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arrays, for which the Feynman functional-integral formulation holds.

There has been considerable current interest in the prob-
lem of phase ordering in granular superconductors taking
place in the presence of the electrostatic charging energy.!-®
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The mean-field phase diagram of the self-charging model of a granular superconductor is calculated using
the functional-integral formulation. A pronounced reentrance is obtained in quantitative agreement with a
previous calculation, involving 2w-antiperiodic eigenstates of the Mathieu equation. It is argued that low-
lying, odd-electron-number excitations play a significant role in the thermodynamics of Josephson-junction
given by
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The first calculation of the relevant phase diagram has been
carried out using the model of a regular three-dimensional
array of Josephson junctions with the diagonal form of the
charging energy’ (self-charging model®). Treating the
Josephson coupling in the mean-field approximation, a
phase diagram with well-pronounced reentrant behavior has
been obtained.®> Subsequent analysis of this result has re-
vealed that the reentrance depends on the choice of the in-
terval for the phase ¢ of the superconducting order parame-
ter. In particular, the reentrance disappears*’ when this in-
terval is restricted to — 7 < ¢ < . On the other hand, the
reentrant behavior, first obtained in Ref. 3, corresponds to
the choice —oo < ¢ < oco. In this case, the mean-field
Hamiltonian describes a fictitious particle moving in a cos¢
potential over the unrestricted ¢ space. By virtue of the
Floquet theorem, the periodic eigenfunctions of this prob-
lem are not all 27 periodic, but there is a set of 2m-
antiperiodic (i.e., 4 -periodic) solutions which have low ex-
citation energy and are directly responsible for the reentrant
behavior.® One unusual aspect of these 2m-antiperiodic
states is that they are associated with odd-eigenvalues of the
electron number operator (‘“‘fractional charges’ of the
pairs). For this reason, the relevance of such states for the
thermodynamics of the phase ordering in granular systems
has not been widely accepted.*”® One exception is the
work of Maekawa, Fukuyama, and Kobayashi,? in which a
reentrant phase transition of the Kosterlitz-Thouless variety
has been predicted for two-dimensional arrays upon in-
clusion of such states. The same problem has recently been
studied by José,!° using Feynman’s path-integral formula-
tion of the partition function. The resulting renormaliza-
tion-group equations, derived in the semiclassical approxi-
mation, again indicate the presence of reentrant normal
phases, due to the charging energy.

The purpose of the present Rapid Communication is to
reexamine the mean-field theory of the self-charging model,
starting from a path-integral formulation similar to that of
José.1® It turns out that the resulting phase diagram not
only exhibits a pronounced reentrance but also shows a re-
markable quantitative agreement with the results of Ref. 3,
confirming the importance of the 2w-antiperiodic states.
Following the notation of Ref. 3, we consider a three-
dimensional regular array of grains whose Hamiltonian is
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where n; is the deviation from the average number of elec-
trons on the ith grain. The parameter U is the local charg-
ing energy and E; is the Josephson coupling energy between
the nearest-neighbor. grains. Introducing the pair number
operator n/2= —id/d¢, the first term of Eq. (1) becomes
the kinetic energy operator of the plane rotator, if ¢ is re-
stricted to —7 < ¢ < . Extending this range to —oo < ¢
< oo, makes the operator equivalent to that of the kinetic
energy of a free particle moving in the one-dimensional
unrestricted ¢ space. Only then the path-integral formula-
tion of Feynman!! is possible with the partition function of
the form!?

Z=e‘ﬁsz;erDrb(r)exp[—j;ﬁL(dﬂd'r] , 2
where
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The subscript on the path integral (2) indicates that only
those paths are to be included, for which the periodic boun-
dary condition ¢;(0) =¢;(8) holds. It is important to point
out that the expressions (2) and (3) can also be derived
from a microscopic Hamiltonian of the array by means of
the Hubbard-Stratonovich transformation,!? as recently ap-
plied to the single Josephson junction by Ambegaokar, Eck-
ern, and Schén.!* To calculate the transition temperature of
the array in the mean-field approximation, we start from the
variational principle for the free energy'!

FsF0+EIZ—Ofwwexp(—so[qs])(s—So)=F, . @
with S=_I;BL(¢) dr and

_BF°=Zo=fperD¢exp(—So['¢]) . )
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The trial action Sy= j;) Lo d7 involves the mean-field choice
for Ly of the form
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where z is the coordination number in the array. The variational parameter vy is determined from Eq. (4) by requiring that
8F,=0 when y — vy +8y. This yields a self-consistent equation for vy:

y= —22; j;erD¢exp( —Sol@l)cosp; =2 (cosd;)o -

@)

Near the transition temperature T, =8;!, the parameter y is small and one can use the expansion of Sj in evaluating the

path integral (7)
(cosp;(7))o= —Zl—u—fperDtb exp(— Sylel)

where
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and

Zy= fp _ Do exp(—BSyl4]) (10)

Since only the i=_j term contributes in Eq. (8), we obtain,
taking into account the equivalence of all sites

(cosg; (7)) = (cosp (7))
an

where the averaging in the phase correlator in Eq. (11) is to
be done with use of the action (9). Introducing y from Eq.
(7), we obtain from Eq. (11) the equation for the transition
temperature

Bc ’ '
':-—_zE,'yfo dr’{cos¢ (t")cosp (7)) y ,

1=22E,‘I:1c d7{cos¢ (t)cosp(0)) y . 12)

This equation agrees with the self-consistency equation for
T, derived previously by Efetof.# The present approach
differs from Efetof’s in the method of the evaluation of the
phase correlator. We use the path-integral approach of
Feynman,!! in which ¢(7) is a classical variable, so that we
have

(cosg (1)cos (0)) y =3 (explilp (1) =4 (0)1}) y
=3R(7) , (13)

where‘, according to Egs. (8)-(11)
R()=—= [ Do () exp(~ Syl Dexplile () ~(0)]),
(14)

To satisfy the periodicity requirement ¢ (0)=¢(8), we
expand ¢ (7) into a Fourier series!!

¢(r)=¢(0)+ i ¢, sin n';” 15)
n=1 c
Introducing Eq. (15) into Eq. (14), we have
fff_o;exp[— 2 (A,02— B,pp)|dbrdepy - - -
R(7)= = n=1 — ,
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Evaluating the multiple Gaussian integrals, we obtain from
Eq. (16)

oo B2
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In comparison with the phase correlator of Efetof,* this ex-
pression is extremely simple. The summation over the
eigenstates of the Coulomb Hamiltonian does not explicitly
enter in R(7), and hence the numerical calculation of ‘the
transition temperature 7, is considerably simplified. Using
Egs. (13) and (17) in Eq. (12), we obtain the self-consistent
equation for 7, in the form

1= [ﬁ] Yy , 18)
T, X
where x =~/ U/2T, and y (x) is the Dawson integral:'*
y(x)=exp(——x2)j:)xexp(t2) dr . 19)

Following Ref. 3, we introduce the ratio a =zE;/ U and the
transition temperature 7¢ of the classical model (U=0),
which turns out equal to zE;. Then Eq. (18) can be written

1=2axy(x)=2aP(x) , (20)

which is to be solved numerically for x. The values of x,
thus obtained, determine the transition temperature from
the relation

L__1_ 1)

TS 2ax?
The resulting phase diagram is shown in Fig. 1. It exhibits
a reentrant bulge protruding over the region 0.78 < a < 1.
The inset illustrates the numerical solution of Eq. (20). It is
clearly the nonmonotonic behavior of the function P(x)
which is responsible for the reentrance. The maximum of
P(x)=xy(x) coincides with the inflection point of y(x),
which is known with high accuracy.!* Thus we obtain
P(xmex) =0.64, which exceeds the asymptotic value
P(x— o) =0.5. The double-valued solutions for x are ob-
tained when the parameter 1/2a is confined between these
two values (lines a and b). The numerical values of
min="0.78 (Tc/Tc‘)amm=0.29 agree remarkably well with

the results of Ref. 3. This agreement is not entirely unex-
pected, since the approach of Ref. 3, based on averaging
over the eigenstates of Mathieu’s equation, and the Feyn-
man path-integral approach are both dealing with the same
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FIG. 1. Phase-ordering temperature ratio T,/ T¢ plotted as a func-
tion of parameter a=zE;/ U from Egs. (20) and (21). Inset: Plot
of function P(x)=xy(x) based on Ref. 14. The dashed lines a and
b indicate the limits between which the numerical solutions of Eq.
(20) produce the reentrant portion of the phase diagram, confined
between the dashed lines 4 and B.

problem: i.e., a fictitious particle moving in a cos¢ potential,
defined over —oo < ¢ < oo. It should be pointed out that
the partition function of a free plane rotator, corresponding
to the choice — 7 < ¢ < 7, is not given by Egs. (9) and
(10), but by the Villain form of cos¢ interaction along the 7
axis.>1® The latter involves Fourier components exp(imd¢)
with integer quantum numbers m only. In contrast, the
path integral (10) corresponds to a free particle Hamiltonian
with a continuous translational symmetry in the ¢ space,
and hence it includes all paths with a continuous spectrum

" of quantum numbers m. The symmetry is reduced to the
" discrete translations after the cos¢ potential is introduced

and the representations of the corresponding discrete group
involve both the 2w-periodic and 2w-antiperiodic states.
The fact that the latter states are contained in the Feynman
path integral (10) helps us understand the agreement of the
present calculation with the results of Ref. 3.

As previously pointed out,5 the phase-locking transition in
a granular superconductor is not necessarily isomorphous to
that in the x-y model, in which the angular variable is con-
fined to the interval (—a,#). This is clearly demonstrat-
ed, for instance, in the ‘‘tight-binding’’> approach to the
Josephson effect by Ferrell and Prange.!® Any real value of
¢ is allowed in the expression for the Josephson coupling
energy, derived by these authors (see also Ref. 17). The
preference for the Feynman form of the charging energy is
further substantiated by the microscopic derivation of the
path-integral formulation for Josephson junctions with
charging energy.’* As pointed out in Ref. 13, the bulk ener-
gies of the superconductors tend to pin ¢; to the local po-
tential V;. It turns out that for the self-charging model the
corresponding Josephson relation ¢;=2 eV, directly leads to
the Feynman form of the action, given by Eq. (3) with no
restriction on the range of ¢;.

In conclusion, the functional-integral formulation for the
array of Josephson junctions confirms the reentrant feature
of the mean-field phase diagram, previously attributed to
the thermally excited 2w-antiperiodic eigenstates of the
Mathieu’s equation.? This suggests that the excitations have
a real physical significance in the thermodynamics of
Josephson-junction arrays. It should be interesting to apply
the functional-integral approach to a more realistic model,
involving the off-diagonal (grain-grain) Coulomb interac-
tion.#>8 The significance of such efforts seems underlined
by the recent experimental observation of a reentrant super-
conducting resistive transition in granular BaPbg5Big 503
superconductor.!®
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