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In order to examine the sensitivity of He diffraction to surface structure, we develop explicit ex-
pressions for the principal features of the He scattering potential in terms of simple atomic and lat-
tice parameters. A measure of structural sensitivity evolves naturally out of these relationships. In
particular, the surface lattice constant emerges as the most crucial factor in determining when He
diffraction will provide useful structural information. For surface lattice constants less than -5—6
0
A, the potential is often well approximated by a simple universal form, and has little sensitivity to
the precise structure. The conclusions are illustrated with recent experimental results for selected
metal, semiconductor, and adsorbate-covered surfaces.

I. INTRODUCTION

There has been considerable recent progress in under-
standing the diffraction of He atoms from single-crystal
surfaces. As a result, He diffraction is emerging as an im-
portant technique in the study of surface structures. In a
number of recent studies information on an adatom bind-
ing site' or a surface atomic configuration has been
obtained. However, with few exceptions, ' it has not been
clear how reliable these He-diffraction assignments are,
since no assessment of the sensitivity of the technique to
surface geometric parameters is made. It is the purpose
of this paper to provide some useful guidelines for this as-
sessment.

It is important to distinguish from the outset between
sensitivity and related issues, such as accuracy. This pa-
per addresses only the question of when the He-surface in-
teraction potential, as measured by He diffraction, is sen-
sitive to the surface atomic geometry, i.e., when changing
the atom positions would be reflected in a measurable
change in diffraction intensities. The related issue of how
accurately structural information can be extracted from
the diffraction data, is beyond the scope of this paper.
Sensitivity is a necessary condition for structure deter-
mination, but not a sufficient one. In particular, we make
use of approximations here, such as an atom-
superposition model for surface charge density, which
may not be sufficiently accurate for the data analysis re-
quired to determine surface structure, but which are quite
adequate for addressing the issue of structure sensitivity.

Based on our present understanding of the He-surface
potential, we develop approximate but explicit expressions
for the principal features of the surface potential corruga-
tion in terms of simple atomic parameters and lattice con-
stants. A measure of structural sensitivity evolves natur-
ally out of these relationships. In particular, the surface
lattice constant emerges as the most crucial factor deter-
mining whether He diffraction provides useful structural
information. When the surface lattice constant is less
than 5—6 A, as for unreconstructed low-Miller-index sur-
faces, the potential corrugation follows a universal form
and is determined almost entirely by the surface lattice

constants, and therefore provides little useful information
on the atomic coordinates. This is true for adsorbate sys-
tems as well as clean surfaces. Explicit criteria are
presented for determining when the scattering is sensitive
to the surface-adsorbate bond length.

We illustrate these results using recent experimental
determinations of the principle Fourier coefficient of the
He-surface potential corrugation in the literature. Our in-
tent is that the relationships derived here will prove useful
in assessing the structural information content of He dif-
fraction and provide a more widespread appreciation for
the capabilities and limitations of He diffraction as a sur-
face structural probe.

Scattering experiments probe the structure of the in-
teraction potential between the projectile and the target.
For diffraction of x rays, neutrons, or energetic electrons
from solids or surfaces, the scattering potential is probed
at or around the nucleus, so that the derived potential
directly gives a structure. However, He atoms at the ener-
gies of interest (-10—100 meV) approach only within
2—3 A of the target nuclei. Thus the derivation of
structural information is indirect and requires, first, that
the scattering potential at these distances be sensitive to
nuclear positions and, second, that the potential can be
calculated from the structure with sufficient accuracy.
Recent progress in understanding the He-surface poten-
tial " permits us to test the first point, albeit approxi-
mately, for a variety of systems in a fairly general form.

The organization of this paper is as follows. We briefly
discuss the present state of understanding of the He-
surface potential, and the relationship recently demon-
strated between the dominant repulsive part of the in-
teraction and the target charge density. We cite the calcu-
lations of surface charge densities and approximations
thereto, and make use of these approximations to derive
analytic relationships for the principal features of the
scattering potential and their variation with nuclear posi-
tions and atomic parameters. A simplified but general
graphical description of the structural sensitivity is
presented based on these approximate relationships.
Specific examples from recent He-diffraction experiments
are then cited to exemplify the extent to which structural
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information is (or is not) contained within the potential
inferred from diffraction measurements.

II. THE HELIUM-SURFACE POTENTIAL

A. Charge-density relation

The He-surface potential may be qualitatively charac-
terized by a weak long-range attractive region which at-
tains a depth typically S—20 meV, and which changes to a
repulsive corrugated potential at distances of 2—3 A
measured from the outermost plane of nuclei. The
structural information arises predominately from this cor-
rugated repulsion, as it dominates the scattered angular
distribution. For the purpose of this paper, and for sim-
plicity, we will ignore the attractive region, with the
caveat that the potential parameters derived from fitting a
He-diffraction pattern are not generally reliable unless a
reasonably accurate form for the attractive region of the
potential is included in the analysis.

Ari important and simple result has now been establish-
ed for the repulsive component of the He-surface poten-
tial. It has been shown "that the repulsive energy of a
He atom immersed in a dilute electron density p is linear
in p. Specifically, E=ap, where a-500 eVa.u. . This
linear term was independently shown' to be the dominant
term in a more general empirical form of the He-surface
potential. The coefficients in the following trial expres-
sion were fitted using accurate experimental He—rare-gas
potentials and local-density calculations for p:

E =Ap Bp'~—r'
The fitted coefficients are 3=650 eVa.u. and B=25
eV a.u. For our purposes it is not important whether these
two expressions are correct in detail. We require only
that, over the interaction region of interest, the repulsive
part of the potential can be approximated as linearly pro-
portional to the charge density with an effective coeffi-
cient. In a recent assessment' it is concluded thai in the
very low-density limit, scattering theory, electron scatter-
ing experiments, and a local-density approximation with a
self-interaction correction converge to a coefficient
a=200 eV a.u. . The appropriate value of a, however, de-
pends on whether and how the attractive terms of the
He-surface potential are included.

In general these theoretical considerations indicate that
thermal energy He atoms probe the surface potential only
up to distances at which the target charge density is of the
order of 10 a.u. , and that contours of constant charge
density are approximately isopotential contours. There-
fore, to assess the structural information content of He
diffraction, a reliable method of generating charge densi-
ties at these low values is required.

S. Calculation of charge densities

Charge profiles believed to be accurate at very low den-
sities were first calculated and compared to He-diffraction
experiments using the linear-augmented plane wave
(LAPW) approach. These self-consistent, all-electron cal-

culations compared well with the experimentally derived
potential parameters; the calculations confirmed the tilt
angle of the surface bond in the GaAs(110} surface recon-
struction' and identified the appropriate binding site and
probable bond length of H on the Ni(110) surface. ' How-
ever, a definite discrepancy with the small corrugation of
the clean Ni(110} surface was noted. Some of this
discrepancy is associated with the appropriate inclusion of
the attractive part of the He-surface interaction, and with
hardwall approximations used in analyzing the experi-
ment. It has been argued that the LAP%' calculations
contain small errors in the dilute charge densities due to
its approximations in dealing with long-range correla-
tions. Although this problem is a focal point of current
theory, it is not strongly related to an assessment of He
diffraction as a structural probe. The potentials presently
being emphasized theoretically are those of close-packed
metal surfaces with small corrugations, for which the
discrepancies are also numerically small (but significant).
There is essentially no structural information content in
the diffraction data because of the small corrugations.
For systems with large corrugations in the potential, it is
likely that absolute LAPW charge-density errors will not
be significantly larger. The shape of the charge density in
these cases is predominantly determined by the strong
electron potential in the region near the surface atoms,
and only weakly affected by the shape of that potential in
the low-density region. Indeed we will take LAPW calcu-
lations as a standard with which we assess the utility of a
simple scheme to estimate the surface charge density,
namely the superposition of atomic charge densities.

C. Atomic charge-density superposition

We have tested atom superposition for a variety of sur-
faces, and compared the results at the charge densities of
interest to LAP%" calculations. The test cases include
close-packed metal surfaces, reconstructed open semicon-
ductors, and ordered chemisorbed arrays. In the atom su-
perposition, we have used numerical atom charge densi-
ties. These are calculated semirelativistically, using a
local-density approximation for correlation and exchange.
In each case where the uppermost atoms are all equivalent
(including adsorbate systems), we find that the principal
Fourier coefficients of the atom-superposition charge con-
tours at the 10 a.u. level agree well with the full LAPW
calculation, often within —10%%uo. We conclude that for a
range of qualitatively different bonding and variations in
surface atom density, the superposition of atomic charge
densities is a reasonable approximation for a first-order
evaluation of He-diffraction data. Specifically, it is suffi-
ciently accurate to test the structural sensitivity of the dif-
fraction. The derivation of quantitative structural param-
eters, however, requires more caution. In the Appendix
we analyze the behavior of the true surface charge density,
and show that for the homogeneous surfaces it has impor-
tant similarities to the atom-superposition charge density.
In this way we provide a partial justification of the use of
atom superposition, in addition to the strictly empirical
observation that for the homogeneous surfaces it often
works well.
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In contrast we note that for the case of GaAs(110),
Laughlin' showed that atom superposition gives rise to a
large error in the He-surface potential corrugation. The
isolated Ga atom is larger than As, but in the solid com-
pound this is no longer the case. If the (unrealistically
large) Ga is omitted, superposition of As atoms alone
gives a rather accurate potential. Similarly, in the buckled
dimer model of Si(100), the two uppermost Si atoms are
inequivalent, and "subsurface" Si are exposed. Sakai
et al. found that the charge density could be reproduced
by atom superposition only if some nonsphericity and dif-
ferent atomic sizes of the two Si dimer atoms and the sub-
surface atoms were included semiempirically. A generali-
zation of these results would include any surface which
contains proximate chemical heterogeneity, including
charge transfer between like surface species. In these
cases the effective atomic sizes may be in considerable er-
ror, rendering structural conclusions unreliable. For
homogeneous surfaces, including fairly open surfaces, one
may often utilize the simplification of a free-atom
charge-density summation, at least at the level of a quali-
tative topographical assignment.

We may therefore make use of the linear-
potential —charge-density relation and atom superposition,
in order to treat the question of structural sensitivity of
He diffraction at a qualitative but still fairly general level.
An assessment of the quantitative capabilities of He dif-
fraction, for regimes where the results are sensitive to
structure, must deal with more complex problems.

III. STRUCTURAL SENSITIVITY
QF HELIUM DIFFRACTIQN

In this section we use the simplification of atom super-
position to draw general conclusions regarding the rela-
tion between surface structure and He-surface potential.
%"e begin by approximating the surface charge density by
the superposition of spherical atom charge densities,

tion of the variation of corrugation with distance (see the
Appendix).

The effect of the second layer can be included approxi-
mately by adding its G =0 component to (4). This extra
contribution is simply

pz(r) =nzaoexp[ K(d—+z)] y

d and nz being the interlayer distance and the number of
atoms per cell in the second layer

The coefficients aa are easily evaluated:

ao=2~0o(&~') '

aa ——2ap(1+G /a ) '~ (G&0),

where Qo is the unit cell area. In general, the corrugation
is greatest along the direction of the smallest reciprocal-
lattice vector Ck~. To simplify our presentation we consid-
er only the corrugation in that direction. An extension to
two dimensions is more complex but straightforward, and
leads to identica1 conclusions regarding sensitivity.

An accurate treatment of He diffraction requires the
full three-dimensional potential. However for the purpose
at hand the potential is described adequately by the sur-
face of constant potential (i.e., constant charge density)
which gives the classical turning point of the He atoms.
This surface z, (x,y) is implicitly defined by p(r)=p, .
p, =E;/A is the charge density which, in conjunction
with the linear charge-potential relationship, gives the He
classical turning point, where E; is the incident-He kinetic
energy (corrected for the finite potential-well depth).

We therefore average the charge perpendicular to G~,
and find the extrema of the surface p(r) =p„which occur
where cos(G~x) =+1. Labeling the extremal z as z+ and
z and combining (4)—(6),

p, =apexp( —xz+ )

p(r) = Q P(r —R), (2) 1+n2e ""+ g (+1)"a„exp(—q„z+)
n=1

(7)

p(r)= gaoexp[ —(sc +G )' z]cos(Cxr), (4)

where 0 are the (two-dimensional) surface reciprocal-
lattice vectors. A two-dimensional rectangular lattice
with one atom per unit cell is assumed for simplicity.
Equation (4) is similar to a model potential proposed by
Harris and Liebsch, " but gives a more accurate descrip-

P(r) =go[exp( ~r)]/vr, —
where R is a surface lattice vector, and P(r) is an analytic
approximation which models the atom charge density far
from the nucleus. The choice of denominator in (3) is
made for convenience as seen below. The behavior of P(r)
is dominated by the exponential, so (3) is adequate to fit
actual atomic results over the entire relevant density
range.

Since P(r) and hence p(r) are by construction solutions
of V' —a =0, we can expand (2) for z & 0 as

a„=2(1+nG /a. )

q„=(a+n Gf)'~ —a. .

We denote the peak-to-trough corrugation as A=z+ —z
We will concentrate on b, as the most significant indicator
of the surface structure, although it is desirable experi-
mentally to determine 3 or 4 Fourier coefficients with an
accuracy of & 10%.

Equation (7) may be solved iteratively, but its peculiar
value lies in its amenability to successive levels of approxi-
mation. One can often replace z+ inside the large
parentheses in (7) with

z K ln(ap/pq ),
the solution of (7) keeping only the first-layer G =0 term.
If in addition, one keeps only the 6=0 and 61 terms of
the first layer, one finds
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of the second layer in (10), which overestimates 5, be-
comes the dominant source of error until (10) diverges. In
the close-packed regime, the corrugation is determined al-
most entirely by the lattice constant (and by p, ), and the
corrugation difference between Cu(110) and Ag(110) is at-
tributable to the slightly different lattice constant. Heli-
um diffraction in this regime is structurally relatively
uninformative.

Around a =5 A there is a crossover to an "open" re-
gime, where 6 is roughly heading towards the interlayer
spacing [1.4 A for Au(110)]. The 2&&1 Au(110) surface,
with alternate (110) rows missing, falls in the open re-
gime for He diffraction. Overall agreement of these re-
sults with self-consistent calculations (shown in Fig. 1) is
excellent.

Figure 1 suggests that a convenient criterion for the
surface lattice constant a =2'/G~, at which crossover
from open to close-packed occurs, is the divergence of the
approximate formula (10). Since a. does not vary drasti-
cally among the elements, and results are less sensitive to
(tso and p„the "critical" value of a -5—6 A found here
for Au(110) is qualitatively applicable to many solid sur-
faces.

Even in the close-packed regime the second layer must
have some effect, especially if the interlayer spacing d is
small. We define the "sensitivity" to d as 5b, /5d, the
change in corrugation per unit change in interlayer dis-
tance. Letting d —+d +5d in (7), it is easy to show that

a=+-'ln —giZ
1 —a(e

1+a)(p, /ao) '
=~—'ln

gi /K
1 —a~(p, /ao)

(10)

For weak corrugation (10) simplifies to

5=2m 'a~e ' (A&&~ ')

=4@ 'exp( ,'G z —'z—) (G «v ) .

Typically p, /ao —10 for He diffraction, so the ex-
istence of measurable 5 depends crucially on the small-
ness of q~/la= —,G&/x. . Figure 1 shows results of both
(7) and (10) for the corrugation of an ideal face-centered-
cubic Au(110) surface as the (001) lattice constant is
varied. Both curves shown include corrugation in only
one dimension (a good approximation in this case), and
both neglect the corrugation in the second layer. The
solid curve, among other approximations, describes a sin-
gle layer of atoms, so the corresponding corrugation
diverges when He can penetrate the layer.

Results of self-consistent LAPW calculations for vari-
ous noble-metal surfaces are also shown. The values of
$0——2 a.u. and la=1.4 a.u. ', while fitted to the Au
atom, reproduce Cu and Ag results fairly well also. We
take p, = I.O a.u. , corresponding to a typical
incident-He kinetic energy, around 20 meV.

These simple results demonstrate several important
points. In the region where the two curves of Fig. 1 are
nearly the same, the surface is "close-packed, " in that the
helium atom does not "see" the second layer. [The small
difference for 5 &0.8 A is due mainly to replacing z with
its average value in (10), which underestimates b, slightly. ]
At larger 6 the neglect of higher Fourier coefficients and

5A
d

& exp[a(b. —d)] . (12)

0
Thus, unless the corrugations b, is within z ' (-0.4 A) or
so of the interlayer spacing d, the sensitivity to the second
layer is quite negligible. This result is illustrated in Fig. 2,
which repeats Fig. 1 but for several different values of the
interlayer spacing.

Note that the charge density p, and the atom parameter
$0 enter only as the dimensionless ratio p, /$0, although
the equations have not been written so as to make this ex-
plicit. Similarly the lattice constant a (or equivalently3 s s a a 1 s s s s 1
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FIG. 1. Peak-to-trough corrugation amplitude 6 of the sur-
face of charge density 10 a.u. vs (001) surface lattice constant
a, for analytic atom superposition model of an fcc (110) surface,
with atom parameters as for Au. Solid line: approximate for-
mula (10). Dashed line: more exact formula (7). Circles are re-
sults of self-consistent LAP%' calculations for, from left to
right, Cu(110), Ag(110), and a missing row model of
Au{110)(2X1). The full solution is essentially indistinguishable
from the simple universal form (10) for lattice constants smaller
than about 5 A, or more generally for ~a & 10-15.
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FICx. 2. Peak-to-trough corrugation amplitude 6 vs surface
lattice constant, as in Fig. 1. Each line corresponds to a dif-
ferent interlayer spacing d as indicated. As expected from (12),
each curve merges with the "universal" d = 00 curve when the

0
corrugation b is significantly (-sc =Oa4 A) less than the inter-
layer spacing d minus the decay length.
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G~) and the interlayer spacing d occur only in dimension-
less combinations with the atomic decay length ~, e.g.,
6 ~ /a and ad. Thus, within the present model, the
"shape" of the surface charge density is completely deter-
mined by the geometry, while the atomic species enters
only via a scaling of charge density (by $0) and length (by—1)

I
)

~ ~5

2.5—

5
Ge(&00)-

IV. EXAMPLES

To illustrate our conclusion regarding the relationship
between surface atomic spacing and structure sensitivity,
we have selected a series of experimental results for metal,
semiconductor, and adsorbate-covered surfaces, and com-
pared the values which have been estimated for the princi-
pal Fourier coefficient of the corrugation to the curves
drawn in Fig. 2. The results are shown in Fig. 3.

These estimates are plotted with somewhat arbitrary er-
ror bars, by which we intend to include both the experi-
mental uncertainty, and the uncertainty due to the level of
theory used in extracting the scattering potential from the
data. This comparison is intended to illustrate the quali-
tative aspects of the structural sensitivity of He diffrac-
tion. The value for the principal Fourier coefficient is
taken in the direction of maximum corrugation. Bear in
mind that the curves drawn are for Au, and should be
compared only qualitatively to experimental results for
other systems.

The sequence of metal surfaces, Ni(110),' Cu(110), '

Ag(110),' and W(112),' follow the correlation with the
lattice parameter is predicted by our model. However, the
amplitudes of the corrugation are all smaller than expect-
ed, a discrepancy which remains for more accurate
charge-density calculations and is currently the subject of
theoretical investigation. Since the lattice spacings are
well known in these surfaces, it is clear that there is little
structural information in these experimental results,
which serve better as part of the general development of
an accurate description of the He-surface potential.

The Au(110) surface reconstructs into a (2& 1) periodi-
city, with a surface atom spacing of 8.12 A along the cor-
rugated direction. The measured corrugation 6=1.6 A
is appropriate to the missing row model, as has recently
been confirmed by x-ray diffraction' and transmission
electron microscopy. ' Although there remained signifi-
cant details to be explained for a final structural assess-
ment, the gross topographical nature of the Au(110) sur-
face was immediately evident from the He-potential cor-
rugation.

The semiconductor surfaces selected are believed to be
variations of a "tilted dimer" surface reconstruction, but
with different top-layer atomic spacings. They are good
examples of the sensitivity of the He potential to changes
in the surface atomic spacing. For GaAs(110) the tilting
of the surface bond produced a small first-to-second layer
spacing, d=0.6 A. If the Ga and As are forced to be co-
planar, the corrugation in the scattering potential drops
from -0.9 to -0.5 A. This calculation directly demon-
strates the structural sensitivity of He diffraction when
d-h. For Si(100) and Ge(100), the dimerization in-
creases the surface atomic spacing, and hence the corruga-
tion. The proposed tilting of the dimer gives a further in-

0.5—
Cu

Ni(130
00 2 6

a(A)

&&2A

I s s & I

40 12

FKj'. 3. Same as Fig. 2, but including experimental results for
the corrugation amplitude of various systems. Note that the
calculation E,'solid lines) is for Au, and should be slightly rescaled
for atoms of different "size" ~ before attempting quantitative
comparisons.

crease. If adjacent dimers tilt in opposite directions, as in
the c(2X4) periodicity proposed for both the Si(100)
(Ref. 8) and Ge(100) (Ref. 20) surfaces, the top-layer spac-
ing and consequent corrugation are increased consider-
ably. The range of top-layer spacings for various dimer
models of both surfaces is indicated by the horizontal bar
in Fig. 3, where the vertical bar indicates the range of
peak-to-trough corrugations. The essential point is that
these lattices are sufficiently open to render He diffraction
quite sensitive to the differences among various models
and periodicities which have been proposed. Of course,
atom superposition is inadequate for an accurate descrip-
tion of the He scattering from these reconstructed semi-
conductor surfaces. Nevertheless, our results allow a use-
ful description of the gross trends in corrugation and
structure sensitivity.

The three adatom systems in Fig. 3 provide instructive
examples of the limitations of He-diffraction analysis.
The Ag(001)c(2&&2)C1 was studied to determine whether
the Cl adatom was situated above the fourfold hollow of
the Ag(001) surface, or substitutionally within the outer
plane of Ag atoms. This choice of topographies corre-
sponds roughly to an interlayer spacing d =1.7 or 0 A.
The principal corrugation 6=1.1+0.15 A is consistent
with the former, i.e., the overlayer site. A direct calcula-
tion of the dependence of the corrugation on d for this
site was carried out, corresponding to a vertical cut in Fig.
2 at the Cl adatom spacing of 5.7 A. Little increase of the
corrugation with increasing d was found, as expected
from the coalescence of the different d curves below a=6
A in Fig. 2. This fact was confirmed by I.APW calcula-
tions. From the estimated uncertainty in the principal
corrugation parameter, the vertical distance of Cl atom
can only be restricted to d~z & 1.2 A based on He diffrac-
tion. This example dramatically demonstrates the lack of
sensitivity of the He potential to vertical displacement of
adatoms when the charge densities of the adatoms at the
10 a.u. level overlap, i.e., when they are effectively close
packed. A similar conclusion holds for the
Cu(110)(2)& 1)O. We estimate from the published diffrac-
tion spectra a value 6=0.8 A+0. 15, leading to the re-
stricted conclusion that d ~z & 0.7 A. A study of
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Ni(100) c (2 &( 2)O (Ref. 21) is similar to the
Ag(100)c(2X2)C1. The goal of the diffraction study was
to distinguish between two previously proposed alterna-
tives for the height of the oxygen above the Ni(100) sur-
face, one close to the surface and the other —1 A above
the surface. The principal Fourier coefficient clearly indi-
cates the latter, as was concluded in that study. As with
Ag/Cl, however, the actual height of the O above the Ni
atom plane is subject to a very large uncertainty. Thus
for the Ag/Cl, Cu/0, and Ni/0 systems, He-diffraction
analysis can only reliably estimate a lower limit to the
adatom height.

We note that a diffraction study has been carried out
for Pt(111)(1&&1)H where the interatomic spacing is 2.8
A. The sensitivity to vertical spacing at this separation,
even for H atoms, is probably slight. In addition, the
atomic "size" of the H atom depends on the nature of the
bonding. An atom superposition analysis of the corruga-
tion (b, =0.3 A) must be regarded as only suggestive in
the absence of careful testing of the sensitivity to bond-
length and to the effective atomic size.

V. CONCLUSIONS

Within the approximations described above, we have
derived explicit expressions relating the surface structure
to the He-interaction potential. The most important re-
sult is that for a large class of surfaces which can be
described as "close packed, " the scattering potential has a
universal form and and depends primarily on the surface
lattice constant. As a result, helium scattering in this re-
gime gives little or no useful structural information.

In the "close-packed" regime, the surface-atom charge
densities overlap sufficiently that, for typical interlayer
spacings, the helium atom does not sense the second layer.
The position of the first layer relative to the underlying
crystal is therefore not reflected in the diffraction data.
This regime extends up to surface lattice constants of 5—6
A, and so includes many apparently "open" structures,
such as c (2&&2) adsorbates on transition- and noble-metal
surfaces.

The best rule of thumb for whether the experimental
data are sensitive to the surface structure is Eq. (12). If
the experimental corrugation is much less than the inter-
layer spacing, then the sensitivity to the second layer is
nil. Good structure sensitivity most often occurs because
reconstruction or ordered adsorption increases the surface
lattice constant, although it may also result from a small
interlayer spacing (i.e., two types of atoms which are near-
ly coplanar).

Unfortunately, the situations in which the diffraction
data are sensitive to the surface structure are precisely
those where the interpretation is most difficult. Typically
these involve surfaces which are highly corrugated, so
that the detailed quantitative analysis of experimental dif-
fraction intensities is difficult at best. Also, structural
sensitivity implies that the helium interacts with atoms
which may be chemically different, at least to the extent
that they have different local coordination. In such cases,
naive atom superposition cannot be expected to accurately
describe the surface charge density, except for systems

where bonding effects are small, such as noble metals,
condensed rare gases, and alkali halides.

Nevertheless, helium scattering remains a proven and a
valuable technique for studying surface structure. It is
especially suited for giving a measure of how "rough" a
surface is, and for discriminating between models of sub-
stantially different topographies. The main danger lies in
the overinterpretation of data; it is our hope that the
present work will aid in deciding what conclusions can,
and cannot, be drawn from diffraction data.

APPENDIX

We now consider the true charge density, and how it re-
lates to the atom superposition results. The wave function
far from the surface is a solution of (V —K )g =0,
where K= fr '[ —2m (E„V)]'~—, V is the potential in the
region of interest, and E„is the energy of the wave func-
tion. For the states which determine the vacuum charge
density, E —V is an electron volt or so greater than the
work function on average, so E„-56eV an—d K=1.2
A '. The state g may then be expanded as

f„(r)= g Agexp[ —(K +Kg)'~ z]exp(iKG. x),

(A 1)

(A2)

Since KG —Ko ——G —G',
~ f ~

has the periodicity of
the lattice, and can be Fourier expanded,

v QvG Ze
G

The total charge may similarly be written

p(r) = g ~ g ~

'f (E,)= g pg(z)e' ',

(A3)

(A4)

pg(z) = g u g(z)f(E„),

where f(E) is the Fermi function.
If we restrict ourselves to a single value of k~~, the best

approximation to the total charge is obtained by taking
k~~= —,'G~, where G& is the smallest G. (As before, we
neglect corrugation perpendicular to G& for simplicity. )

It is then easy to show that the longest exponential decay
length for po(z) is

K—=(K'+ —,', 6', )'"=K, (A5)

and for pg, (z),

Kg ——(K + —,6()' =K+ —,6)/K .
1

(A6)

where Kg =ki ~+ G, and k~
~

and G are the (two-
dimensional) Bloch wave vector and reciprocal-lattice vec-
tor.

A given wave function g„contributes a charge density

= g Agog exp[ (K +KG)—' z]
G,G'

&& exp[ —(K +K& )'~ z]exp[i (KG —KG )] .
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An inaccurate result for this decay constant was reported
previously by Harris and Liebsch, who used kt~

——0 as
their sample point. "

Comparing this with the atom superposition result (8),
we see that the first two Fourier components of the charge
have the same exponential z dependence (to first order in
G /a. ) in both cases if we make the natural correspon-
dence x=2E. This corresponds to taking the characteris-
tic atomic and solid-state energies to be equal, a good ap-
proximation for many systems. A more detailed analysis

shows a similar correspondence in decay lengths for
higher Fourier components. Thus if atom superposition
gives a good description of the charge near the surface, it
will also do well at large distances, since the asymptotic z
dependence of the true charge density is well reproduced.
An alternative derivation has been presented by Tersoff
and Hamann, who have used a similar approach in
analyzing the structure sensitivity of the scanning tunnel-
ing microscope.
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