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Alternative self-energy expression for the Anderson model
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A closed system of equations for the Green's functions is found by applying the functional-
derivative technique at the third level in the coupled chain of equations. From this set of equations
an exact expression for the impurity atom s self-energy is obtained which involves only first-order
functional derivatives. A procedure is proposed for generating nonperturbative solutions to arbi-
trary accuracy in a systematic manner. As an illustration, a solution is presented in which the func-
tional derivatives are evaluated using the Hartree-Fock approximation. The spectral density func-
tion is calculated for the symmetric case and is found to have the correct behavior for all values of
U/Q.

I. INTRODUCTION

Since its introduction, the Anderson model' has been
the subject of a considerable amount of theoretical
analysis. Besides a continued importance in magnetic im-
purity problems, the model has a significant role in
mixed valence theory and in chemisorption theory.
Solutions found in one context are generally not appli-
cable in another. For example, in the magnetic impurity
problems it is meaningful to consider the cases where the
Coulomb repulsion U is infinite or the mixing parameter
is small. For problems in chemisorption theory, it is usu-
ally necessary to obtain solutions which are valid for arbi-
trary values of these parameters.

In this paper, a new exact expression for the impurity
atom s self-energy is found using the functional-derivative
technique. The Hamiltonian having the form

1H = g Ek~ck~ck~+ g (Edacdncdo+2 Ucdocdocdcr c''do''

k, cr 0'

+g ( Vdkcd~ck + Vkdck cd ) ( )1

k, cr

is considered, where the operator ck (ck~) creates (de-
stroys) electrons in the metal states with energy Ek~ and
the operator cd~ (cd ) creates (destroys) electrons on the
impurity atom with energy E~~ or Ed~+ U. The electron
spin is denoted by o (o.= cr) No—assu. mptions are made
regarding the parameters of this Hamiltonian.

In the next section a brief review of the functional-.
derivative technique is given. The treatment is slightly
different from that given in Ref. 7. The Hamiltonian

vl, v2, v3, v4

is considered, where V„' „~ is a matrix element of theVl V2V3V4

two-particle interaction V' and satisfies

r~~ re~

Some other general relationships are given which will be
useful in the following sections.

In Sec. III the functional-derivative technique is applied

to the Hamiltonian of Eq. (l). Two expressions for the
impurity atom's self-energy are derived from the Green's-
function equations of motion. In the first instance the
self-energy is shown to yield an expansion in U and Gdd,
the impurity atom's Green's function. In the second in-
stance a more complex expansion is found. It is suggested
that the iterative solutions of the first expression may be
used to evaluate the functional derivatives of the second
expression. In this way, in principle, nonperturbative
solutions of arbitrary accuracy may be generated for the
Anderson model.

In Sec. IV the simplest solution of the first expression
(the Hartree-Fock approximation) is used to evaluate the
functional derivatives in the alternative expression. The
resulting solution is used to calculate the spectral density
function for the symmetric case. In Sec. V, a discussion is
given of the relationship of the self-energy to decoupling
approximations.

II. PUNCTIONAI. -DERIVATIVE TECHNIQUE

According to Kadanoff and Baym, the single-particle
Green's function is defined as

& T [Sc„(r)c&(r')]&G~(rr') =
&T[s)&

where T is the time ordering operator, & & denotes the
grand canonical average, and the operator S is given by,

T —ip
S=exp —i U~ t cv t c~ t

V, V

The operator U corresponds to an arbitrary auxiliary field
and P is the inverse temperature.

The equation of motion for the single-particle Green's
function is
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—e„G~(tt') =5~5„++U, (t)G„,„(tt')+ g V' „,„,1.,„...„(tt'),

where the two-particle Green's function I „,„~(tt') is given by

1 ( T [Sc„(t)c„,(t)c„(t)c„(t')])
r„,„,~(tt') =—. „—= ((c„(t)c„,(t)c„,(t);c,,(t') ) ) .

(Z [S])
The two-particle Green's function is generated by taking the functional derivative of the single-particle Green's func-

tion

r„„~(«)= i 5

5U„,„,(t)

where

+(c„,(t)c,(t)) - G„,„(«'),
6~(tt')= g V',„,&

v), V2

i 5

5U, ,„,(t)
+(c„,(t)c„,(t))- 5„

(T[S ])
(T[S])

Equation (6) may be put into matrix form

I6 —86 =I,
where

(9) and I is the unit matrix. Defining the self-energy X by

6 '=Gp ' —X, (13)

one finds

X=66 G

where

L~(tt')= i. a —e„5~—U~(t) 5„, Go '=
The matrix elements of X are

—ip —1X~(tt')= dt, dt, g 8 (tt, )G„,(t, t, )G, „(t,t )

—ip
dt, g V' „, i +(c.(t)c„(t)) G...(tt, )G„,„(t,t')

5U, ,„,(t)

= g V',„,„(c„,(t)c.,(t) ) -5„+X~(tt'),
v), v2

where
—ip

X~(tt') = f dt, V', „,„,i „G.,„„(tt,)G„,„'(t,t')
v, ,v, ,v, , v4 5U„„(t)

vl v2 v3 v4 v)v2

The iterative calculation of the correction X' gives the
complete expansion in V' and G. The first-order ap-
proximation corresponds to the familiar Hartree-Fock ap-
proximation

X "(tt')= g V',„,~(c„,(t)c (t))-5„
v), V2

III. APPLICATION TO THE ANDERSON MODEL

If one takes the operator 5 to be
—ip

S=exp i f d—t Q I Ed (t)cd~(t)cd (t)

+ V (t)cd (t)8 (t)

+ g V g„iG„,„(tt')5„.
Vy, V2

(18) + [ V (t)]*8 (t)cd (t)J, (19a)
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where

1Bcr:Zr VdkCdcrr V= & I Vdk I

& k
(19b)

i Ed—(t) G«(tt'). 8
a

and Ed and V are the matrix elements of U defined in
Sec. II, the equations of motion for Eq. (1) are

S (tt')=g Vdk (t)Gk (tt')Vkd (t'),
k

and Gk (tt') is the inverse of [i (8/dt) Ek—]5« .
Note that all of the Green's-function elements are sim-

ply related to G« . Thus, one needs only to solve for this
component. This is facilitated by defining its inverse by

—ip
drG«(tr)G«(rt') '=5„, (23)

and the self-energy by

=5„.+g V„.(t)G~.(tt )+Ur,.(tt'),
k

i EI, —Gkd (tt') = Vkd (t)Gdd«(tt'),
dt

(20a)

(20b)

G«(tt') '=G—«(tt') ' X«—(tt') .

Using Eqs, (21)—(24) to solve for the self-energy gives

Xddcr( tt') = U f dr I dcr(tr) Gddcr(rt ')

=U(nd (t))5«+-Xdd (tt'),

(24)

(25)

Ek' Gdk'cr(tt ) Gdd (tt )Vdk'Bt' (20 )
where

Xdd«(tt') = —f dr Gdd (tr)i Gdd«(rt')
der

(26)

l Ekcr Gkk cr—(tt') =5kk 5«+ Vkdcr(t)Gdkcr(tt') r (20d)
Bt

where

Neglecting Xd~ gives the well-known Hartree-Fock ap-
proximation for the Anderson model:

and

Edcr(t) =Edc +Edo(t), Vdkcr(t) = Vdk [1+V«(t)/V] r

I d«(tt')=((cd«(t)nd (t);cd«(t')) )
r

X„"d"(tt')=U(nd (t))5« .

The first correction is

Xddcr(tt ) = U Gddcr(tt )Gddcr(t t)Gddcr(tt ) .

(27)

(2&)

i +(n„(t))- G«-(tt'),
5Ed (t)- (21)

G„'d (tt') '= i E„—(t) 5„S—(tt'), —
ai

with nd cdmd -C——ombin-i. ng Eqs. (20a) and(20b) gives
—ipf dr Gdd. (tr) Gddc, (rt') =5„+UI d«(tt'), (2

where

Thus, calculating Xdd iteratively gives the complete ex-
pansion in Gdd and U that one would obtain from the di-
agrammatic technique. The correction given by Eq. (28)
has been used by Schonhammer to calculate the photo-
emission spectra of hydrogen on nickel. An iterative cal-
culation to fourth order corresponds to the calculation
done by Yamada.

From the equation of motion for I d«(tt') an alternative
expression for X«may be derived (dropping the sub-

script U):

—E„.—U r (dt')t= (nd (t))5„,++ Vdk (t)l-k (tt')
k

+ V-(t)((cd (t)cd-(t)B-(t);cd-(t'))) —V (t)'((cd (t)B (t)cd (t);cd«(t'))-),

where V (t) = V+ V (t) and

rk (tt')=((ck nd;cdt )) .

The equation of motion for I k (tt') is

Ek I k (tt') = Vkd (t)I d—c,(tt')+ V (t)((ckcr(t)cd (t)B-(t);cdcr(t') ) -) —V-(t)*((ckcr(t)B (t)cd (t);cdcr(t') ) ) .-.
(30)

The Green's functions ((c~«cd+;cd«) ) and ((c~«B;cd ) ) may be replaced by (m =d, k)
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« c~ (t)cd~(t)B (t);cd (t')) ) =b(ot)G d (tt'),

« c (r)B (r)c„(t);-c& (r')) ) =[A(ot)]*G „(tt'),

b,(or)=i +&cd (r)B (r)),5V t

(31a)

(31b)

(31c)

b,(rr)'=i, + &B (r)c„(r)) .
5[V~(t)]*

These relations allow the equation for I d to be written as
—ip —ip

d&L (t7)l d (rt')=&nd-(t))5«+8(ot)Gdd (tt')+g Vdk (t) drGk (t~)8(ow)Gkd (rt'),
k

(31d)

(32)

L (tr')= i E„(t—) U5„—. S(—tr'),

8(o t) = V-(t)6(ot) —[V-(t)]*[6(ot)]
(33)

Note that the equations of motion for Gzd, Gkd, I d, and I k now form a closed system of equations. These are
solved for I'd~ to give

—ip
I d~(tt')= &n„(t))G~ (t-r')+ f dry. («)[U&n, (r))[1—&nd-(~))]+Q(o~)[Gqd (~t')

—ip —ip
+f drA~(tw)A(ov)Gdd~(7t')+ f dade'k~(tw')R~(w'7)Ggd~(~t')

—ip
+ f d~d~'A, (t~')T (7'~)Gdd (~t'), (34)

where A, (tt') is the inverse of
r

i Ed~ U[1 —
& n—d (t) )—] 5« S~(tt')—,

L

Q(ot)=V (t)&c„(r)B (t)) —V (t)*&B (r)c„(t)),
—ipR~(tt')=g Vdk~(t) d&Gk~(tr)Q(a~)Gk~(rt')V~~(t'),

0
—ip

T~(tt')=g Vdk~(t) drGk~(tr)A(o'w)Gk~(~t')Vkd~(t'),
0

(3Sa)

(35b)

(35c)

A(c7t) = V (t)i —[V (t)]*i-
5[V (t)]'

Inserting this new expression for I d into Eq. (25) gives

(35d)

X~ (tt') =U&n„(t))5«.+ U'A, (tt') [ &n„~(t))[1—&n„(t))]+U-'Q(c7t)]+U f d~A, (r~)R (~t')+X@, (ir'),

(36)

where
—ip

Xd'd~(tt') = —U dr de' A ~(tw) Gdd~(rr') A(c7r)Gdd~(w't')
—ip—U dr~d&2drdr'A~(tw~) g Vd~~(r&)Gk~(r~r2)Gk~(vzr')Vkd~(r')Gdd~(r'&)A(o%2)Ggd~(7t')

0
k

(37)

This is the basic result of this paper. The iterative solutions of Eq. (26) may be used to evaluate the functional deriva-
tives in the integral equation (37). The result is a nonperturbative solution to the Anderson model. The procedure may
be repeated to generate solutions of arbitrary accuracy.

IV. FIRST APPROXIMATION

The simplest solution generated from Eq. (26) corresponds to the Hartree-Pock approximation; it is obtained by
neglecting the functional derivatives of & nd ):



HENRY L. NEAL, JR. 32

(38)

The functional derivative terms in Eq. (37) are then to be evaluated using

A(ot)G«" («') '= —U[G„„(t't)V (tt') V —(t't)-G«(tt')]o. .. (39)

V (tt')= f drS (tr)G-«(«'),

V (tt')= f drG«(tr)S («') .

Therefore, the correction Xfg is

Xf& (tt')=U' f dry (tr)G«(«')[G«(t'r)V («') V~—(t'r)G«(«')]

+ U f d'r(deed% Ao(tel) g Vdko(rl)Gke(Tlat)Gku(r'r )Vkdcr(r )G«cr(r t )

(40a)

(40b)

X [G«(t'r) V («') V—(t'r)—G« («')]-

(tr)9 («)+ U f d'ry ~dkcr(t)+kcr( r)rko(«)Vkdc7(t )
k

(41)

ri (tt') =G«(tt') [ G«(t't) V (tt')

—V (t't)G«(tt')],

~k (tt')= f dry, (tr)Gk («'),

yk (tt') =Pk (tt')[ G«(t't) V (tt')

V(t't)G«— (tt')],

pk (tt') =f dr G„' (tr)G«(«') .

(42a)

(42c)

(42d)

q (to)= —QG«(to )f (to to )-—1

Im —6' Ggg~ co —E' 6' + 2

—ImG«(e)g-(to —e)[f'+'(e) ——,]J,
(44a)

rk (~)= gA—(~.W'-(~-~. )
1

This gives for the Fourier components (retarded versions)
de Im e a) —e '-'e+ —'

X«(co)= U A, (to)

&& n (~)+Q
I V~k I Gk (~)Yk

k

where

(43)
—Impk (e)f (to —e)[f'+'(-e) ——, ]I .

(44b)

to„=ivnlP, v is an odd. integer; f' '{e)=(e '+1)—

f-(top)= ——Q [G« (to„)V (to-„+tos-) V(co )G—«~(to„+top)]
1

GP

f detImG«(e)[V (e+toz) —V (e to~)] Im—V (e)[G—«(e+tos) G«(e to)]If—'+'(e)—

(to~ is the Bose frequency).
The sums have been evaluated using the standard methods. The integrals are much easier to evaluate with a square

density of states for the metal in the infinite bandwidth limit. For this situation

+oo Q +cog I V~k I

'.
P& I V~k I

'&:
k

(45)

where p is the constant density of states for the metal. As a further simplification, only zero temperature conditions are
considered. Then
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1 1g I Vdk I

' =0,
k m —6k CO —6 —Ek

(46a)

g I Vdk I'
'k 6' —E'k

g I Vdk I

' (46c)

gives

g I Vdk I
'Gk (~b'k. (~) =—Q.(~)=—f «[ReG~~.(~)—i ImG~d. (~)]„,0;(~—~)[f'+'(~) —

2 ] (47a)

it|~(co)= f deI ImGd~~(e)i [Gdd~(@+co)+Gd~~(e co—)] R—eGdd~(e) [Gdd~(a+ co) G—dd~(e co—)] I [f'+'(e) ——,
'

]

2b,
1

co+i 6
m(co+2ib) . —i b,

1 5—Im&dd (co)

~ [co—ReXdd (co)] +[6,—ImXdd (co)]
(4&)

has been computed for the symmetric case. The result is
shown in Fig. 1.

V. DISCUSSION

In this paper an alternative expression for the impurity
atom's self-energy was presented. While the conventional
approach leads to an expansion in U and add, the new
expression leads to a more complex expansion where the
coefficients of G~ are complicated functions of U and
the mixing parameter. The procedure used to obtain this
new result is similar to that proposed by Arai and co-
workers. ' However, it has an advantage in that it

I.O

The last line applies to the symmetric (Ed —U/2——,
{nd-) = —,

'
) case at zero temperature. The remaining in-

tegrations must be done numerically.
The spectral density function

I
pd (co)= ——ImGdd (co+i5)

avoids the divergences encountered by Arai and co-
workers ' in their solution. Another distinction is that
any correction generated from Eq. (37) will vanish in the
limit U~O and in the limit Vdk~O. This means that
G~ is exact in these limits. As the procedure employed
in this paper is effectively a systematic decoupling scheme
this is not unusual, since most decoupling schemes have
this property. In fact, if the correction term in Eq. (36) is
neglected, one gets the decoupling approximation obtained
by Kemeny" [note that Q(c7t) =0 for Ed -, V~ ——0].
Therefore, the choice for S given by Eq. (19) allows one to
make systematic corrections to Kemeny's approximation
in the same way that one makes corrections to the
Hartree-Pock approximation. It is also possible to derive
a correction' term for the decoupling scheme employed
by Hewson. ' However, Hewson's approximation is much
cruder than Kemeny's.

As a first approximation, the simplest solution to the
integral equation (26) was used to evaluate the functional
derivatives in the new self-energy equation (37). The re-
sult was used to calculate the spectral density function for
the symmetric case at zero temperature (Fig. 1). The re-
sults are consistent with the fourth order in the U calcula-
tion of Yamada.

The integral equation (37) may also be solved iteratively
independently of Eq. (26). However, this leads to terms
proportional to

V(cd jP )= . f -dco Im[S (co)Gdd (co)]f'+'(-co), -
7Tl

0
0 lO

FIG. 1. Spectral density p~ (co) vs co for several values of
U/h.

which diverges in the infinite bandwidth limit at zero
temperature. The iterative solutions of Eq. (26) are not
restricted to a finite bandwidth. This is the motivation
for suggesting that it be used to evaluate the functional
derivatives in Eq. (37). This is not meant to imply that
the iterative solutions of Eq. (37) are not interesting. It
leads to some interesting results which will be presented in
a future paper.
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