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The electronic structure of lithium clusters with 15, 27, and 59 atoms has been calculated self-
consistently with use of the linear combination of atomic orbitals method. The results suggest that
the conduction electrons in these clusters behave much like electrons in the spherical jellium-
background model in that a similar shell-like structure is seen, albeit split by the crystal field.
Friedel oscillations that appear in the conduction electron density are also much like those of
jellium-sphere calculations. The crystal field removes the high degeneracy of the spherical symme-

try, distributing the energy levels over the conduction band without destroying the shell-like struc-
ture. For clusters in the size range we have investigated, large energy gaps between shells should
strongly influence cluster stability. Stability may also depend on crystal-field splitting to a lesser de-
gree. In larger clusters the energy gaps between shells will become comparable to the crystal-field
splitting and the shell-like structure will disappear. Mulliken population analysis and conduction-
band widths indicate a trend towards bulk with increasing cluster size, although the electron density
in the center of the largest cluster may not be entirely bulklike. because of the penetration of Friedel
oscillations.

I. INTRODUCTION

We have calculated self-consistently the electronic
structure of isolated lithium clusters composed of 15, 27,
and 59 atoms using the linear combination of atomic orbi-
tals (LCAO) method and the local density approximation
to the exchange potential of Kahn and Sham. ' The clus-
ters were constructed in body-centered-cubic (bcc)
geometry by adding layers of rotationally equivalent lithi-
um atoms (shells) around a central atom of lithium such
that the clusters Li&5, Li27, and Li59 consist of 3, 4, and 6
shells of atoms, respectively (counting the central atom as
shell no. 1). The shell generating points are (0,0,0), (1,1,1),
(2,0,0), (2,2,0), (3,1,1), and (2,2,2) in units of half a lattice
constant. Lithium was chosen as a suitably simple ma-
terial to work with since this study was primarily under-
taken to develop self-consistent LCAO techniques for iso-
lated clusters. The work presented here is an outgrowth
of the cluster methods introduced by Chancy and Lin
and further developed by Rudolf and Chancy. '

The choice of cubic symmetry is one of computational
convenience, since it seems unlikely that the structures we
have adopted here will occur in significant amounts in
bare metal clusters. For example, Knight et aI. report
that the number of atoms in sodium clusters produced in
a cluster beam is strongly governed by an inferred elec-
tronic shell structure, and Martins, Buttet, and Car point
out that highly symmetric clusters are likely to have a de-
generate ground state and hence be subject to Jahn-Teller
distortion. However, since our lithium clusters behave as
jellium spheres subjected to a cubic crystal field, we be-
lieve the results we present in this paper embody some sig-
nificance beyond the choice of cluster symmetry.

We chose the cluster lattice constant to be that of bulk
lithium (6.597 bohrs), since we are interested in how well
the central atom is screened from the surface perturba-
tion, that is, how well it represents an atom in bulk lithi-
um. This also motivated the choice of bcc structure for
the clusters since this is the bulk structure of lithium. It
is not entirely clear whether there will be net shrinkage or
expansion in real lithium clusters due to lattice relaxation
effects since both have been seen in calculations, depend-
ing on whether a bcc- or fcc-like (face-centered-cubic)
structure is assumed. Experimental evidence for copper
and nickel clusters, however, suggests a decrease in intera-
tomic spacing occurs as the number of atoms in a cluster
decreases.

The LCAO cluster calculation procedure we employ is
basically that discussed by Rudolf and Chancy" taken to
self-consistency for isolated clusters. As part of the pro-
cedure the electron density and the exchange potential are
curve fit, and, with the use of an analytical basis set of
Gaussians, the matrix elements of the Hamiltonian are
computed exactly. Hence, the accuracy of the calculation
depends only on computational considerations, namely the
goodness of the curve fits and the completeness of the
wave-function basis set, and on the local exchange-
correlation approximation. In this regard our procedure
differs from several other cluster techniques. The Xa
scattered-wave method makes a muffin-tin approxima-
tion to the potential around the atomic cores and requires
a constant potential between the muffin tins and a spheri-

.cal potential enclosing the cluster. In the discrete varia-
tional method' the matrix elements are not calculated ex-
actly but are approximations to the exact ones arising
from the Rayleigh-Ritz variational procedure. Lee, Calla-
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way, and Dhar" have presented an LCAO approach very
similar to ours except that they perform a numerical in-
tegration to get the matrix elements for the local
exchange-correlation potential. Hartree-Fock and config-
uration interaction techniques, which have been used for
small clusters, are not very practical for systems as large
as the ones we calculate because of the large number of
four-centered integrals that need evaluation. Curve fitting
the electron density and exchange potential substantially
reduces the number of integrals while reducing the num-
ber of centers in the integrals to a maximum of three.
However, performing these curve fits is the most involved
part of our procedure, although we have developed tech-
niques that have improved the quality of the fits and the
time necessary to achieve them.

II. COMPUTATIONAL PROCEDURE

In atomic Hartree units our Hamiltonian is

n (r')
1/3

3n (r)

where the terms in order are the kinetic energy, the attrac-
tive potential of the nuclei at sites R, with charge Z =3,
the electron-electron repulsion of the electron density
n (r), and the Kohn-Sham exchange potential. The
Kohn-Sham, one-electron equation to be solved for X
electrons is

Mfi ——e;tP;

subject to

g;(r) =g a,JX, (r), (3)

We expand the eigenfunctions itj; in terms of a basis set
consisting of Gaussians with atomic symmetry centered
on the atoms in the cluster. This basis set is transformed
using group theory to a new one which block diagonalizes
the Hamiltonian and overlap matrices that arise from the
solution of the Kohn-Sham equation. This new basis set
consists of linear combinations of the atomic-centered
Gaussians and transforms according to the irreducible
representations of the full octahedral group (Ot, ). If these
basis functions are designated XJ(r) for the jth basis func-
tion of some representation, then an eigenfunction in that
representation can be expressed as

tion techniques then give the eigenvectors a,j and the
eigenvalues e;. The Hamiltonian depends on the electron
density and so the solution must be iterated to self-
consistency. The electron density is found after each
iteration by simply filling up the eigenstates with elec-
trons until X electrons are accounted for.

Both the electron density and the exchange potential
were fit using Gaussians and varying both the linear and
nonlinear curve-fit parameters. For the electron density
we placed spherically symmetric Gaussians [B
exp( —Ar ), with linear parameter 8 and nonlinear pa-
rameter A] on atomic and nonatomic ("floating" ) sites,
the latter necessitated by the Friedel oscillations. The
electron density and exchange potential were defined tabu-
larly along a number of directions in the fundamental
wedge, defined by x )y )z. We chose 334, 374, and 481
points in the fundamental wedge for the clusters Liis,
Li27, and Li59 respectively, in order to insure good resolu-
tion of electron density variations. This tabular density
was fit by the method of least squares. It was advanta-
geous to use floating Gaussians to help describe the ex-
change potential only in Li&5, however, a few nonspheri-
cally symmetric Gaussians of appropriate symmetry were
included in the fits to the exchange potentials in Li27 and
L159o

Curve fits of acceptable quality were attained with
modest-sized basis sets. For example, an iteration-to-
iteration least-squares error of 0.5% in the electron densi-
ty with an electron number error of 0.05% was obtained
by fitting Li59 with a total of 38 atom-centered and 11
floating Gaussians in the fundamental wedge, the floating
Gaussians being distributed among 6 nonatomic sites.
The same level of error was achieved with the smaller
clusters. The exchange potential proved harder to fit.
Least-squares errors ran about 1.6%, 1.3%, and 1.7% for
Li», Li27, and Li59 respectively, using, for example, 49
atom-centered Gaussians in the fundamental wedge of
Li59. Much of the error was due to points well outside the
clusters where the Kohn-Sham exchange potential falls
off too rapidly with distance from the cluster and is there-
fore not accurate. ' The balance of the error derives from
points in the transition regions between the cores and the
nearly homogeneous interstitial areas.

Our wave-function basis set was composed of the
Gaussian-type orbitals of Eq. (9) in Chancy et al. ,

'3 and
constituted 15 functions per atom. Attainment of self-
consistency was judged by comparing the input and out-
put electron densities. The same points used to calculate
the curve fits were used to calculate the least-squares
differences. In all three clusters input versus output
least-squares differences of about 1.7% were the best at-
tainable with reasonable effort. At this level of error the
energy eigenvalues were virtually stationary.

where the coefficients a;J are to be determined. Substitut-
ing into the Kohn-Sham equation and integrating yields
the set of equations

g a,J(Xk,IIXJ ) =e; pa, j(Xk,X, )

for each irreducible representation. Matrix diagonaliza-

III. RESULTS AND DISCUSSION

The densities of states (DOS) of the three lithium clus-
ters are shown in Fig. 1, with the Fermi level marked by
the vertical line. Discrete peaks are seen which, at least in
the occupied part of the DOS, correspond to the electron-
ic shells of a jellium sphere, a circumstance noted previ-
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FICJ. 1. Full DOS plots for lithium clusters.

TABLE I. Comparison of cluster energies with those of bulk
(Ref. 15~.

Property (eV} Lips Li2q Lis9

Fermi energy
Energy at bottom of

conduction band
Conduction-band width

—2.30 —1.84 —2.15
—4.92 —4.69 —5.42

2.62 2.85 3.27

—1.2S
—4.70

3.45

ously by Geguzin for Xa, scattered-wave calculations. '

The free-electron-like nature of the DOS is evidenced by
the parabolic shape of the DOS, especially for Li59. We
list the Fermi level energies and conduction bandwidth
data in Table I and compare them to the self-consistent
bulk calculation of Ching and Callaway. '5 The method of
their calculation was similar to ours in that an LCAO
basis set of Gaussians in atomic symmetry and the
Kahn-Sham exchange potential were used, only theirs was
an extended crystal of bcc lithium. In Table I the conduc-
tian bandwidths of the clusters increase with cluster size
and seem to approach the computed bulk value; the band-
width for Li59 ls 95%%uo that of the bulk calculation. How-
ever, the Fermi energy and the energy at the bottom of the
conduction band show no clear tendencies. This is a re-
fiection of the surface energy of the clusters, which is not
likely to vary uniformly with cluster size for small clus-
ters that have not been allowed to relax. (Of course, the
extended system of Ching and Callaway has no surface
and therefore no surface contribution to the energy levels. )

In Fig. 2 we have attempted to separate the states in the
interior of the clusters from the surface states by means of
partial density of states (PDOS) plots. These PDOS plots
were created by choosing only thase single-electron eigen-
states that overlap by more than a certain amount on
specified cluster shells. The overlaps are calculated from
projection operations as follows. The overlap onto basis
function Xj due to the eigenfunction g;, is, using Eq. (3),

QJ(gj, g;)=a~j~+Qip(gjgk)
k

(5)

consistent with Mulliken population analysis. ' These
overlaps are sorted according to shell and energy yielding
the PDOS. Exactly which atoms should be considered
surface atoms is not abvious. Experience with the PDOS
plots led us to choose shell 3 for Lii5, shell 4 for Li2v, and
shells 5 and 6 for Li59 The PDOS for these shells are
narrower and are predominantly in a different energy
range than the PDOS for the ather shells. Obviously
these "surface atoms" constitute a major percentage of the
atoms in the clusters.

Common features can be seen in the PDOS plots.
States with at least 60% overlap on the surface atoms
[Figs. 2(a)—2(c)] are not occupied on Li, ~ and Lizv and
few are occupied on Li59. These "surface states" tend to
avoid the energies that characterize the "interior states"
[complementarily defined as those with at least 40%%uo over-

lap on the interior atoms, Figs. 2(d)—2(f)] such that they
fill a thin spot in the PDOS of the interior states. Since
many of the states involved in this relationship are unoc-
cupied and even unbound, the physical significance, if
any, is not clear. However, the fact that the surface states
tend not to be occupied may reflect the movement of elec-
tron density from surface to interior atoms with self-
consistency. Were the atomic separations allowed to relax
it is possible that occupied surface states would appear in
greater numbers. The narrowing of the PDOS on the
outer atoms compared to that of the full DOS is also evi-
dent in the figures. Narrow surface PDOS in metal clus-
ters have been found by other investigators, including
Salahub and Messmer for aluminum' and Delley et al.
for copper. '

The electron density relative to bulk lithium is plotted
in Fig. 3 in several radial directions not intersecting an
atomic site for the clusters. The numbers appearing above
the inverted triangles marking the radial distances of the
shells are, from top to bottom, the coordination numbers
(number of atomic nearest neighbors), the Mulliken popu-
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FIG. 2. Partial DOS plots for lithium clusters. 60% + overlap with surface atoms, (a)—(c); 40% + overlap with interior atoms,
(d)—(fj.

lations and the 1s core energies in units of eV for the
atoms of each shell. The solid line in each plot delimits a
sphere of homogeneous electron density corresponding to
bulk lithium and containing an amount of charge equal to
the number of conduction electrons in the cluster. The
Mulliken populations reflect the movement of charge
away from the surface atoms into the interior and provide
some further justification for the choices of the surface
atoms we made above. Prominent Friedel oscillations
arising as a screening response to the surface perturbation
appear in the electron density and are reflected in the
Mulliken population numbers and to a lesser extent in the
1s core energies, which tend to be higher where the con-
duction electron density is thicker. It is interesting that
the central atom in Li27 is characterized by a Mulliken
population number of less than 3 (2.90), a consequence, at
least in part, of the radial separation of the outer shell
from the inner ones. Despite the slight departure from
spherical symmetry, the electron density profiles of Fig. 3
are remarkably similar to those of similar-sized jellium
spheres modeling sodium published recently by Ekardt. '

Also evident in the plots is the moderation of electron
density and Mulliken population variations toward the
center of the largest cluster, indicating the development of
bu1klike characteristics.

Much of the structure of our full DOS plots (Fig. 1)
can be understood by reference to Fig. 4, where the energy
levels of the single-electron eigenstates are diagramed, la-
beled on the right by. the irreducible representations of the
Op, group to which they belong. On the left are the quan-
tum numbers of a jellium sphere (see, e.g., Fig. 1 of Ref.
20), identified with the Oh levels by the effects of cubic-
field splitting. The highest occupied state (Fermi level) is
indicated and the accumulated occupancy at each level is
given by the number at that level. The jellium-sphere
electronic shell structure is clearly seen up to and just
above the Fermi level for all three clusters. (Further up
the energy scale the field-split jellium levels overlap and
the shell structure disappears. ) As cluster size increases,
successive jellium shells fall below the Fermi level and
telescope into the conduction band, increasing the DOS
there. At some cluster size the field-split jellium shells
near the Fermi level will begin to intermingle and lose
their identity. (This occurs in the aluminum cluster cal-
culation of Salahub and Messmer, ' discussed below. )
However, the jellium shells are still clearly visible in Li59,
even just above the Fermi level.

These observations are consonant with recent experi-
mental findings of Knight et a1., who produced a beam
of sodium particles ranging in size from dimers to clusters
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FIG. 3. Cluster electron density relative to bulk lithium plotted in several radial directions. The inverted triangles on the axis
mark the radial positions of the atomic shells; the numbers above them are, from top to bottom, the coordination numbers, the Mul-
liken populations per atom and the 1s core energies in eV. The solid line in each plot delimits a sphere of uniform density corre-
sponding to bulk lithium and containing the number of conduction electrons in the cluster.

of 100 atoms and measured the abundances of the dif-
ferent species by mass spectroscopy. Prominent peaks
and/or steps in the mass spectrum [their Fig. 1(a)] were
found at cluster sizes of 8, 20, 40, 58, and 92 atoms. They
interpreted their results using a spherically symmetric po-
tential based on the jellium sphere, observing that the
prominent peaks/steps corresponded to filled jellium-
sphere electron shells. Our results confirm this picture
and may offer further contributions to understanding
some of ihe structure in ihe mass spectrum.

If Li&5, Liz7, and Li59 are considered models for the
smaller, medium and larger clusters, respectively, it is
seen that the conspicuous cluster sizes of Knight et al.
correspond to cumulative occupation numbers below ener-

gy gaps at the top of jellium electronic shells. Note in
particular the large gap between the 1p -t 1„and 1d -eg lev-

els (cumulative occupation number of 8) and between the
2s-a&g and lf-tq„ levels (cumulative occupation number
of 20) in Fig. 4(a) for Li~s, then note the prominent peaks
at cluster sizes 8 and 20 in Fig. 1(a) of Knight et al.
Similar gaps associated with cumulative occupation num-
bers of 40, 58, and 92 are seen in Fig. 4(b) and 4(c). As
explained by Knight et al. , a cluster size corresponding to
the addition of an electron to a new jellium shell should be
unfavored energetically because of the energy gaps be-
tween shells, whereas a closed shell cluster should be rela-
tively favored. The presence of crystal-field splitting
modifies this picture somewhat. For example, with in-
creasing cluster size the energy gaps between jellium shells
near the Fermi level will shrink to the same order as the
field splitting and so the energy advantage for filled shells
should disappear in the larger clusters. This effect is evi-
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dently seen in Fig. 1(a) of Knight et a/. , where the mass
spectrum structure gradually diminishes with increasing
cluster size.

Few, if any, of the clusters seen in the mass spectrum of
Knight et al. are likely to be in cubic symmetry, as we
pointed out in the Introduction. As a result it can be ex-
pected that the actual crystal-field splitting will usually
lead to energy levels less degenerate than those arising
from a cubic field. In the absence of large exchange split-
ting, an asymmetric crystal field could result in a prefer-
ence for clusters with an even number of electrons, since
the crystal field cannot remove the spin degeneracy. An
even-over-odd preference is noted by Knight et al. in
portions of their mass spectrum and also appears in the
lithium cluster mass spectrum of Kimoto and Nishida. '

Realizing that the actual crystal-field splitting is un-
known, it is still possible that some of the finer structure
of the mass spectrum of Ref. 5 may be interpretable from
our results. For example, we might relate the growth in
the sizes of abundance peaks that occurs from clusters of
15 atoms to those of 20 atoms in the mass spectrum of
Ref. 5 to the closeness of the 1d, 2s field-split energy levels
in the clusters. After these levels have come to be half-
filled with electrons, it is reasonable that further growth

in cluster size up to 20 atoms would be energetically
favored since the ld, 2s complex must lower in energy
with increasing positive cluster charge. Once these levels
are filled, however, an energy gap inhibits the formation
of a cluster with 21 electrons.

The interpretation of abundance peaks in terms of
crystal-field splitting would have to be modified consider-
ably were there large magnetic moments due to several
unpaired electrons on small simple-metal clusters as im-

plied by the spin-polarized, Xe, scattered-wave calcula-
tions of Geguzin' (sodium clusters in cubic symmetry)
and Fripiat et al. (lithium clusters in various geometries),
since in this case exchange splitting might be as great as
or greater than that due to the crystal field. However, the
work of Ref. 6 implies that the preference for a high-spin
ground state can be removed by the lowering of energy
due to Jahn-Teller distortion. The effect of geometry on
the magnetic properties of a cluster is illustrated by the
two 13-atom clusters of Fripiat et a/. : The 13-atom,
cubo-octahedral lithium cluster shows little exchange
splitting whereas the 13-atom icosahedron possesses five
unpaired electrons. In support of low-spin ground states,
no signals due to clusters with large magnetic moments
were identified in Stern-Gerlach experiments performed
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by Knight et al. on potassium clusters, and the results
were interpreted to be consistent with the presence of one
unpaired electron on clusters with an odd number of
atoms and no unpaired electron on those with an even
number. Thus it may be that spin-unpolarized calcula-
tions of large symmetric clusters are better models of real
ones than spin-polarized calculations of the same clusters
which indicate possibly spurious magnetic properties. Be-
cause jellium-like behavior, which casts crystal-field split-
ting in the role of a perturbation, can be seen in simple-
metal clusters calculated in various geometries, ' '
spin-unpolarized calculations of large, highly symmetric
clusters can be important in understanding real ones
where the symmetries may be somewhat different. As
pointed out by the authors of Ref. 6, who allowed their
small sodium clusters to relax arbitrarily under the influ-
ence of Hellmann-Feynman forces, the electronic struc-
ture is not strongly dependent on the exact geometry.

Jellium electronic shells persist in the electronic struc-
ture of relatively large clusters. In the self-consistent, Xa,
scattered-wave calculation of Salahub and Messmer' the
shells are identifiable in an aluminum cluster as large as
43 atoms (129 conduction electrons) by comparing the
DOS in their Fig. 2 with their Table II. However, the
field-split jellium shells near the Fermi level of this cluster
intermingle and begin to lose their identities, indicating
the disappearance of the jellium electronic structure. In
both the DOS plots of our lithium clusters and those of
the aluminum clusters of Salahub and Messmer the Fermi
level falls near a peak in the DOS. This is to be expected
since the Fermi level will likely occur in the denser part of
a field-split jellium shell. Since the electronic shells falls

below the Fermi level and crowd into the conduction band
with increasing cluster size, one must be careful in corre-
lating cluster peaks to theoretical or experimental bulk
peaks as was pointed out by Hintermann and Manninen in
a similar observation. The same caution may not apply
as strongly to noble- and transition-metal clusters since
d-band energy levels appear to aggregate in a relatively
stable energy range as cluster size grows (examine, e.g.,
the results of Messmer et al. , Yang et al. , Rudolf and
Chancy, and Lee, Callaway, and Dhar"). One can even
imagine that in a noble- or transition-metal cluster two
electronic effects are active concurrently with increasing
cluster size: delocalized, free-electron-like energy states
crowd below the Fermi level, interacting and hybridizing
with the more localized d-electron states, which accumu-
late in a fairly constant energy range.

How the electronic configuration of a metal cluster
changes with growth in the number of atoms has been a
topic of discussion. The LCAO technique has the ad-
vantage of being able to supply Mulliken population num-
bers figuring in this question with little trouble since the
LCAO basis set consists of atom-centered functions in
atomic (s,p, d, . . .) symmetry. ' To get these numbers,
one performs projection operations as in Eq. (5) on occu-
pied electron eigenfunctions and separates out the overlap-
ping basis functions according to atomic symmetry. In
what follows we refer to basis functions of s syinmetry
overlapping with basis functions of s symmetry as s -s
overlaps, basis functions of s symmetry overlapping with
those of p symmetry as s-p overlaps, and so forth. In
Table II we list the gross and net atomic populations' for
all atoms in the three clusters as well as occupancies per

TABLE II. Mulliken populations per atom sorted by shell and atomic symmetry for the three lithi-
um clusters.

Overlap
s -s (gross}

(net)
s -p(gross)

(net)

p -p(gross)
(net)

1

2.10
2.05
0.43
0.00
0.76
0.27

(a) Three-shell cluster
2

2.20
2.15
0.40
0.13
0.42
0.32

3
2.29
2.23
0.37
0.02
0.27
0.17

Cluster
2.23

0.38

Overlap
s -s (gross)

(net)
s -p {gross)

(net)

p -p(gross)
(net)

1

2.00
2.09
0.19
0.00
0.71
0.20

(b) Four-shell
2

2.16
2.08
0.33
0.05
0.91
0.59 .

cluster
3

2.16
2.09
0.28
0.00
0.55
0.23

4
2.32
2.25
0.27
0.05
0.16
0.05

Cluster
2.22

0.29

0.49

Overlap
s -s (gross)

(net)
s -p (gross)

(net)

p -p(gr»s)
(net)

1

2.08
2.08

—0.38
0.00
1.41
0.37

2
2.04
2.09
0.06
0.02
0.90
0.36

(c) Six-shell
3
2.06
2.08
0.06

—0.01
0.97
0.36

cluster
4
2.15
2.11
0.26

—0.04
0.70
0.33

5
2.22
2.19
0.28
0.11
0.43
0.23

6
2.24
2.19
0.29

—0.01
0.41
0.15

Cluster
2.17

0.21

0.62
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atom for each cluster as a whole. Because of the delocal-
ized nature of metallic eigenfunctions, the gross popula-
tion for an atom, which in general includes cross terms
from all the other atoms in the cluster, should not be con-
sidered definitive of local atomic symmetry. The central
atom in each cluster is a special case of this since its net
atomic population (which excludes cross terms by defini-
tion) for s-p overlap is necessarily zero by symmetry and
hence s-p contributions to its gross atomic population will
be entirely from cross terms. For instance, the odd value
for the s-p overlap for the central atom of the six-shell
cluster ( —0.38) is due to strong negative overlaps with the
outer two shells. However, we feel the gross atomic popu-
lations can be useful in spotting trends in clusters, espe-
cially when they are reflected in the net atomic popula-
tions.

For the clusters as a whole, a growing contribution of
basis functions with p symmetry to the occupied eigen-
functions as cluster size increases is seen (Table II). Con-
currently there is a relative decrease in s -p overlap terms.
In bulk lithium it may be that 2s and 2p functions contri-
bute nearly equally to the occupied bulk eigenstates, pro-
ducing a ratio of p to s of about 3 to I in the conduction
band since p atomic states are triply degenerate. From
this point of view there is a trend toward bulk with in-
crease in cluster size.

When the Mulliken populations of the individual atoms
of each cluster are examined, a decrease in p-p and an in-
crease in s-s overlap terms occurs as one proceeds out-
ward from the central atom to the surface atoms. The s -p
overlap terms are relatively larger for the two smaller
clusters and much larger for the atoms near the surface of
Li59 than for the interior atoms. These terms seem to be
associated with the precipitous drop in electron density in
the region of the outer shells. It is interesting that the oc-
cupied cross terms between atoms, which should reflect
the bonding of the clusters, ' consist predominantly of
p-p and s-p overlaps of the longest-range basis functions.
In fact these cross terms account for 49%, 54%, and 60%
of the conduction-electron occupancies in Li/5 L127 and

Li59, respectively. The s-s overlap terms make small con-
tributions by comparison. Since basis functions of p
atomic symmetry seem to be strongly implicated in bond-
ing in the clusters, the decrease in p character from the
central to surface atoms noted above may be a function of
the decreasing number of nearest neighbors, next-nearest
neighbors, etc. , in other words a bonding effect.

Because of the intense interest in impurities and point
defects, how well the central atom in a cluster models an
atom in the bulk material is a matter of concern. ' Hin-
termann and Manninen concluded from their work on
self-consistent jellium spheres geared to the electron densi-

ty of lithium that clusters must be rather large, on the or-
der of 100 conduction electrons, to adequately describe
bulk DOS, total energy and conduction bandwidth. Simi-
lar conclusions were reached by Ekardt' with regard to
the ionization potentials and average electron energies of
his self-consistent jellium spheres modeling sodium.
However, much of the slow convergence of jellium sphere
properties to those of infinite jellium can be ascribed to
the high degeneracy of the energy levels, ' ' and, as we

have seen, the crystal field splits these and tends to distri-
bute them over the energy range. In the case of impuri-
ties and point defects the major question concerns the en-
vironment with which these interact, not the approach to
bulk of the cluster as a whole. Hintermann and Man-
ninen, for example, showed that the induced electron den-
sity in a 22-electron jellium sphere with a central hydro-
gen atom was already a good approximation to that in in-
finite jellium. Also, Rudolf and Chancy presented results
for a hydrogen impurity at the center of a 38-atom nickel
cluster implying that the hydrogen behaved approximately
as it would in bulk. Although the electron density near
the central atom in our 59-atom lithium cluster is rather
bulk-like, the Friedel oscillations seem to penetrate all the
way to its center (Fig. 3) just as in the larger jellium clus-
ters of Ekardt. The question of modeling impurities in
lithium and other metal clusters will likely have to be
resolved by calculations introducing impurities into clus-
ters with diverse numbers of atoms and observing the con-
vergence of the properties of interest with cluster growth.

IV. CONCLUSIONS

Both experiment and theory' ' have suggested that a
free-electron metal cluster can be modeled in some
respects by jellium spheres. The lithium clusters we have
calculated indicate that such clusters are very much like
jellium spheres in electronic structure and charge density.
Jellium-sphere electron shells can easily be identified in
lithium clusters of at least 59 conduction electrons and are
seen in aluminum clusters' with over 100 conduction
electrons. In addition, the density of the conduction elec-
trons in our clusters is marked by prominent Friedel oscil-
lations and quite similar to that calculated for jellium
spheres. ' It seems likely, in view of the work of Ref. 5,
that the stability of free-electron metal clusters containing
up to 100 conduction electrons is influenced to a large ex-
tent by the filling of jellium-sphere electron shells. The
stability of clusters whose sizes fall between those corre-
sponding to filled jellium shells may be partly due to how
these shells are split by the crystal field. Crystal-field
splitting tends to spread the electron energy levels over the
energy range and therefore to modify the jelliumlike char-
acter of the clusters. As a result, it is possible that atomic
clusters making bulklike hosts for impurities or defects
can be smaller than is indicated in jeHium-sphere stud-
ies. Since the jellium electronic shells retain their identi-
ty in simple-metal clusters of up to 100 or more conduc-
tion electrons, the l30S will be dominated by such shell
structure even in relatively large clusters.

The I.CAO technique is useful in examining configura-
tion and bonding effects in clusters using Mulliken
analysis. ' %'e find a large contribution of p atomic sym-
metry to the bonding of our lithium clusters, reflected
perhaps in the decreasing p contribution to the Mulliken
population numbers from the central atoms outward. An
increasing p contribution with increasing cluster size may
be a related phenomenon since the average atom in a large
cluster has the opportuoity to bond with more atoms than
that in a smaH cluster. The directional nature of the s-p
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cross terms in the electron density involves them in the
exponential drop-off of the external density, and hence
there is a relative decrease of these terms in larger clus-
ters.
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