
given by Eq. (2.19) with respect to the atomic positions at
the surface and in the bulk. The effect of the matrix is
taken into account by inhibiting the cluster boundary to
relax. In order to keep the number of variational parame-
ters reasonable, we assumed only radial shell displace-
ments bd; (i =1,2, . . .) with respect to the cluster center,
and at the surface in addition an in-out relaxation do [see
Figs. 1(a) and 1(b)].

The results of our calculation for the heat of segrega-
tion of Rh, Cu, and Au impurities at the Pt(111) surface
are given in Table I. We consider clusters with six
nearest-neighbor shells, but decreasing the cluster size to
four shells had only a very small effect on Q„s. In all

in the solid, consisted of a central atom and a variable
number of nearest-neighbor shells [Figs. 1(a) and 1(b)].
Since the only energy changes occur within the finite sur-
face and bulk clusters upon exchanging a surface A and a
bulk B atom, Eq. (2.2) can be rewritten as

Qses [E"'(B su——rface)+E'"(A in bulk B)]

TABLE I. Segregation at the Pt(111) surface.

Solute

Lattice
constant

a (A)
E g(bulk)'

(kJ/mol)
Only size
mismatchb

Segregating element and Q„(kJ/mol)seg

Only surface Our
energy' calculation Expt. Ref.

Rh
CU

Au

Pt

3.80
3.61

4.08
3.92

553.9
336.8

368.6
565.5

Pt, 3.8
Pt, 2.7

Au, —1 1.6

Rh, —1.2
Cu, —23.1

Au, —19.8

Pt, 2.8
Cu, —12 6

Au, —33.9

Pt
Cu, moderate
segregation
Au, —38.6+4.8

15
16

17

'R. Hultgren et al. , Selected Values of the Thermodynamic Properties of the Elements (American Society for Metals, Cleveland, 1973).
"E h(solute) =E h (solvent) assumed.
c 0~ so]ute ~so/vent assumed
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three cases we obtain agreement with experimental data,
which is even quantitative in Au„Pti „, where Q„g has
been measured. Also included in this table are calculated
results for Q«s for the special case that solute and solvent
have the same surface energy (only size-mismatch effects)
or the same atomic size (only surface-energy difference).
These data illustrate the competing role of these forces in
the first two alloys. '

Since on more open surfaces the role of elastic and elec-
tronic effects on Q«s can change, we calculated the segre-
gation behavior also at the (100) and (110) surfaces of
these alloys. The results are presented in Table II. While
for Cu and Au impurities Q«s only increases in magni-
tude towards the 'more open surfaces, in dilute Rh alloys
we predict changes in the segregating component between
close packed and open surfaces. '

Table III shows typical relaxations near Rh, Cu, and
Au impurities in Pt(bulk) and at different Pt surfaces.
For the sake of comparison, we also included results for
pure-Pt systems in this table. In contrast to the bulk,
where the relaxations of the matrix are small, the surface
displacements of the impurities are comparatively large.

IV. DISCUSSION

The correct prediction of the segregating component
and of Q«s in alloys with competing electronic and size-
mismatch contributions is a remarkable success of the
simple total energy expression (2.19). Obviously, the
second moment of the density of states contains the essen-
tial information for the band-structure part of Q«s. Note
that we avoid the assumption of a band shape (Gaussian,
rectangular, etc.) as done previously, ' but rather relate
the hopping integrals to the bulk cohesive energy in Eqs.
(2.20) and (2.21). Clearly, an impurity atom can lead to
split-off states and never will form an alloy band. In Eq.
(2.19) we assume that the second-moment approximation

Solute

TABLE II. Segregation at different Pt surfaces.

Segregating dement and Q„g (kJ/mo1)
(111) surface {100) surface {110)surface

Pt, 2.8
Cu, —126
Au, —33.9

Pt, 1.7
Cu, —25.1

AU, —46.5

Rh, —02
Cu, —396
Au, —58.0

correctly reproduces the weight and position of these
states by allowing for a modification of the g,j parameters
near the impurity according to Eq. (2.21). Further correc-
tion terms would be necessary especially in the case when
the difference between the hybridizing levels of the solute
and the solvent is large. While these corrections have
been discussed before, 's we neglected such terms for the
sake of a theory relying solely on thermodynamic parame-
ters.

Charge-transfer effects, at least on the elastic terms, can
be approximately accounted for in Eq. (2.19) by using Eq.
(2.16) for the atomic radii and estimating 5Q; from the
electronegativity difference of the alloy components.
Such effects are expected to be small in the alloys con-
sidered and will mainly affect the local relaxations.

We also want to point out the importance of elastic
terms in Q«s at the surface which have been neglected in
similar calculations. These surface-specific terms can be
responsible for effects such as the segregation trend rever-
sal between close-packed and open Rh„Pti „surfaces.
Also, the continuum model predicts negative contribu-
tions to Q«s for both oversized and undersized impuri-
ties, while our theory (more correctly) gives a negative
strain contribution only for oversized impurities, e.g., for
Au in Pt, but not for Cu in Pt.

It is generally difficult to obtain reliable data for the
heat of segregation in alloys. It has been shown'9 that

TABLE III. Relaxations of the Pt solvent near Rh, Cu, and Au impurities in Pt in the bulk and at
different surfaces. 4d; (d; ) are the changes of intershell distances (unrelaxed intershell distances) shown
in Fig. 1, and a is the lattice constant of the solvent.

System

Rh/Pt(bulk)
Rh/Pt(111)
Rh/Pt(100)
Rh/Pt(110)

do/a

—2.2%
—3.1 /o
—3.9%%uo

LM ] /d ]

—0.0%
—0.3%
—0.4%
—0.4%

Ad2/d2

+ 0.0%
—0.3%
—0.3%
—0.4%

Ad3/d3

+ 0.0%
—0.1%
—0.1%
—0.1 /o

ad 4/d',

+ 0.0%
—0.1%
—0.1%
—0.1%

Cu/Pt(bulk)
Cu/Pt(111)
Cu/Pt(100)
Cu/Pt(110)

—3.2%
—4.1%
—4.9%

—0. 1%%uo

—0.4%
—0.4%
—0.5%

+ 0.0%%uo

—0.3%%uo

—0.4%
—0.5%

+ 0.1%
—0.0%
+ 0.0%
+ 0.0%

+ 0.0%
—0.1%
—0.1%
—0.0%

Au/Pt(bulk)
Au/Pt{ 111)
Au/Pt(100)
Au/Pt(110)

+ 3.1%
+ 2.5%%uo

+ 1.5%

+ 0.1%
—0.3%
—0.4%%uo

—0.4%

—0.1%
—0.4%
—0.4%
—0.5%

+ 0.0%
—0.1%
—0.0%
—0.0%

+ 0.0%
—0.1%
—0.1%
—O. l%%uo

Pt/Pt(bulk)
Pt/Pt(111)
Pt/Pt(100)
Pt/Pt(110)

—0.9%%uo

—1.6%
—2.5%

0.0%
—0.3%
—0.4%
—0.4%

0.0 jo
—0.3%
—0.3%
—0.4%

0.0%
—0.1%
—0.1 /o
—0.1%

0.0%
—0.1%
-0.1%
—0.1%



32 CALCULATION OF ELASTIC STRAIN AND ELECTRONIC. . . 5055

within the equivalent cores approximation the surface
core-level binding-energy shift 6', observed in photoeinis-
sion is equal to the heat of segregation of an impurity of
the element which follows next in the Periodic Table. The
results of this method, which is restricted to alloys of
neighboring elements in the Periodic Table and which was
applied here to Au„Pt& „, showed good agreement with
the predicted value for Qses.

The relaxation data presented in Table III confirm local
lattice expansion in the bulk and an out-of-surface move-
ment of large (Au) impurities and the reverse behavior of
small (Rh, Cu) atoms. Also the trends in the calculated
values confirm larger relaxations in systems with large
size mismatch and/or open surfaces. As shown in Table
III, our model also predicts an inward relaxation of Pt
"impurities" at Pt surfaces, which is indicative of the ob-
served surface contraction. The relatively small contrac-
tion values result from the fact that in our simplified
geometry, relaxations perpendicular to the surface can
occur only at the impurity site, while the rest of the sur-
face is considered as unrelaxed in this way.

The calculated nearest-neighbor relaxations hdi/d i in
the bulk of —0.04% for Pt(Rh), —0.08% for Pt(Cu), and
+0.06% for Pt(Au) are only &10% of those expected

from a local addition of atomic radii, namely, —0.7% for
Pt(Rh), —2.0% for Pt(Cu), and + 1.0% for Pt(Au).
These smaller relaxations are confirmed by x-ray-
absorption fine-structure (EXAFS) measurements of
nearest-neighbor distances in semiconductors. In these
systems, whose lattice constants accurately follow
Vegard's law, the corresponding values of hdi/di have
been found to be only 20% of those expected from the
virtual-crystal approximation. While still smaller dis-
tortions are expected in the relatively hard transition-
metal solvents, in agreement with our predictions, it
would be very valuable to perform similar EXAFS experi-
ments in the above studied systems.

In this paper we tested the presented theory on substitu-
tional impurities in Pt single crystals, but its application
to interstitial alloys is straightforward. In this case, how-
ever, the atomic relaxations might be more far reaching.
The calculation of Q„s in interstitial alloys also requires a
detailed knowledge of bulk and surface iinpurity sites and
a careful analysis of possible relaxations in the surround-
ing matrix. In amorphous structures and in small metal-
lic clusters the elastic terms are expected to play a minor
role, due to the possibility of local stress release by local

reordering of the matrix in the first case, and by the ab-
sence of a rigid boundary in the second case. Similar to
the case of interstitial impurities, model assumptions have
to be made here about the local structure of the solvent.

This is also the case in concentrated alloys in general.
Here, in addition, the simplifying assumptions for the en-
tropy leading to Eq. (2.1) lose validity. Instead of

S=k[x Inx+(1 —x)ln(1 —x)], (4.1)
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an expression depending on the short-range order is re-
quired. In this case, an approximate expression given by
Kikuchi can be used. '

At adsorbate-covered alloy surfaces or at interfaces the
inclusion of overlayer-substrate coupling in the Hamil-
tonian (2.4) will account for the modification of Q„s and
changes in the segregation behavior, which have been dis-
cussed previously in a phenomenological model. Our
formalism can be further used to calculate Q„s in ternary
alloys. The hydrogen-absorption-induced segregation in
Zr Pdi „alloys, previously explained by the different
heat of solution of hydrogen in the alloy components,
can be now described within an electronic model.

In summary, we presented a microscopic theory for the
surface segregation in dilute alloys. The electronic contri-
bution to the heat of segregation was described within a
multiband tight-binding Hamiltonian; size-mismatch en-
ergies, which were considered in the bulk and at the sur-
face, were described by Born-Mayer-type interactions. It
has been shown, that under reasonable assumptions a sim-
ple formula for the heat of segregation can be obtained,
which uses only thermodynamic parameters such as the
bulk cohesive energy and the atomic size. This theory,
applied to dilute Pt-based alloys of Rh, Cu, and Au,
showed good agreement with experimental data. It has
also been shown, that competing size mismatch and elec-
tronic forces can lead to the segregation of different alloy
coinponents in Rh„Pti „at different surfaces.
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