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We present a first-principles study of chemical short-range ordering in liquid (s,p)-bonded alloys.
Our approach is based on an optimized pseudopotential technique for the construction of the intera-
tomic potentials and a thermodynamic variational technique based on the Gibbs-Bogoliubov in-

equality and hard-sphere Yukawa reference potentials (we use the analytical solution of the mean
spherical solution for the equal-diameter case). The analysis of the redistribution of the valence
electrons upon alloying allows us to elucidate the electronic origin of the ordering potential. In the
case of a moderately strong ordering interaction, the application of the Gibbs-Bogoliubov variational
technique yields a reasonably accurate prediction of the structure factors and of the thermodynamic
excess functions. For very strong ordering potentials, a free minimization of the variational upper
bound to the exact free energy gives unrealistic results. This is a consequence of the complete
decoupling of number-density and concentration fluctuations in the mean-spherical approximation
to the equal-diameter hard-sphere Yukawa mixture. We find that realistic solutions may be found
by imposing the condition that the exact and the reference-system ordering potentials be the same at
the mean effective atomic diameter. This constrained minimization of the variational free energy
yields good results for the structure factors, but rather bad ones for the thermodynamic excess func-
tions. We are able to show that this is due to a neglect of the finite electronic mean free path of the
electrons in those concentration regions where it is comparable to the mean interatomic distance.

I. INTRODUCTION

Over the last decade the formation of chemical short-
range order (CSRO) in liquid metallic alloys has been a
subject of increasing attention. Numerous systems exhib-
iting this effect have been discovered and studied (see
Refs. 1 and 2 for recent reviews).

A theoretical treatment of CSRO in liquid alloys clear-
ly involves two distinct steps: (i) the determination of the
interatomic forces from an electronic theory of chemical
bond, and (ii) the calculation therefrom of the the struc-
ture and of the thermodynamic properties using the
methods of the classical theory of liquids.

To date the only reliable scheme for obtaining the in-
teratomic interactions in metallic systems is based on the
linear response of the conduction electrons to the
electron-ion potential, which is valid only in systems
whose ions scatter the electrons weakly and are describ-
able by pseudopotentials (see Heine and Weaire3 for a re-
view). For the pure simple metals, the theory has now
been developed to a point where the pair potentials de-
rived from the optimized pseudopotentials based on
orthogonalized-plane-wave expansions of the conduction-
electron states (the optimization serves to minimize the
importance of the higher-order perturbation contribu-
tions) and those derived from the effective potential ap-
proach yield convergent answers which may be con-
sidered reliable and accurate. ' The situation is more dif-
ficult in alloys, the main problems being the transferabili-

ty of the electron-ion pseudopotentials and the short mean
free path of the conduction electrons due to the strong
disorder scattering.

To calculate the structure of a liquid mixture, we could,
in principle, proceed in three different ways: (i) by com-
puter simulation, (ii) by solving one of the integral equa-
tions of the theory of liquids (see, e.g. Ref. 8), and (iii) by
using thermodynamic perturbation theory. Even with
present-day computers, the simulation of binary liquid
mixtures goes to the very limits of the computational
capacity. Consequently, only a very few liquid metallic
alloys have been investigated, ' and the authors are
aware only of a single attempt to simulate a system with
strong CSRO." The problem of solving the system of
three coupled integral equations representing the alloy has
not even been tackled yet. This leaves us with thermo-
dynamic perturbation theory as the only tractable alterna-
tive.

The most elementary form of thermodynamic perturba-
tion theory is the variational method based on the Gibbs-
Bogoliubov inequality. ' The exact free energy Fof a sys-
tem is always smaller than the free energy Fp of a refer-
ence system plus the expectation value of the perturbation
(i.e., the difference between the exact interatomic interac-
tions @ and those of the reference system, @p), evaluated
with the distribution functions of the reference system,

F(Fp+(N —@p) .

If the reference system depends on one or more parame-
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ters, it is hence possible to establish an upper bound to the
exact free energy by minimizing the right-hand side of (1)
as a function of these parameters.

For alloys with a nearly ideal mixing behavior, a varia-
tional treatment with a mixture of hard spheres of dif-
ferent diameters as a reference system has met with con-
siderable success, ' ' but such an approach is certainly
unable to cope with ordering phenomena.

Copestake et al. have shown that the structural
manifestations of ordering in molten salts, liquid semicon-
ductors, and even liquid metallic alloys may be modeled
using a mixture of hard spheres all having the same diam-
eter, but opposite charges, and interacting through a
Coulomb or screened Coulomb (Yukawa) potential. For
such a reference system, an analytical solution of the
mean spherical approximation is available. ' Very recent-
ly, the present authors have shown' ' that, combined
with a very simple treatment of the electronic contribu-
tions to the free energy of a liquid alloy, this model may
be used to fit the thermodynamic excess functions and
partial static structure factors of a large series of Li- and
Na-based alloys with polyvalent and noble metals with
good success.

This opens the way to a thermodyamic variational
treatment of liquid alloys with CSRO. In the present pa-
per we present the first such calculation. Our approach is
based on interatomic potentials derived from the optim-
ized first-principles pseudopotentials introduced earlier by
one of us, ' and applied successfully to a number of crys-
talline, liquid, '"' and amorphous alloys. In Sec. II we
recapitulate briefly the derivation of the interatomic pair
potentials.

The properties of the reference system (mixture of hard
spheres with equal diameters and Yukawa interactions)
are summarized in Sec. III.

In Sec. IV we present an application of this new variant
of the variational technique to systems with a weak to
moderate CSRO (Mg-Zn, Mg-Li). In that case it is possi-
ble to determine a true upper bound to the exact free ener-

gy by minimizing the right-hand side of (1) as a function
of the hard-sphere diameter cr, the strength of the order-
ing potential at contact e, and the screening constant a..

In Sec. V we turn to the more difficult case of strongly
ordering systems. Here it turns out that there is no real
minimum in the approximate expression for the free ener-

gy within the physically realistic range of the model pa-
rameters. This is related to the fact that the conditions
that have to be imposed to the hard-sphere —Yukawa
(HSY) system in order to enable one to find an analytical
solution (equality of the HS diameters, charge neutrality)
yield to a complete 'decoupling of number-density and
concentration fluctuations. In the context of the varia-
tional method we find that a physically realistic solution
may be found by imposing the condition C&cc(o.)=—6,
i.e., by requiring that the strength of the model (HSY) or-
dering potential at contact e is just equal to the exact or-
dering potential Ncc(R) evaluated at R =o.. This condi-
tion introduces the necessary coupling between density
and concentration fluctuations. An application is illus-
trated at the example of the structure of liquid Li-Pb al-
loys.

Section VI summarizes what we believe we have
achieved: we have presented the first attempt to calculate
ordering phenomena in liquid alloys from first principles,
without any adjustable parameters. Pseudopotential
theory is found to provide a reasonably realistic descrip-
tion of the ordering interaction, and allows to relate the
strength and the form of the ordering potential to a redis-
tribution of the conduction-electron densities. That pseu-
dopotential theory is applicable even in cases where the
differences in valence are as large as in Li-Pb might ap-
pear surprising, and we emphasize that at the present
stage the theory should be regarded as semiquantitative at
best. Many points, such as, for example, the influence of
the short mean free path of the conduction electrons in
the strong scattering regime on the screening function,
remain to be investigated.

II. INTERATOMIC POTENTIALS IN ALLOYS

One of the stumbling blocks on our way to a clear
understanding of the interatomic potentials in alloys is the
problem of the transferability of the electron-ion pseudo-
potential. The naive approximation which considers the
bare pseudopotential as fixed and accounts only for
changes in the linear screening functions with the mean
conduction-electron density is suited only for systems
with a rather small difference in the electron density of
the components. Evidently, the pseudopotential is a col-
lective rather than an atomic property: it describes the
scattering of conduction electrons by an ionic core within
a given surrounding medium. If that changes (e.g. , by al-
loying), the pseudopotential changes too. The approach
introduced earlier by one of us ' represents the most direct
attack on this problem: Instead of designing the pseudo-
potential as to optimize its transferability (see, e.g., Refs.
24 and 25), the bare pseudopotentials for the constituents
of a binary alloy are constructed anew for each concentra-
tion and carefully optimized (using the Cohen-Heine~ cri-
terion of the smoothest possible wave function) for that
specific composition. As a consequence, the bare ionic
pseudopotentials of the alloy constituents will now be con-
centration dependent.

As the technical details of the construction of the pseu-
dopotential have been well documented in earlier publica-
tions, ' ' ' we shall not repeat them here. We will
merely discuss the interrelation between charge rearrange-
ments and the concentration-dependent changes in the in-
teratomic pair potentials.

In a simplified way, we might view the formation of a
binary simple-metal alloy as follows: the starting point is
a homogeneous electron gas with a density no Z/Q cor-—-

responding to the mean atomic volume 0 in the alloy and
the average valence Z =(1—c)Z&+cZ& (c is the concen-
tration of the B atoms), into which the 2 and B ions are
introduced as a perturbation. According to the Pauli
principle, the conduction-electron states must be orthogo-
nal to the orbitals of the ionic cores: to those of type A

on the sites occupied by A ions, and to those of type B on
the sites occupied by the 8 ions. The orthogonality con-
straint reduces the probability of finding a conduction
electron in the region of an ion core—in the language of
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pseudopotential specialists one usually says "the ion forms
an orthogonalization hole. " The important point is the
following. If the alloy is formed by metals with very dif-
ferent electron densities, one species of ions (say the A

ions) "sees" a much larger electron density than in the
pure metal. Consequently, it has to form a larger- orthog-
onalization hole, whereas that around the 8 ion will be
smaller in the alloy than in the pure metal. These changes
in the orthogonalization-hole charges are compiled in
Table I; a reduced orthogonalization-hole charge also re-
flects a reduced strength of the repulsive part of the pseu-
dopotential and vice versa.

In the second step we calculate the linear response of
the conduction electron to the pseudopotential of the ion
plus the orthogonalization hole. Ion core, orthogonaliza-
tion hole, and screening charge altogether form the elec-
trically neutral pseudoatom. Of course, the form of the
screening charge around a given atom will again be dif-
ferent in the alloy and in the pure metal. This is illustrat-
ed in Fig. I at the example of the screening charge density
around a Li ion in pure Li and equiatomic alloys of Li
with Na, Mg. Al, and Pb. So, in fact what happens is a
competition between two electron-transfer mechanisms:
First, we are transferring electrons from A to 8, from the
low-electron-density to the high-electron-density com-
ponent, i.e., in the direction expected from the electrone-
gativity difference. In the second step the electrons are al-
lowed to respond to the-external perturbation and they do
so by redistributing themselves as to minimize potential
gradients and so to minimize the ground-state energy.
Partly, this is achieved by accumulating electrons in the
core region of the ion with the increased orthogonaliza-
tion hole charge (Fig. I). In fact, a very early discussion
of these two competing electron-transfer mechanisms as-
sociated with the electronegativity and the electroneutrali-
ty principles can be found in Pauling. 27

We expect that the orthogonalization effect will influ-
ence mainly the electrostatic part of the effective intera-
tomic potentials, whert'. as the change in the screening
charges affects mainly the indirect ion-electron-ion in-
teraction, which dominates the form of the interatomic
interactions around the nearest-neighbor distance. Figure
2 shows that this is indeed the case: the interatomic po-
tentials follow the redistribution of the screening. As the
screening charge around the I i ions is drawn closer to the

Li
Na
Li-Na
Mg
Li-Mg
Al
Li-Al
Pb
Li-Pb

0.0622

0.0465

0.0895

0.1439

0.1402

0.0730
0.0856
0.1500
0.1140
0.2108
0.1345
0.4197
0.3223

TABLE I. Orthogonalization-hole charges (per ion) in some
Li-based binary alloys and in the pure metals.

Li

04

0.2
C4

Ct

04

IX

0.2
Ct

c=a
.~. C=O. 2

lX

0.8

I

R{a U. )

FIG. 1. (a) Screening charge distribution pq;(R) around a Li
ion in pure Li ( ~ ~ ), and equiatomic alloys of Li with Na
(—"—) Mg ( —~ —~ —~ ), Al( ———), and Pb( ). {b)
Screening charge distribution pL;(R) around a Li ion in a series
of Li,Pb&, alloys. (c) Screening charge distribution ppb(R)
around a Pb ion in a series of Li,Pb&, alloys.

core with increasing valence of the other component, the
repulsive core of the effective pair potential 4L, L;(R)
shrinks due to a reduced overlap, and its first attractive
minimum is shifted to smaller distances. This is, in fact,
an effect which is well known in physical metallurgy
under the name of the "chemical compression" upon al-
loying with a more electronegative metal, the effective di-
ameter of the more electropositive atom is reduced.

For large distances all three pair potentials oscillate in
phase as we would expect, since it is the Fermi-
momentum which sets the wavelength of the oscillations.
The amplitude of the oscillations is set by the magnitude
of the pseudopotential matrix element at the Fermi sur-
face. As the pseudopotential of the polyvalent ions is less
effectively screened in the aHoy because of the reduced
electron density, the oscillations in the pair interactions
between these ions will become more pronounced. In I.i-



5012 A. PASTUREL, J. HAFNER, AND P. HICTER 32

{pi)(R)
I

(mRy ),

I

.
(

I

0 I

. 1

I
/

$~(R)

&cc(R'

(rrjRy )

2

r

6

Li Ai

Li Al Lipb
—6'- 1- Lj-Li

2- Li-X
3- X-X-8-

j

4
I I

6 e 10 4 6 B 10

R (a.u. )

FIG. 2. Effective interatomic pair potentials @;~(E) in equi-
atomic alloys of Li with Mg, Al, and Pb, calculated for the ex-
perimentally known density of the liquid alloys at a temperature
close to T= 1000 K. The solid lines give the pair interactions in
the alloys, the dotted line that pair potential in pure Li, and the
dashed lines the pair potentials in pure Mg, Al, and Pb, all cal-
culated again at the densities of the liquid metals at T= 1000 K 0

Mg and Li-Al this results in a very deep minimum in

@Ms Ms(R) and N~, ~i(R), respectively, around the
nearest-neighbor distance. In Li-Pb a repulsive hump ap-
pears at the edge of the repulsive part of 4pb pb(R), be-
cause the oscillations are now much mor dmore pronounced
than in pure Pb. However, the minimum at the nearest-
neighbor distance is still covered by the repulsive core (for
a recent discussion of the interplay of repulsive and oscil-
latory interactions in determining the form of the effec-
tive pair potential, see Hafner and Heine.

We also note that with increasing difference in valence,
the interaction between unlike atom pairs is no longer
simply the mean value of the A-A and B Binteracti-ons,
and the minimum in CAB(R) is now much deeper than in
a simple set of additive pair interactions. However, it is
not only the relative depth of AA, BB, and AB potentials
w ich determines the strength of the ordering potential:
the size difference is equally important. Here it is ap-
propriate to transform from the individual particle in-
tera«ions @AA(R), CjBB(R), and CAB(R) to the pair poten-
tials

= 2
NN(R) =cA@AA(R)+cBNBB(R)+2cAcB@AB(R),

6-

10 4

R (a.U. )

10 10

a tendency to heterocoordination. Note that for larger
distances the ordering interaction is very strongly
damped —this is simply a consequence of the fact that
asymptotically all three pair interactions have to oscillate
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FIG. 3. Effective pair potentials N~~ (R) { ) 4~g(R)
{.. . -), and e (Z~ ———(. ~ -, ~c ) {———), describing the coupling between
density and concentration fluctuations in equiatomic Li-Mg,
Li-A1, and Li-Pb alloys. The vertical line marks the ff t's e e ective

ar -sp ere diameter o., the crosses the reference orderin o-
tential 4 '8' d~~ ( ) enved from the variationaal condition (see

ce or ering po-

Secs. III and IV).

@cc(R)=cAcB[4AA(R)+@BB(R) 2@AB(R)], —
@Nc(R)=2cAcB[cACAA(R) CBC BB(R)—

(2c)+(cB—cA )4 AB(R)],

representmg, in turn, an average pair interaction. (which
couples to the fluctuations in the mean number density),
an ordering interaction (coupling to the concentration
fluctuations), and a cross term. For the three equiatomic
alloys Li-Mg, Li-Al, and Li-Pb these potentials are shown
inpi. 3. Fiig. . igure 4 shows their variation with concentr-
ion at the example of a series of Li-Pb alloys.

cen ra-

Note that a Ncc(R) that is positive around the nearest-
neighbor distance di expresses the fact that the interac-
tion between unlike-atom pairs is stronger than in an aver-
age like-atomic pair —thus a positive Ncc(d i ) will induce

10
L'06pbo0.6 0.4

l~oepboz

15
R (g.U, )

-5-
FIG. 4. Effective pair potentials 4~~(E) ( ), 4~p(E)

(. ~ ~ ~ ), and e~c( ), , ———), for Li-Pb alloys as a function
of concentration. The thin vertical lines mark the effective

ard-sphere diameter o. and the crosses show the reference-
or ering potential @~~ {R)determined by the variational condi-
tion (see Sec. V).
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in phase. This will be an important point in the following
thermodynamic variational calculations. The strength of
the ordering potential essentially scales with the impor-
tance of the charge-transfer effects, but —as can be seen
by comparing Li-Mg and Li-Al—size effects are also im-
portant. The concentration-dependent variation of the po-
tentials in the series of Li,Pbi, alloys shown in Fig. 4
demonstrates that the ordering effects are by no means

symmetric with respect to concentration; the ordering ef-
fect is strongest at the composition Lio sPbo 2. From Figs.
1(b) and 1(c) it can be seen that this is precisely the com-
position with the minimal overlap between unlike pairs of
pseudoatoms.

Thus we find that optimized pseudopotential theory de-
scribes reasonably well the trends in the interatomic in-
teractions, which we expect on the basis of the known
structural and thermodynamic properties. In addition, it
allows to relate the origin of the ordering potential to a
spatial redistribution of the conduction electrons. The im-
portant point is that the ordering potential is not really of
electrostatic origin, but —because of the long-range cancel-
lation effects described above —it has an approximate
screened Coulomb form for the distances of interest.
Thus it will be amenable to a perturbation treatment based
on a hard-sphere —Yukawa —type reference system.

Of course, this section does not present an exhaustive
discussion of the electronic origin of chemical short-range
order (which must be left to future work), but it appears
legitimate to say that we have now an adequate working'
knowledge of the fundamental chemical interactions.

cJ(R)= P@,~(R) = —P—Q;Qje exp[ «(R —o.)]/R,—

hij (R ) = —1, R (o.ij

R )OIJ. (4a)

(4b)

for the total correlation functions h,i(R) =gii(R) —1 and
I

III. THE HARD-SPHERE —YUKAWA MODEL

A. The analytical solution of the mean-spherical
approximation for the HSY model

The mean-spherical approximation (MSA) for a binary
mixture of hard spheres with Yukawa tails is defined by
the Ornstein-Zernike equations

hg~(R) =cg~(R)+gni, fc k( i~
R—R'

~
)hkj(R')d R' (3)

k

in connection with the closure relations

the direct correlation. If all spheres have the same diame-
ter (aAA ——oBB——o AB ——0.) and if the charge-neutrality con-
dition

c~iv(R) =0, R )0

hiv~(R) = —1, R (cr

(7b)

(7c)

hcc(R) =ccc(R)+n fccc( I
R—R'

I
)hcc(R')d R' (8a)

ccc«)= 13@'cc«)—

PCA—CBb,Q e exp[ —«(R —cr)]/R

=Pro exp[ —«(R o)]/R, —R )o.

hcc«) =0 R (u .

The third equation has the trivial solution

C&~c(R)=h~c(R) =c~c(R)=0 .

(8b)

(8c)

Equation (7) is identical to the Percus-Yevick equation for
hard spheres, and hence we know analytical solutions for
the thermodynamic functions and for the direct correla-
tion functions. ' Equation (8) has been solved analytically
by %'aisman. ' He showed that the result may be ex-
pressed in terms of a parameter co which is the solution of
the quartic equation

o) I Z —co/[2 exp(Z) ] (

12{I+co[1—exp( —Z)]/2Z I

(g is the hard-sphere packing fraction, ri= 6nn.cr, and
Z =KIT). The direct correlation function ccc(R) is given
by

CAQA+CBQB =0
is respected, one finds that after transforming to the
Bhatia-Thornton functions,

c~iv(R) =cAcAA(R) +cBcBB(R)+2cAcBcAB(R)

civc(R) =cAcB[cAA(R)+cBB(R)—NAB(R)],

ccc(R)=CACAA(R) cBc—BB(R)+(cB—cA )CAB(R),

describing the spatial correlation of fluctuations in the
number density n and in the concentration, the system of
three coupled integral equations [(3) and (4)] reduces to
two independent equations, '

h~~(R) =c~~(r)+n fCN~(
~

R—R'
~

)h~~(R')d'R', (7a)

ccc(R)=

r

Peco 1 —exp( —Zx) cosh(Zx) —1
+CO 2 ~ X)1

X 2Z exp(Z)
r

Pe exp[ —Z (x —1)]/x, x ( 1

with x =R/o. . The Fourier transform of the direct correlation function is then given by

4~Pe 1 —cos(qcr) q exp( —«Z)[«sin(qcr)+q cos(qo )]
Ccc q +A,

q q pP+q2 «+q
«sinh(Z)sin(qo. ) —q cosh(Z)cos(qo )—A3

~+q
(12)
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with

Ai ———CO CO —I
a 2Z exp(Z)

h, E
(mRy)

(a)

32 ——o exp(Z) —co/a,

A3 ——co /aZ exp(Z) .

The static structure factor is simply

Scc(9)=ex cs [1—nccc(l) l

The analytic expressions for cz& (in real and reciprocal
space) and

SiÃ(e)=[1—«NN(e)] '

are well known and need not be repeated here. Analyti-
cal expressions for the thermodynamic functions may be
derived using the coupling-constant formalisin, ' with the
final result'

,' ks T+EH—„d—T(SHs+bS„d) . (14) (a.u. )

SHs is the hard-sphere entropy (we use the expression pro-
posed by Carnahan and Starling, and

AH„s 2mn J gc——c(R)@cc(R)R dR

1
COG2 (15)

B7,+82co+83cof(~)=-
72Bg(1+B4co)

(17)

b, S„d——[f(co) —f(0)]/2g

are the contributions to the enthalpy and entropy of for-
mation associated with a nonvanishing ordering potential.
Equation (15) shows that co is just twice the ratio between
the ordering enthalpy and the strength of the ordering po-
tential at contact. The function f (ra) is given by

FIG. 5. (a) Variation of the heat, entropy, and free energy of
formation, and (b) of the height of the main peak in the struc-
ture factor Sc~(q), with the screening constant ~. The strength
of the ordering interaction and packing fraction are kept con-
stant, e= —5 mRy, g=0.40, and T=1000 K.

a pure Coulombic to a pure hard-sphere form. In the
former limit the model is expected to represent an ionic
melt [in that context it is usually called the restricted
primitive model (RPM)], where the latter limit is known
to yield a good first description of liquid metals and rare
gases. The vast intermediate range is still relatively unex-
plored, except for a recent study of Holzhey et al. on
the variations of the atomic structure with charge and
screening constant. We have found it worthwhile to ex-
tend their study in a systematic way.

In Figs. 5 and 6 we show the variation of the heat, en-

with

2 —1
exp(Z) —1

(mRy)

~TBSP'-d

(G)
e =-25mRy

B2 ————,
' [1—3 exp( —Z)],

B3——exp( —Z) [ 1 —exp( —Z) ]/4Z,

Bq ——[1—exp( —Z)]/2Z . -20

Equations (10)—(18) represent the fully analytic represen-
tation of the HSY reference system needed in the varia-
tional calculation. However, before we explicitly formu-
late the variational condition, we think that it is necessary
to investigate relative roles of charge and screening on the
thermodynamic properties and on the atomic structure.

Scc(~p)

A B

2.0

B. The inAuence of charge and screening
upon the properties of a HSY system

i

1.0 2.0

It is clear that as the screening constant a. changes from
0 to po, the interatomic potential changes gradually from

(a.u. )

FIG. 6. As for Fig. 5, but for e= —25 mly.
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tropy, and free energy of formation, and of the height of
the first peak in the concentration-fluctuation structure
factor Scc(Q&) with the screening constant a at different
values of e and at constant g=0.40, T=1000 K. The
first somewhat surprising result is that the strength of the
ordering effects does not vary monotonically with the
screening. The maximum degree of ordering does not
occur for the pure Coulornbic case, but at a finite value of
the screening parameter whose value increases even with
the strength of the ordering interaction. Furthermore,
bH«d, M«d, and ~«d are all extremal at different
values of the screening pararn. eter. This is essentially a
consequence of the fact that the ordering process is dom-
inated by the short-range interaction: Once the ordering
potential is strong enough to produce the maximum
short-range ordering (where each atom is surrounded
essentially only by unlike atoms), a further decrease of the

screening constant will only strengthen the interaction
with the second-nearest neighbors (which will be predom-
inantly like atoms) and can only decrease the total order-
ing energy. This is illustrated in Fig. 7. In part (a) we
show the ordering potential @cc(R) at a fixed e= —25
mRy for different values of the screening parameter:
a =0.1 a.u. corresponds to a nearly Coulombic interaction,
v=0.7 a.u. to the maximum value of Scc(Q&) and the
minimum in EH„d (cf. Fig. 6), a.=1.3 a.u. to the strong-
est effect in bS«d, and a'=1.9 a.u. to a very strongly
screened interaction.

It is a rather striking coincidence that the strongest ef-
fect in the structure and enthalpy show up if the ordering
potential extends just out to the second-nearest neighbors
(R /o =2), and that the strongest effect on the entropy is
seen when Ncc(R) extends only to the first minimum in
the pair-correlation function (i.e., R/o-1. 5). We have

x)
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FIG. 7. Variation of (a) the ordering potential @~~(R), (b) the pair-correlation functions g~(R) =g~~(R) and g~~(R), and (c) the
concentration-fIuctuation structure factor S~~(q), with the screening constant K (,~=0.1; ~

X X X X X X, &= 1.9) at a fixed strength of the ordering interaction at contact, e= —25 IRy, g =0.40, and T= 1000 K.
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verified that this correlation holds for other choices of the
parameters and of the concentration as well. The varia-
tion of the pair-correlation functions and of the structure
factor with the screening constant is rather surprising as
well [Fig. 7(b)]: the value of the unlike-atom pair-
correlation function at contact first increases with concen-
tration, but essentially saturates beyond ~=1.3 a.u. ; the
form of gzz(R) is nearly independent of a. for ~) 1.3 a.u.
The like-atom correlation function shows the more in-
teresting effects: The value at hard contact first decreases
dramatically with increasing ~; at sc =0.7 a.u. ,
g~(R)=gzz(R) shows only weak fluctuations even at
small distances. At an even stronger screening, the value
at eontaet continues to decrease (showing that direct con-
tacts are increasingly prohibited), but a distinct peak ap-
pears near R/cr = l. 15. This shows that although divect
contacts are even more strongly suppressed in a screened
as opposed to a Coulombic system, rather close contacts
are allowed once the screening is sufficiently strong.
These effects are also reflected in the eoncentration-
fluctuation structure factor: Judging from the height of
the first peak, Scc(Q& ), the ordering effect is about equal-
ly strong at x =0. 1 a.u. and at ~=1.9 a.u. The difference
is in the higher-order oscillations —they are strongly
damped in the nearly Coulombic case, and rather strong
in the screened case, reflecting the more pronounced
structure in the like-atom corre1ations.

This shows that within the HSY system the correlation
between "ionicity" and ordering is not as clear as one
would have thought. At a fixed value of the strength of
the interaction at contact, screening is not detrimental to
ordering: The introduction of a certain degree of screen-
ing even enforces ordering effects by suppressing unfavor-
able interactions with more distant neighbors. With our
definition of the Yukawa interactions [Eq. (Sb)], constant
e means also constant Q~, Qq. However, the screening
part might also be rewritten in the form (b,Q') exp( —aR },
allotting the screening to penetrate into the hard core. In
that case, a variation of ~ at constant e would also mean a
drastic variation of the charges Q'r, Q2. The problem is
only that, within the C&cc(R) necessary to explain the ob-
served ordering phenomena, the charges Q would be un-
realistically large (see the discussion in Refs. 19, 20, and

. 49), and that the notion of a screening penetrating the
"hard" core would be difficult to interpret in a physically
realistic way. Therefore we had good reasons to adopt the
convention (Sb).

C. The variational expression for the free energy

With the reference-system free energy and correlation
functions given by Eqs. (10)—(18), the appropriate form
of the Giggs-Bogoliubov inequality (1) reads (we use now
atomic units)

F&F(g,e,~)= —,
' k~T+Epp+Eas+E„r[SHs(r})+AS—„~(rj,s,~)] .

In (19) the band-structure energy is given by

(c;c, )'~ fFJ(q)S;; (q;rj, e,~)q'dq
ij =A, B

(20a)

2 INN O' SNN 4'9 +FCC 9 Sgg 9 'g & &
2% Pl

(20b)

»th the partial-energy-wave-number characteristics FJ(q), which are just the Fourier transforms of the indirect ion-
eiectron-ion part of the pair interaction @,J(R). The electrostatic energy is expressed in the form

E„= g (c;cj ) ZtZJ. —f [S(J (q;q, e,~) 5,J]dq-
ij =A, B

(21a)

=Z —f [Sgr(q;g) —1]dq+(bZ) —f [Sec (q;g, e,a) c„c~]dq . — (21b)

o"e that Z=4Zw+caZa and ~Z=Zz —Zq~ Epp. , the "free-electron" energy, contains the zeroth- and first-order
contributions and is independent of the structure of the alloy; for its explicit form see Ref. 14.

Alternatively, (19) might be written in real space as

F('g, e,K)= 2 k~T+Eo+E —T[SHs(g)+~ ~(r},~,g)], (22)

with the pair-interaction energy

Ez ——2mn g c;cJfg 1 (R;g,a, e)@,J.(R)R dR.
ij =A, B

=2~n f [gg (R;g)C~~(R)+gee(R g, &,&)ccc(R)]R dR .

(23a)

(23b)



32 THERMODYNAMIC VAR IATIONAL METHOOD FOR LIQUID. . . 5017

1 —q/5 —q /10
1 —29

where cr is the hard-s- p e e d'ameter

p e transform f h 1 tio f

ri ution. The asi y—Uctuation colltrib t . a aogo s es lt
- uc uation part,

(24)

Eo consists of the free-electron ener an

cancelation it tu o t that E
e e ectron-gas ener an

0 is just

t r to softheio
a iona pomt of view E

e most convenient. Th
for the band-s

e integrals in the
(20b

and the electot t (21b) b
y are ra idl

orm. For the one-co-component har-
can be obtained in clos d

P

NN(q;g) —1]dq =2H lim)SHs ncr lim [HNN(t) 1/t—2]

BF(rt,e,x)
3'g

=0
T, lk, 6, K

BF(rt,e,a)
BE'

=0 t
T, 1g, Yf, K

(26b)

BF(g,e,x )

BK
(26c)

T~ +r'g~ E

which determine the HSY
densit dt mt . A

e SY parameters a

tional conditions (26,' '
ns ), the entrop

e varia-

py is simply given b

f ) SHSY(cc qig, e,~) c—„ca]d =cq =cqc~2 no lim HCC t),

(2&)

is somewhat lengthy —the result
h'A" 'nd

In the spirit of the Gibbs-Bo oliu
o g

BF
BT 8,+,6,K

BF Bg
B7J r BT

BF ae
B6' ' BT

ar aK

K T BT =SHs(g)+ aS-a(i), e,~)

becaause the second, third an
ing to (26).

ir, and fourth terms
'

h

IV. SYSTEMS WITH WEAK CHE
NGE ORDER

structure factors S
diffe

ors SNN(q) and S

S(q) =
c ure actor is given by

I ~f('q ) ) SNN (q )+ I:~f( )]'Sq Scc(q) I /( f(q)'&, (29

y studying systems w%'e begin b
ica s ort-ran e or

ea ten-

approximations inhn erent in our
ic te

one. ' should b
model (first of 11

f' llo 1

is ie .
g7 —for th s sy e b

e een per-
e amorphous states.

ering engths are nearl
a are insensitive to CSR

y equal, the
a ar o 0, but the x-ra

h i i 1 fo y
yte s deed d

variational method: 4
r all distance A

, the result of the

se

culation is g=0.51,e variational cal

d o h d- h dP
e value for which

a.u.

46R'
&Nc'"

&cc"'
I', rnR y)

0 t--a

g07 03

NN(cr) —4 =-'k Tmin p 8 (28)

m;„ is the minimuN ~

14,36
'mum value of @ R

act t ato. is'thf th pe

th
dt Thd g P Pe or erin oi

e co-

n K is also shown in Fi

ia very closely. Fi ur
s e exact

igure 9 shows the partial

8
R (a.u. )

FIG. 8. Pair otepo entials N~~(R) ( -), @ (R---) f-.1 -d
s e effective hard-s her, e- P

e -or ering poten-



5018 A. PASTUREL, J. HAFNER, AND P. HICTER 32

s.. (q)
3

NN
T= 373 K

close to the glass-transition temperature. In comparing
theory and experiment, we have to remember that the con-
tribution of Scc(q) to the composite structure factor is
only 18% in this alloy. The observed agreement between
theory and experiment is quite good, except that the
separation between prepeak and main peak is weaker than
found in the experiment. This might point to a slight un-
derestimate of the ordering potential.

The next system studied is liquid Li-Mg: the difference
in the atomic volumes is small, so that the HSY model
should be applicable. However, in this case @~c(R) is not
small compared to @cc(R) (see Fig. 3). The variational
conditions (26) have a well-defined solution, and again the
variationally determined HSY parameters correspond ex-
actly to those derived from Eq. (28), and

00 2

q (Z ')

FIG. 9. Partial strucure factors Sx&(q) and Scc(q) for liquid

( T=673 K) and supercooled liquid {T=373 K) Mg7Zn3 alloys.

s(q)

g0~Z f1
0

l i quid

T=673K

with (f ) =c~f~+c~f~ and hf =f~ f~,' the f—;(q) are
the x-ray-scattering form factors (the Fourier transforms

. of the valence-electron densities). S(q) for liquid and
amorphous Mg7Zn3 alloys is shown in Fig. 10, for the
amorphous phase S~~(q) was taken from an earlier
cluster-relaxation calculation, ' and Scc(q) was approxi-
mated by that of a supercooled liquid at T=373 K, i.e.,

(see Fig. 3 for a detailed comparison of the exact and
reference-system interactions for an equiatomic Li-Mg al-
loy). Li-based alloys offer a peculiar advantage for
structural studies: Because of the negative neutron-
scattering length of Li (bz; ———0.2337 and bMs ——0.52),
there exists a composition (the "zero alloy" ) for which the
neutron-diffraction experiment measures directly
Scc(q). In the Li-Mg system the zero-alloy is
Lio7Mgo 3,

' the calculated and the measured Scc(q) are
given in Fig. 11. Keeping in mind that this is an ab initio
calculation, with the density of the alloy as the only in-

put, the achieved agreement can certainly be considered as
quite encouraging. Next we look at the thermodynamic
excess functions. The free enthalpy b,G, the enthalpy ~,
and the entropy hS of formation are shown in Fig. 12.
The agreement achieved for the heat of formation is as
good as we can reasonably expect it to be.

The calculated entropy of formation is distinctly too
low, even if we keep in mind that the experimental ES is
calculated from hM and b,G referring to slightly different
temperatures and, hence, is probably an overestimate.
The dominant contribution to the calculated AS comes
from the change in the HS entropy (Fig. 12); thus the
moderate agreement with experiment is probably to be
blamed on the interatomic potentials (it appears that they
overestimate the chemical compression effect slightly) as
well as on the neglect of the density-concentration cross
correlation (even a small size mismatch would give a posi-
tive contribution to M). Taken altogether we find that

amorphous
T= 298 K s«(q)

'A' S

X

p ~

]

X~ ~

q (a.u. )
0

q (a.u. )

T=940 K

FIG. 10. Composite (x-ray-weighted) static structure factor
for liquid ( T=673 K) and amorphous (room-temperature)
Mg7Zn3 alloy. Solid lines, calculated; solid circles (Ref. 38) and
crosses (Ref. 39), x-ray-diffraction results.

FIG. 11. Concentration-fluctuation structure factor Scc(q)
for the "zero alloy" Lio 7Mgo 3 at T=940 K. Solid line, theory
open circles, neutron-diffraction experiment (after Ref. 42).
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range of parameters. The total free energy continues to
decrease into the direction of very small effective hard-
sphere diameters o. and very large ordering interactions e.
Thus it appears that the loss in energy from the mean in-
terparticle repulsions is insufficient to counterbalance the
energy gain from the ever-increasing ordering potential,
and that the difficulties arise from the complete decou-
pling of he number-density and concentration fiuctua-
tions, which is an artifact of the MSA-HSY model. Nu-
merical solutions of the hypernetted-chain equations by
Copestake et aL' for both hard-core and soft-core Yu-
kawa particles and molecular-dynamics simulations by
Jacucci et al. " for the same system have shown that even
in the equal-diameter case the XC cross correlation is
non-negligible, once the ordering potential is strong
enough. However, we find that we arrive at a physically
acceptable solution if we impose the additional constraint
4cc(cr) = —e [see Eq. (30)], so that the variational condi-
tions now read

Li

(b)
Mg

BF(rl, e,a )

3YI
=0,

ll, T,6,K

(31a)

h, S
kB

0.6—
b, S;d

BF(vy, e,x)
BK n, Tv@'

~'cc{o)= —& .

(31b)

(31c)

0,2

The resulting reference-system interactions are again com-
pared with the exact pair potentials in fig. 4, Eq. (28) is
well obeyed, and the variationally determined screening

—0.2—
~sord s(q) 0

0
0

Li

Sh

(c)
Mg

FIG. 12. (a} Free enthalpy EG, (b) enthalpy ~, and (c) en-

tropy of formation hS of liquid Li-Mg alloys. Solid circles,
theory ( T=940 K); solid lines, experiment [bH from Sommer
(Ref. 44), T =940 K, and AG from Saboungi (Ref. 45), T=870
K, with b,S calculated from these two results]. The crosses give
the calculated ordering and packing (bS„d and ESHs, respec-
tively) contributions to the entropy of formation.

for weakly ordering systems the HSY variational method
combined with the optimized pseudopotential technique
yields quite encouraging results.

0

L (05Pb05

V. SYSTEMS WITH STRONG
CHEMICAL SHORT-RANGE ORDER

The ordering potential in Li-Pb alloys is about 5 times
stronger than in Li-Mg alloys; thus we would expect the
ordering phenomena to be much more manifest in this
system. The straightforward application of the variation-
al conditions (the calculations are performed for T= 1000
K and the experimental densities of Ruppersberg and
Speicher ) yields a disappointing result: there is no
minimum in the free energy within the physically realistic

0
0

I

2

q (Qu)

FIG. 13. Composite (neutron-vreighted) static structure fac-
tor S(q) for several liquid Li,Pb~, alloys at T=1000 K. The
alloy Lio 8OPbo ~o is very close to the composition of the zero al-

loy, so that S(q) is essentially identical to S~c{q)/e&c~, for
larger Pb concentrations there is an increasing contribution from
S~&(q). Solid lines, theory; open circles, neutron-diffraction re-
sults of Ruppersberg and Reiter (Ref. 47}.
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TABLE II. Input data (concentration c and mean atomic volume 0), variationally determined model
parameters (g, packing fraction; o., hard-sphere diameter; ~, screening constant; e, strength of the or-
dering potential at hard contact), and entropy contributions (Sg„, ideal-gas entropy; SHs, hard-sphere
entropy; ~„d, ordering entropy) for liquid Li,Pb&, alloys.

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0 (a.u.)

156.7
149.6
156.6
165.5
176.3
187.7
197.5

0.36
0.42
0.43
0.44
0.44
0.43
0.42

o. (a.u.)

4.76
4.93
5.04
5.18
5.29
5.35
5.43

v (a.u. )

1.40
1.80
1.70
1.7
1.7
1.9
1.9

e (mRy)

—20.2
—30.2
—30.2
—27.0
—20.9
—15.7
—10.2

Sgas /ka

10.86
11.32
11.76
12.44
13.01
13.58
14.14

SHs/ks

—2.57
—3.42
—3.59
—3.76
—3.76
—3.59
—3.50

AS„d/kg

—0.94
—1.90
—2.01
—1.582
—1.037
—0.65
—0.26

'After Ruppersberg and Speicher, Ref. 46.

constant reproduces the form of @cc(R) rather well (see
also Table II).

The calculated static structure factors for a series of
liquid Li,Pb~, alloy are shown in Fig. 13 and are com-
pared with experiment —the agreement with experiment is
surprisingly good. However, if we turn to the thermo-
dynamic properties, we find that the calculated entropies
are much too low. (Experimental values for b,S in Li-Pb
alloys may be found in the paper by Saboungi et al. )
This concerns both the packing term LS'Hs and the order-
ing contribution LS'„d. The discrepancy is too large to be
attributed to the neglect of size effects. It seems that the
pair interactions derived from the pseudopotential calcu-
lations overestimate both the effective hard-core diameter
(thus it appears that the chemical-compression effect is
rather underestimated in the case of Li-Pb) and the
strength of the ordering potential. A coinparison with
our earlier inodel calculations (where we had fitted the
HSY-type ordering potential to the experimental heat of
formation) points to an overestimate of o of up to 3%%uo

(corresponding to a change in SHs of about 0.5k~) and to
an overestimate of the parameter co (depending on both e
and z). Ruppersberg and Schirmacher have attempted
to construct an "experimental" ordering potential by in-
verting the MSA equation (8). The result corresponds
again quite closely to a Yukawa form, with the parame-
ters e= —20 mRy and a =0.58 a.u. for Lip sPbp 2. This
would suggest (see Table II) that our ordering potentials
have about the right magnitude at contact, but that the
screening is too weak. Ruppersberg and Schirrnacher ar-
gue that the small value of the screening constant is relat-
ed to a reduced density of states at the Fermi level com-
pared to the free-electron value.

In fact, the comparison of our calculated structure fac-
tor with experiment also indicates that our potentials are
too strongly screened, at least in the Li-rich range. This
can be deduced from the amplitude of the higher-order os-
cillations in Scc(q) (cf. the discussion at the end of Sec.
IIB):. they are overestimated in our calculation for Li
concentrations cL; & 0.5. This is precisely the region
where the electrical resistivity is very large, so that the
mean free path of the electrons is of the order of magni-
tude of the interatomic distances. Within our formalism,
the main effect of the short electronic mean free path is to
change the screening function (see, e.g. , de Cxennes '): the
singularity in the Lindhard function is smeared out and

this ultimately yields a damping of the Friedel oscillations
in the screening charge distribution and in the interatomic
interactions. However, as we have learned that the decay
of the ordering potential depends strongly upon the com-
pensation of the oscillations in the individual interatomic
interactions, the resulting effect on the ordering potential
@cc(R)is not so easily predicted.

VI. CONCLUSIONS

We present the following:
(1) The optimized first-principles pseudopotentials may

be used to construct ordering potentials in (s,p)-bonded
alloys. For systems with small differences in electron
density and/or valence, the predictions are quantitatively
accurate. For systems with a large difference in valence,
the predictions are rather semiquantitative in character:
the strength of ordering potential is predicted with a
seemingly reasonable accuracy, but the screening is cer-
tainly overestimated. The most urgent correction to be in-
troduced seems to be the effect of the short electronic
mean free path upon the screening function.

(2) The HSY system is an interesting reference system
for modeling chemical short-range order. However, the
variation of the strength of the ordering effects with
screening is not monotonic, as one might expect on the
basis of plausibility arguments. We find that at a fixed
strength of the ordering potential at hard contact, the or-
dering effects are strongest if the screening is just strong
enough to restrict the ordering interaction to the nearest-
neighbor shell. For a weaker screening, the interactions
with the second-nearest neighbors start to reduce the or-
dering effects.

(3) The HSY system can serve as a reference system for
a Gibbs-Bogoliubov thermodynamic variational calcula-
tion in chemically ordering liquid alloys. For systems
with a relatively weak ordering effects and small size
differences, the optimal reference systein parameters may
be deternuned by a free minimization of the upper bound
to the exact free energy.

(4) In more strongly ordering systems, the neglect of the
cross correlation between number-density and concentra-
tion fluctuations (which is an artifact of the equal-
diameter HSY model) yields to physically unrealistic re-
sults for a free ininimization of the upper bound to the
free energy. In that case we found it necessary to impose
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the condition @cc(o)=—e, which guarantees that the
strength of the ordering potential at the effective mean
atomic diameter is the same for the reference and for the
exact potentials. In the example of Li-Pb alloys, we show
that the constrained variational method yields surprisingly
accurate results for the structure factor, but rather disap-
pointing ones for the thermodynamic excess functions.
Our detailed study of the HSY system allows us to con-
clude that this is to be blamed on an overestimate of the
screening constant in the Li-rich region, where the elec-
tronic mean free path is of the order of magnitude of the
interatomic distance.

To summarize, the combined application of the optim-
ized pseudopotential technique and of the HSY thermo-
dynamic variational method seems to be a promising ap-
proach to chemical short-range order in liquid alloys. In
the limit of very strong ordering interactions, corrections
for electronic-mean-free-path effects are necessary.
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with

Hcc(t)= f e xhcc(x)dx, x =R/o . (A4)

Thus the electrostatic ordering energy may be written in
the form

To calculate the integral in (Al), we note that the
concentration-fluctuation correlation function hcc(R) is
given by

f [Scc(q) cz—cB]q sin(qR)dq=2~ nczcBhcc(R) . (A2)

A Laplace transformation of (A2) yields
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APPENDIX: ANALYTIC CALCULATION
OF THE ORDERING CONTRIBUTION
TO THE ELECTROSTATIC ENERGY

OF THE HSY SYSTEM

The ordering contribution to the electrostatic energy is
given by

=4m.no limHcc(t) .
t~o

(A6)

An expression for Hcc(t) may be derived by Laplace
transforming the MSA integral equation (8). After some
manipulation we find

PP 1 co PP/o PP/o
o Z+t 2tez Z t Z+t-

Hcc(t) =
1 —12'—F( t) F(t)+- —1PoPcr

t Z t Z+—t

(A7)

with

P =eexp(Z), Z =go (AS)

F(t)=fe xf(x)dx, x =R/o.

F(R)=ccc(R)+P@cc(R).
(A9)

co 1 1+2Z ez 2Zez

1+12Peg(co/Z)D (co,Z)
with

The parameter co is given by the solution of Eq. (10); ccc(R) is given by Eq. (11). Thus we have all the necessary infor-
mation to calculate Hcc(t) and to take the limit t +0 Afte—r a .lengthly calculation we find

r

1 1
1

24peq Z 2Z
&CC = (A10)
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