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Electromagnetic response of systems with spatial fluctuations. II. Applications
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A general formalism for the calculation of the macroscopic dielectric response of spatially fluc-
tuating systems is used to obtain, following a unified approach, expressions for (1) the corrections to
the Clausius-Mossotti dielectric function in disordered systems, (2) the optical coefficients and the
surface plasmon polaritons of rough surfaces, (3) the electromagnetic modes of infinite crystals, and
(4) the change in the macroscopic dielectric response of a crystal in the neighborhood of its surface,
under the assumption that the length scale of the fluctuations is much smaller than the wavelength
of light.

I. INTRODUCTION

In the preceding paper' we have obtained closed-form
expressions for the macroscopic dielectric response of sys-
tems with microscopic spatial fluctuations in terms of
their microscopic dielectric operator, taking into account
the local-field effect and using very relaxed assumptions.
In this paper we take advantage of the generality of these
expressions in order to calculate the dielectric and optical
properties of several systems of very diverse nature fol-
lowing a unified approach. These systems are a disor-
dered medium, such as a liquid, made of point-polarizable
atoms, the rough surface, and the infinite and semi-
infinite crystal. Our aim is to clarify through definite ex-
amples the meaning and usage of the representation-free,
average-free formulas obtained in Ref. 1, to demonstrate
their correctness by obtaining from them well-known re-
sults, to get some new results, and ultimately, to gain in-
sight about the underlying structure of the macroscopic
response of spatially fluctuating systems.

The simplest theory of the local-field effects is the
Clausius-Mossotti theory of the macroscopic dielectric
response of a cubic crystal of point-polarizable atoms in
terms of their atomic polarizability. This model of
point-polarizable atoms has also been applied to noncubic
crystals and glasses. The calculation of the longitudinal
macroscopic dielectric response of crystals from more
realistic quantum-mechanical microscopic models was
pioneered by Adler and Wiser, using the random-phase-
approximation (RPA) expressions for the microscopic
response. Many calculations of this kind were made after-
wards, " some with special emphasis on noncubic crys-
tals' and on the transverse response. '

There have been relatively few calculations that take
into account the surface of the crystal. Some take into ac-
count the surface electronic band structure but ignore the
surface local-field effect. ' ' Others consider the local-
field effect in the neighborhood of the surface, but do so
within the point-charge'- or point-polarizable-atom ap-
proximation. ' ' Some more elaborate calculations that
use a more realistic microscopic response have been done
recently.

Other physical systems where the local-field effect has
been considered important are the liquid and the disor-
dered composite medium, made of small polarizable enti-
ties. Using the classical method of the Lorentz cavity,
we obtain the Clausius-Mossotti relation between the mac-
roscopic dielectric function and the polarizability, assum-
ing that the microscopic electric field produced by the
near molecules adds up to zero. That this is not so in
liquids was pointed out by Kirkwood and Yvon, who
calculated the corrections to the Clausius-Mossotti dielec-
tric function to lowest order in the polarizability for a
plane-condenser geometry. Several expressions have been
obtained thereafter for the macroscopic dielectric response
of nonpolar polarizable liquids of low and
moderate ' densities.

A problem closely related to that of the liquid is the
calculation of the effective dielectric function of a com-
posite medium composed of small particles embedded in a
dielectric host. The usual theory for this system was
developed by Maxwell-Garnett, " based on the Clausius-
Mossotti relation. The ambiguity between host and em-
bedded particles at high densities was later resolved by
Bruggeman with his symmetric effective-medium
theory. Only lately have the effects of disorder been taken
into account within the coherent-potential approxima-
tion.

Finally we mention another class of systems where spa-
tial fluctuations play an important role: the rough sur-
faces. The optical properties of these systems were first
calculated by Pano by adapting the scalar theory of dif-
fraction by gratings developed earlier by Rayleigh.
Several approaches have been used in past calculations of
these optical .properties. One of them consists of impos-
ing boundary conditions on the electromagnetic field at
the actual rough surface and then making an expansion of
these in powers of the surface height above a nominal flat
surface. ' Another consists of replacing the rough sur-
face by a distribution of singular surface currents on a
plane surface. ' Still another consists of making a coor-
dinate transformation such that the rough surface be-
comes planar in the new coordinate system, and after-
wards imposing boundary conditions at this plane sur-
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face. A different approach is the solution of an integral
equation obtained from the extinction theorem. The
equivalence between the boundary-condition and surface-
current approaches has been shown by Kroger and
Kretschmann, and the relationship of these approaches
to the extinction-theorem approach has been discussed by
Toigo, Marvin, Celli, and Hill for the case of local
media. If the media are spatially dispersive, the previous
approaches, with exception of the extinction-theorem
one, ' are not applicable. Recently the semiclassical
infinite-barrier approximation has been extended in order
to handle rough nonlocal metallic surfaces. To our
knowledge, the relationship between the optical properties
of rough surfaces and the local-field effect has not been
considered before the present paper.

The main purpose of this paper is to show how the
dielectric response and the optical properties of systems as
diverse as those discussed above, but which have in com-
mon the presence of spatial fluctuations, can be calculated
using the general theory of the local-field effect we
developed in Ref. 1. For convenience, we summarize the
main results of that theory in the following equations,
valid when the fluctuation length scale is much less than
the free-space wavelength of light:

~M =&aa &af(& ff ) &fa r

e ~' ——(e ')„—(~ '),f[(e ')ff ) '(e ')f, ,

(~LL) i (~i L)—I

=VV (e") V

[(~—i)TT) —i [(~~
—l)TT) —i

where e is the microscopic and eM the macroscopic dielec-
tric operators (I. and T represent longitudinal and trans-

A
verse projections, respectively), V and V are the gra-
dient and inverse I.aplacian operators, respectively, and
we introduced the notation

0" =P OP, A,B=jL,T

0 p POPt3, a,P=a,f——
for any operator O. Here, P and P are the longitudi-

nal and the transverse projectors, respectively, and P, and

Pf are projectors that extract the average and the fluc-
tuating parts of the fields, and can be chosen from a large
class of projectors as they best fit the system under con-
sideration. We also introduced the external-charge (p,„,)—total-charge (p) density response function (e") ', and
the external-potential (P,„,) —total-potential (P) response
function (e'«) ', which obey

p=(&") 'pext

dielectric response as the external-polarization (P,„,)—electric-field response function,

-in the absence of retardation, and its relation to the
transverse-transverse dielectric response:

[(g )TT) —i g TT g TL(~LL) —lg LT

The organization of this paper is as follows: In Sec. II
we use our general formalism in order to calculate correc-
tions to the Clausius-Mossotti dielectric response for a
nonpolar liquid. In Sec. III we calculate the optical coef-
ficients and the surface plasmon-polariton dispersion rela-
tion for a medium bounded by a rough surface. Section
IV is devoted to the bulk dielectric tensor and electromag-
netic modes of an infinite crystal, and Sec. V is concerned
with the perturbative calculation of the optical properties
of a crystalline surface. We present our conclusions in
Sec. VI.

II. DISGRDERED SYSTEM
GF PGLARIZABLE MGLECULES

We consider a disordered system of X (~ oo) polariz-
able molecules, such as a liqui, with an isotropic polari-
zability a(co). In this case the spatial fluctuations come
from the molecular structure of the system and from the
microscopic density inhomogeneities. We also assume
that the system is, on the average, isotropic and transla-
tionally invariant in space and time. In this case the mac-
roscopic dielectric response e~ can be Fouriqr
transformed as

EM(q, co)= f dt' fd3r'F~(r r';t t')——
—i [q-(r—r') —co(t —t')]Xe 9

where q is the wave vector and ~ is the frequency.
In the calculation of the optical properties of the system

it will be sufficient to consider the q~O limit of the,
response. In this limit, since there is no preferred direc-
tion of q (assuming continuity at q =0) the tensor
V~(q, co) becomes diagonal and it can be obtained from its
longitudinal-longitudinal component; that is,

@(q)=@M(q)5' =q.F~"(q) q5', q~O

where q=q/q and the longitudinal projector P (q)=qq
is taken in the q space representation. Here and in the
following we will omit the explicit dependence on q
and/or co unless its omission will lead to confusion.

In order to relate VM(q, co) to the molecular polarizabili-
ty a(co) with the formalism developed above we will use

the ensemble average P, . We will use

in the absence of transverse electric fields. We also recall
the interpretation of the inverse longitudinal-longitudinal

to denote the ensemble average in the r representation of a
function Fdefined in the ensemble, and
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(F)(q)= f d~r(F)(r)e

to denote its Fourier transform in q space, where P, is the
probability of finding the system in configuration c.
Since (F) is configuration independent,

P, OP, F=(O)(F) (14)

for any operator 0, and Eq. (3) can be written as

(& ) '(q)=((& ") ')(q)=q((e") ')(q)q, (15)

which combined with Eq. (11) gives

p(r) =5(r—r') —QV5(r —Rr) p, ,
l

which together with Eq. (20) yields

R —r'
p(r) =5(r—r') —a QV5(r —Rr). (U ')r

l, m i
R —r'i

Therefore, using Eq. (6) we can immediately write

(e") '(r, r') =5(r—r') —a QV5(r —Rr ).(U ')rm
l, m

R —r'
=((e") ')(q), q (16)

/

R —r'
f

' (21)

pi ——a Er"'+ g Trmpm, 1=1 2, . . . , N
m (~l)

(17}

Thus the problem reduces to the calculation of the ensem-
ble average of (e") ' in terms of the molecular polariza-
bi1ity a.

Since (e") ' is the total-charge response of the system
to an external charge [Eq. (6)], one can start its calcula-
tion by considering that in a configuration in which the
molecules are located at R~, R2, . . .,R~, the induced di-
pole moment of the lth molecule in the presence of an
external field E'"'(r), ignoring retardation effects, is given
by

and Eq. (16) becomes

=1—a ge 'iq (U ')r . 3, q~0.
eM(q)

Although the starting point of other formulations of
the local-field effect in this system is the same as in Eq.
(17},Eq. (22} is the result of a straightforward procedure
based on the general formalism developed above.

Although Eq. (22} is appropriate for any value of a,' we
proceed with the calculation by making a series expansion
of (U ')rm in powers of a, '

where

l
Tr =V!V! =T(Rr —Rm)! m

is the dipolar tensor, Vl denotes derivatives with respect
to Rr, and Er"'=—E'""(Rr).

Defining a tensor matrix

Urm ——15!m aTrm(—1 5rm } ~—
where 1 is the unit tensor, we can rewrite Eq. (17) as

(U )rm
——15rm+aTrm(1 —5rm)+a g Tr„.T„

n (+l,m)

+a Q Trn Tnp'T'pm+ ' ' '

n (~i),
p (+n, m)

which leads to a power expansion for 1/eM as

00

=1—g a'X'"(q},

(23)

pr ag (U ——}rmEm (20) where X'" is the coefficient of a' in Eq. (22).
The first term of the series is simply

where in order to obtain (U ')rm, one first inverts the
matrix and afterwards takes the Im element.

If the external field is generated by an external unit
point charge located at r', the total charge density is given

X("=4~n,

where n is the average density.
Since the second term depends only on the coordinates

of two particles we can write

e lq Tlm
(2) ~ —iq Rl ~ .~ m

l (+m) R

= f d Xi f d X2e 'iq T(Xi—X2) z
p' '(Xi,xq),

2

(26)

where p' '(Xi,X2)d Xi d Xi is the probability of finding a molecule at d Xi and another molecule at d X2. Defining
the two-particle correlation function g' '(

~
Xi —Xi

~
) through

pr '(Xi,X2) =n gr (
~
Xi —X2

~
),

we obtain

(27)
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X( )(q)=4mn' f d'Xe'~ g' '(X)q Vq. V—,
X ' (28)

where the translational invariance of the system has been used. If g' '(0) =0 and g' '(X) goes to 1 at distances greater
than the correlation length d, the integral in Eq. (68) is readily evaluated in the limit qd « 1, and one obtains

= —4mn 2 877

3

The remaining terms can be similarly written as

(29)

X' '(q)= f d'X, f d'X, . fd'X e 'iq T(X,—X,) T(X,—X,) ' .T(X i
—X ) ~

Xm

)&p' '(X(,X2, . . . , X~), m =3,4, . . . , X (30)

where p' '(X),X2, . . . , X )d Xid Xz . d X is the probability of finding one molecule in the volume element d Xi,
another in d X2, some molecule in d X3 which is not the same as the one in d X2 but might be the one in d XI, etc.

To evaluate the integrals in (30) we write

(m) (m) +g (rn) (31)

and correspondingly

X(m) X(m)+ gX(m)

where

po '(Xi,X2, . . . , X )—=n g' '(Xi —Xz)g' '(Xz —X3)X ' ' ' Xg' '(X i —X )

(32)

(33)

and, from Eq. (34)

(34)

where

= ya~X«)
&CM

4mnu

1+—,dna

is the inverse of the well-known Clausius-Mossotti dielec-
tric function.

is obtained by neglecting the correlations between the mol-
ecule at X~ and the molecules at XI+2,XI+3, . . . , X for
l=1,2, . . . , m —2.

To calculate Xo
' we have to perform the same integral

as in Eq. (28) and we obtain immediately

To calculate the corrections to the Clausius-Mossotti
result we need expressions for bp( '. For example, we can
write

p (Xl X2 X3) n g (
~
Xi X2

~
)~(X3 Xi)

+n g' '(Xi —Xz,Xz—X3), (37)

~(3) 4)rn S(2)
a2

where

(38)

where g' ' is the three-particle correlation function. The
first term on the right-hand side of Eq. (37) is the proba-
bility density of finding one molecule at Xz and a second
molecule at both X~ and X3. The second term is the
probability density of finding three different particles at
X),Xz,X3. From Eq. (37) we get the first correction
term:

I

S' '=a 8irn f dX +2n f d3X fd X [g' '(X X )—g' '(X )g' '(X )]
(2)(X) Pz(cos8)

(39)

~M+2
4w na[1+S' )+O(a )], (40)

which is the familiar Kirkwood-Yvon result.
Vfe want to point out that more accurate calcula-

Here 0 is the angle between X~ and X2, and P2 is the
I.egendre polynomial of second degree. Fina11y we write
Eq. (35) as

I

tions of the macroscopic response of polarizable
liquids can also be performed starting from Eqs. (16) or
(22), as long as the fluctuation length-scale is much small-
er than the free-space wavelength However, . the purpose
of the calculation above is to illustrate how our general
formalism, contained in Eqs. (1)—(9), can be applied
straightforwardly to a system of point-polarizable atoms
in order to obtain nontrivial results. More elaborate cal-
culations will be the object of further research.
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III. SURFACE ROUGHNESS

In this section we apply the formalism developed above
and the perturbative formulas of Ref. 54 to calculate the
ellipsometric coefficients, the reflectance and the surface-
plasmon-polariton dispersion relation of a semi-infinite
medium bounded by a microscopically rough surface. By
microscopically rough we mean that the roughness length
scale 1 along the surface is much smaller than the free-
space wavelength I,. This implies that the scattered fields
are unable to leave the surface. For this reason, the opti-
cal properties of this surfaces are becoming important for
experimental surface studies. 5s

The model we use is described by the local isotropic
dielectric response

Zs
kc i e—i ((b eg ) )

(45)

((&))—= f dz f dz' fd (p p'—)e

Here co is the frequency of the incident light, Q =(Q,O,O)

the component of its wave vector parallel to the surface,
k=(coro /c —Q )' [with Im(k)&0 or else Im(k)=0
and Re( k) &0] is the component normal to the surface of
the wave vector inside the substrate and we introduced the
notation

etr, r') =e(r)15(r—r') XO(p —p', z,z') (46)

= [eo(z —pp) )+(g(p) —z) ]15(r—r'), (41)

where 6 is the unit step function, p=(x,y, O), and g(p) is
the height of the actual surface of the medium above a
nominal plane surface at z =0, chosen such that
&g(p) & =0. We will assume that the system has, on the
average, translational invariance along the x-y plane.

We note that although the response (41) is already a
macroscopic response (since it does not present the fluc-
tuations due to the atoinic structure of the medium), it
might also be considered a microscopic response since it
has microscopic spatial fluctuations due to the rough sur-
face profile. It is our purpose to average out this fluctua-
tions with the methods developed in Ref. 1, using an en-

semble average P, .
We expect that the macroscopic dielectric response of

the system differs from the local response of a plane-
bounded system

AE' =6' —Ep

z ~—]CX6'
p

(47)

we can use Eqs. (1) and (2) to relate b,eM and he I to he
and b,e '. Doing this, and using the property of the en-
semble average expressed in Eq. (14), we obtain to lowest
order in the microscopic fluctuations

for any operator 0 with translational invariance along the
surface. We have also assumed that the ensemble is sym-
metric under a y~ —y reflection so there is no s-p mix-
ing.

If we now define b,e and b,e ' as the perturbations of
the microscopic dielectric response relative to the same
reference substrate given in Eq. (42), that is

e~ (r, r') =e~ (z) 15(r r')—
=—[e06(z) +0(—z) ]15(r—r')

only in a small region around the z =0 plane. Then, the
optical properties of the system can be calculated using a
perti]rbative approach where the perturbations be~ and
heM are defined by

i
& &

g~ i[(~—i )rr] ig~ i
&

(49)

A.
~~M ~M &p

~—I~~M ~M &p

(43)

kc iQkc((beM(eo )—'))+ieoQ c((b,(eM) '))
Zp-

eoei i cok((heM ) ) —ie~Q(((ez ) —'A@M ) )

(44)

and &z plays the role of the unperturbed substrate.
The surface impedances Zz and Z, for p and s polari-

zation are taken from Eqs. (32}and (33) of Ref. 54, which
can be written to lowest order in Ae~ as

We remark that he and Ae are local isotropic operators
which are different from zero in a region of the order of r
around the xy plane, and we recall that & & denotes
semble average.

First of all we have to calculate the longitude. ..ial-
longitudinal response of a flat bounded system. This is
most readily done by relying on the interpretation dis-
cussed in Eq. (8): [(e~ ) ']'J(r, r') describes the ith com-
ponent of the longitudinal electric field at r produced by a
point dipole p= —ej/(4n) at r' in the presence of a flat
bounded system in the absence of retardation (ej denotes a
unit vector in the j direction}. This field is easily calculat-
ed using image-charge theory, and we. obtain
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[(e~ ) ']'J(r, r') =—

1 eo

/r —r'/ J 1~co /r —r"
/

a, a, x,1 2 1 if zz'&0
4~ ' ' '1+co r —r'

1 1 1 —&p 1

~o
f
r —r'

f
1+co

if z &0, z'&0

if z&0, z'&0,

(50)

where ij =x or z, P„=1 and P, = —1, and r"=(p', —z'). Now we use Eq. (9) to obtain

1 1 —&p 1

~r —r'~ ' 1+co ~r —r"
~

26'p

f [(ez ') ] 'I' (r, r') =ez(r)5(r —r') — 8;Bz X . if zz'&0
4~ ' ' '1+co )r —r'(

1 1 —&p 1e'o, P~-[r—r'
f

J 1+co /r —r"
f

if z&0, z'&0.

(51)

b,e (r)=b,e""(r)= ( 1 —e'o)g(p)5(z),

g'(p )5(z)
6'p

(52)

(53)

To proceed, we recall that the component parallel to the
surface of the electric field and the component normal to
the surface of the displacement field are continuous across
the boundary, and they have a length scale of variation
along the z direction as big as the length scale of variation
along the surface. Thus, if the surface-roughness scale of
variation d is much bigger than the surface height g
(remember also the condition d «A, ), it is reasonable to
make a first-order Taylor-series expansion of b,e, he",
and h(e '):

2 1 —Ep=eq (z) g(p)5(z),
~p

(54)

and, although this expression is ambiguous in z =0, it
gives well-defined expressions in the final results.

Substituting Eqs. (50)—(54) into Eqs. (48) and (49), one
gets expressions for b, EM(r, r') and b, (eM )(r, r') which can
be used to calculate the following terms required in ex-
pressions (44) and (45):

Notice that since E (r) has abrupt variations near z =0, it
makes not sense to do a Taylor-series expansion of b.e .
However, using Eq. (53), we can write

&e (r)= —e~(z)h(e ') (r)

((&~M))=— (55)

((&(eM ) '))=— (56)

1 —e d2
(((e, ) '&e ))=— &g'& f, (gQ —Q') Q.'X.

1+eo (2n)
Ep

(57)

((&~M(e~ ) '))=—1 —e 1

—1 (58)

&Ppg'(p') & = &g'&g(p —p') . (59)

The expression for ((b.em )) is similar to Eq. (55).
Notice that Eqs. (57) and (58) give two different results

depending on how the z,z' —+0 limit of (e ") '(r, r'), re-

where g(Q) is the Fourier transform of the roughness au-
tocorrelation function defined by

quired in Eqs. (48) and (49) by the presence in Eqs.
(52)—(54) of the 5 functions, is taken. The upper choice
in Eqs. (57) and (58) is obtained when we take these limits
in the order z~O, z'~0 or in the order z'~0, z~O+,
and the lower choice is obtained when we take the limits
in the order z —+0, z' —+0+ or in the order z' —+0, z —+0
This ambiguity appears in (Vz ) '(r, r') according to its
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interpretation given above as a consequence of the singu-
larities in the charge density and in the electric field of a
point dipole.

However, we point out that to the order of &g & the
surface impedance obtained by substitution of Eqs.
(55)—(58) in Eqs. (44) and (45) is not ambiguous. There-
fore it is not necessary for us to specify the way in which
the z,z' —+0 limit is taken, as was previously believed.
The reason for this is that, as discussed above, in Eq. (53)
we made a Taylor-series expansion of (e ') (r) instead of

making a Taylor-series expansion of e (r). We do not
have to worry about the ambiguities in the higher-order
terms since the calculation above is only valid to order

Having the surface impedance of the system we can
easily calculate its observable optical properties, such as
its ellipsometric coefficients g and b„given by
tgfe' =r»/r, in terms of the s and p reflection ampli-
tudes r, and rz. These are in turn given by

z, —z,'
z, +z,~

r

1 —&0, d'g' , (Q»')'
=~,' 1 —2' &P&f,g(e —e')1+&0 (2~) Q'

Z v+Z
P

r

ro 1+ q
&g2& f Q g e e [k2(g' )2+~ Q2(gi)2+(~ 1)gkgig']

Q —e'Oq 1 +Eo (2~)' Q'

2 —Q, Im(q) &0 or else
C

(62)Im(q)=0 and Re (q) &0,
and the Fresnel reflection amplitudes r, =(q k)/(q+k—) and r~ =(Eoq —k)/(Eoq+k).

We can also calculate the relative change in reflectance between the rough and the plane bounded system,
hR/R=(

~

r
~

—
~

r
~

)/~ r ~, and we obtain

Here we introduced the surface impedance of vacuum Z, =co/(qc) and Z» =qc/co, where q is the normal to the sur-
face component of the wave vector in vacuum,

1 —&o d'g', (Q,')'R'=4&r'&I q, f,g(e —e')1+e'p (2m )
(63)

' = —4&/'&Im, , f, , [k'(Q„')'+ Og'(Q')'+( o—1)Qkg'Q.']
Rp g' —~~' 1+~0 (2~)' Q'

Finally, the surface-plasmon —polariton dispersion relation is given by Z» + Z» =0 and becomes

(1—~o) 2 d~ '
( — ')

eoq+k i — &g &f, (e e'+iQ'q)(e e'+iQ'k) =0,1+&0 (2~) Q' (65)

using that, to order 0 iri & P &, Q = —qk and eoq+ k =0.
Since we assumed that the surface-profile scale of varia-

tion is much smaller than the free-space wavelength, our
results are correct when the autocorrelation function is
such that g(e)=0 unless Q»co/c. It can easily be
shown that under this condition our results are the same
as those of Refs. 56 and 57.

Although the model [Eq. (41)] that we used for the
rough surface is quite conventional, the procedure by
which we arrived at our results is not. First we obtained
the perturbation in the macroscopic dielectric response,

produced near the surface by the rough profile, using our
general local-field-effect theory, and then we obtained the
optical properties of the system using standard formulas.
By using the appropriate microscopic response fluctua-
tions, the adequate image charge theory, and the same
procedures, we could calculate the optical properties of
rough nonlocal metallic surfaces. These show interesting
effects such as the coupling between the roughness-
induced small-wavelength surface plasmons with the bulk
elementary excitations such as plasma waves. This topic
is presently under investigation.
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IV. INFINITE CRYSTAL

In this section we obtain expressions for the macroscop-
ic dielectric response and bulk normal modes of a perfect
crystal without adopting any model for its microscopic
response, but exploiting its ideal periodicity. Thus the
consequences of deformations such as the elasto-optic ef-
fect are beyond this section's scope.

%'e consider a system which remains invariant under
translation by any vector R of a three-dimensional period-
ic lattice. This invariance manifests itself in the micro-
scopic nonlocal dielectric function etr, r') as

(& )KK(q) =&Ko&KO

so that for any function GK(q),

( G, )K(q) —=GO(q)5KO .

Then, Eqs. (1)—(4) immediately give

(72)

(73)

~M Goo
K,K' (~o)

~LL —1 ~
eoK(e r )KK'eK'0 ~

As an averaging procedure we choose a truncation that el-
iminates all wave vectors outside the first Brillouin zone.
Then the average projector P, is represented by the ma-
trix

e(r+R, r'+R)=e(r, r') . —1 ~—1 ~ ~—1rr~ —1&TTa —1 ~—1
oo — ~ oKLi ~r JKK' K'o ~

K, K' (~0)
(75)

To take advantage of this symmetry, we find it convenient
to express the fields as a superposition of Bloch waves
through

E(r)=
3 f d qE(q, r)e'q'

(2~)
0 f d q QEK(q)e'q+

(2m) O
(67)

DK(q)= geKK(q)EK(q» (68)

where we defined the dielectric matrix

eKK(q)= —f d r f d r'QF(r+R, r')

—i [(q+K) ~ (r+R)—(q+ K').r']Xe

(69)

and the integrals d r are over the unit cell. Equation
0

(68) expresses the conservation of the pseudomomentum
q, although the momentum q+K is not conserved.

The 1ongitudinal projector P is given in this represen-
tation by the matrix

and similar equations for the other fields of interest,
where 0 is the volume of the unit cell, the integrals f d q
are over the first Brillouin zone, and E(q, r) is a periodic
function of both the position r and the pseudomomentum
q, which yields a Bloch function when multiplied by the
phase factor e'q'. The Fourier series coefficients of
E(q, r) are given by EK(q), which is related to the usual
Fourier transform of E(r) by EK(q)=(i/A)E(q+K),
where the wave vectors K form the reciprocal lattice de-
fined by e' ':—1.

Then we can write D=e E as

(PLL) —1 (++LL)—1
( gg) —1~~

=(&~)OO'qq,

I'(P —1)TT]—1

I
(~—1)TT)—1

where we omitted the explicit dependence on q of all
quantities, =q q and the subscript r in e,""

KK and
[(e ')„jKK is meant as a remainder to restrict the ma-
trices e KK. and (e ')KK to reciprocal wave vectors
K,K'&0 before attempting the matrix inversions. If we
define now a scalar longitudinal response as

LL
( )

q+K q+K'
I q+K

I

""
I
q+K'

I

then we can also write

(78)

„„=(e") '=(e") '=(e~~)

which we write as

Equations (76) and (79) are well-known results first ob-
tained by Adler and Wiser using the random-phase-
approximation (RPA) expressions for the microscopic
response, and neglecting longitudinal-transverse (LT) cou-
pling. Here we found that these expressions are correct
even in the presence of LT coupling, and that they do not
depend on the microscopic theory used to obtain FKK (q).

Having expressions for the macroscopic response func-
tions of a crystal we can easily obtain its optical properties
following the usual procedures for homogeneous systems.
As an illustration, we obtain below its electromagnetic
'normal modes taking into account its microscopic spatia1
fluctuations. In the absence of external sources,
Maxwell's equations give immediately

pi. ( )
q+K q+K

lq+Kl lq+KI
so that for any vector field FK(q),

Fi, ( )
q+K q+K F ( )lq+KI lq+Kl

(70)

(71)

2(~—1)TT Oi
1 .DT 0Q (81)

Using Eq. (77), we obtain the dispersion relation co=co(q)
of the normal modes of the system (those with D,+0),
given implicitly by
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det

2

1 —[(VM') ] '(q co) =det
CO

Ã 1 I (P
—i)TT) —i( ) () (82)

This relation was first obtained by Johnson. ' We want to
point out the difference between Johnson's and our own
approach. In Ref. 13 Johnson obtained Eq. (82) by mak-
ing an expansion in powers of q of the exact microscopic
dispersion relation, and then he identified (qc/co) as the
macroscopic dielectric function. In our approach, we first
obtained the macroscopic dielectric tensor from its defini-
tion as a response function, and afterwards we obtained
the dispersion relation as a simple consequence of the
macroscopic Maxwell's equations.

In the case of small macroscopic LT coupling, i.e., if
VM (q) and e ~ (q) are small, we obtain, using Eq. (9) in
Eq. (82), two kinds of modes: Modes of mostly transverse
character with dispersion relation given approximately by

r 2

det 1 —e' ~ (q, co) =0, (83)

V. SEMI-INFINITE CRYSTAL

As our last example, we obtain several expressions for
the macroscopic dielectric response near the surface of a
crystal, and indicate how a perturbative theory can be
used to calculate the influence of the surface on its optical
properties. As in the preceding section, we focus our at-
tention on the effects of periodicity, without referring to
any specific microscopic model.

We consider a crystal whose translational symmetries
along the z direction are removed by the presence of a
bounding surface. However, if this surface is parallel to a

I

and modes of mostly longitudinal character given approx-
imately by

e~"(q,~)= (e )Ni'(q, co) =0 .

In the complete absence of LT coupling, Eq. (82) leads to
pure transverse modes only, given exactly by Eq. (83).
However, in this case there are also pure longitudinal
modes obtained from Gauss's law, D, (q, co)
=@~ (q, co)E, (q, co)=0, and given exactly by Eq. (84).

E t r~[+X z rj~+X z )= e(
r~~

z rt[ z ) (85)

where r~~ is the projection of r onto the x-y plane and the
vectors X form a two-dimensional (2D) periodic lattice.

As in the preceding section, to take advantage of this
symmetry we express the fields as a superposition of 2D
Bloch waves through

E(r) = f d Q E(Q, r~~,z)e
(2n. ) o

, f d'g+E (Q,z)e'~+
(2m )

(86)

where the integrals d Q are over the first 2D Brillouin
0

zone, A is the area of the 2D unit cell, and E(Q, r~~, z) is a
periodic function of both 2D pseudomomentum Q and
position r~~, which yields a 2D Bloch function when mul-

igr
tiplied by the phase factor e ~~. The Fourier series coef-
ficients of E(Q, r~~,z) are given by EG(Q,z), where the
wave vectors Cr form the 2D reciprocal lattice defined by
e'G =1. If the periodicity along the surface is indepen-
dent of the distance to it, as in the case of a clean surface
in the absence of reconstruction, then the 2D reciprocal
lattice [6) is given simply by the x-y projections of the
three-dimensional (3D) bulk reciprocal lattice [K). Oth-
erwise there might be additional wave vectors G.

Now we can write D=eE as

DG(Q,z) = g f dz'VGG (Q,z,z')EG (Q,z'),
Ql

or more concisely, as

(87)

DG g ~GG'EG' ~

Gl

where eGo is an integral operator represented by

(88)

family of crystalline planes, the crystal will have periodi-
city along the x-y plane. This periodicity manifests itself
in the dielectric response as

(Q z z')= — d'r "d'r' ~ V(r +X z r'+X z')eEGQ ~ z z — p J p
i[ ~E r/i+ z ri/+ z )e

X
(89)

The longitudinal projector in the representation is given
by

tion

& GG
——EGG VGV G VG,

where VG is the differential operator

VG.= &(Q+G),
8

'az (91)

VGz(zz')= —— e I&+GI lz —z'I
2 IQ+&I

In order to eliminate the fluctuations along the surface,
we choose as an averaging procedure a truncation that el-
iminates all wave vectors outside of the first 2D Brillouin
zone, so that P, is represented by

and VG is an integral operator represented by the func- (P. )GG (Q,z,z') =5G06G.,6(z —z') . (93)
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Then Eqs. (1)—(4) yield immediately

&m =&Oo &oG~& r &Gt"'~ G'o ~ (94)
D (Q,q)= g f F~ (Q,q, q')E (Q,q'), (98)

2%

G, G' (~0)

~m =~oo — ~or. ~ r Ge'~G'o
G, (x' (+0)

where the fields are transformed according to
(95)

EG(Q z) = f e"'EG(Q,q), (99)
(~LL) 1 (~11.)

—1

[(g
—1)TT]—1 [(g

—1)TT]—1

(96)
and the operators are transformed according to

(97) I
OO g 00

&aG (Q»»') = el(gS —g Z )P (Q
277

(100)

The longitudinal projector is given by

(G+Q, q )(&+Q, q )

Q2+q2
P ~6~(Q, q, q') =2775(q —q')5GG~

(101)

and our choice of average projector is

(P, )GG (Q, q, q') =2Ir5(q —q')5G05I- oe(k, —q), (102)

where 8 is the usual step function. In order to eliminate
the spatial fluctuations due to the atomic structure of the
crystal, the cutoff wave vector k, should obey the in-
equality

co 2&
C Q

(103)

where a is the spatial period along the z direction in the
bulk of the crystal. Now, Eqs. (11)—(14) become

where the caret over a symbol indicates that it represents
an integral operator acting on the z coordinate, and the
subscript r in (e'„)GG and [(e '), ]GG is meant as a
reminder to restrict the matrices EGG and (e' ')GG to re-
ciprocal wave vectors Gr, Cr'&0 before attempting the ma-
trix inversions. Here we used a lower case I instead of
an upper case M as a subscript to denote the dielectric
response given in Eqs. (94)—(97) because these are not tru-
ly macroscopic operators; they still have spatial fluctua-
tions along the z direction. However, if we average
Maxwell's equations with the projector (93) and then use
Eqs. (94)—(97), we reduce the problem of the wave propa-
gation through a 3D bounded crystal to the solution of an
integrodifferential equation in just one variable. This
might be susceptible to solution by numerical methods in
systems such as thin films.

A different approach is to also average out the fluctua-
tions in the z direction by using a cutoff wave vector k, .
For this purpose, we take the Fourier transform of Eq.
(87) along the z coordinate to write it as

II III

cM(Q q q')=coo(Q q q') — g f f ~oa(Q q q")(~ ")GG(Q q" q"' )cG0(Q, q"', q'),
G,G'(~0) f 2~ f 2

(104)

II III

~ M'(Q, q, q') =~ oo'(Q, q q') g f— f c oG(Q q q")[(c '),"]GG(Q,q",q"')c G,'0(Q q"' q'),
(&0) f 2& f 2w

(105)

(C'M) (Q q q')=(~ )00 (Q q q'» (106)

(107)

The subscript f under the integral sign dq "/2m meansf
that the wave vectors q ~ k, are to be excluded, and the
subscript r under the dielectric operators is to restrict
these to the subspace of fluctuating fields [those FG(q)
with 'G+0 aIld q )k ] bcfolc a't'tcIIlptlllg tllc rcqu1rcd 111-

versions. Equation (104) has been re:cently obtained and
discussed by Del Sole.

In order to get some insight about the macroscopic
response near the surface of a crystal, we will follow still
another approach. We will show an averaging procedure
in real space with which we obtain from Eqs. (94) and (95)
a dielectric response that (i) has no spatial fluctuations
due to the atomic structure of the crystal, (ii) coincides
with the bulk macroscopic response far from the surface,
and (iii) gives the correct optical properties of the system.

First of all we investigate the relation between e, e

and the bulk macroscopic response. We notice that in an
infanite crystal, expressions (94) and (95) yield a dielectric
response that corresponds to a system with full transla-
tional symmetry in the x-y plane and periodicity in the z
direction, i.e.,

V~(z+Z, z'+Z) =V~(z,z'),
where Z =na (n=0, +1,+2, , ) forms a one-dimensional
(1D) periodic lattice with lattice parameter a. The pro-
cedure followed in the preceding section can be easily
modified to be used in a 10 lattice, and it gives the fol-
lowing expression for the macroscopic dielectric response:

C'M=(~ )00— y (~ )og[(~ )."']gg'«)go
S,S' (+0)
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(110)

where g are wave vectors in a 10 reciprocal lattice, ob-
tained by projecting on the z axis the 3D bulk reciprocal
wave vectors. The notation should be clear from that
used in Sec. IV. A cumbersome algebra shows that Eqs.
(109) and (110), together with Eqs. (94) and (95), are
equivalent to the expressions (74) and (75) for the macro-
scopic response found in the preceding section.

To simplify the following discussion we will ignore the
nondiagonal components of F and we will make expan-

sions of all quantities to the lowest possible order in Qa.
Since g and g' point along the z direction, and since
g,g'»Q, the xx and yy components of any longitudinal-
longitudinal operator (such as [(P~)„"]~')are negligible,
compared to its zz component. The opposite happens to
transverse-transverse operators. Then Eqs. (109) and (110)
yield immediately

and

«~') =« '}oo

which can be written as

and

a/2 00

E~(z z'—) =—f dz" f dz"'e~(z+z", z"+z"')w(z"' —z')
g —a/2 00

a/2 00
(eM') (z —z')= — dz" dz"'(e~') (z+z",z"+z"')w(z"' —z'),

g —a/2 00

(113)

(114}

by transforming back to real space, where

dq;, sin(nz/a )w(z) = eiqz
—~/a 2m mz

is a normalized weight function. Thus, to obtain the macroscopic response in the bulk, we just have to perform a spatial
average of e and (e ')~.

Now we recall that Gauss's and Faraday's laws imply that when we average out the fluctuations of E" and D' along
the x-y plane we obtain fields that also vary slowly in the z direction, even near the crystal's surface. Then we can re-
place the responses to these fields, e and (e ), with their spatial averages without modifying the optical properties of
the system (a formal proof of this statement is given in the Appendix}. For this reason we define the macroscopic
response for all z and z' as the average

a /2 00

e~(z,z') =— dz" dz"'e (z+z", z"+z"')w(z'" —z'),
g —a/2 00

(e~ ) (z,z')= — dz" dz"'(e ) (z+z", z"+z"')w(z"' —z') .
a 00

(117)

Taking into account that Eo and Do are slowly varying,
we can ignore the spatial average with weight function w
in expressions (153)—(157) and use instead the simplified
expressions

a/2
e~(z,z') =— dz" e~ (z+z", z'+z")

g —a/2

and

a/2
(e~ ) (z,z')= — dz"(e ) (z+z", z'+z") . (119)

g —a/2

Clearly, e~ and (eM,'), as defined in these equations,
coincide with the bulk response, as given by Eqs. (113)
and (114), when z and z' go away from the surface.
Therefore, the optical properties of a crystal can now be
calculated taking into account the local-field effect in the
vicinity of its surface, using a perturbative approach such
as the one developed in Ref. 54, where the perturbation
parameter is the width of the region where the macro-
scopic response differs from its bulk value, divided by the
wavelength of light.

VI. CONCLUSIONS

In this paper we have applied the general local-field-
effect formalism developed in Ref. 1 to diverse systems of
physical interest. Thus we obtained in a unified way the
first corrections to the Clausius-Mossotti expression for
the dielectric response of a liquid, expressions for the
change in the ellipsometric coefficients, reflection ampli-
tude, and reflectance, and for the change in the surface-
plasmon —polariton dispersion relation of a semi-infinite
system upon the roughening of its surface, the bulk dielec-
tric tensor and the dispersion relation of the electromag-
netic modes of an infinite crystal, and expressions for the
macroscopic response near the surface of a crystal, which
can be used in perturbative, calculations of its optical
properties. For the first two systems simple models of the
microscopic response were used; for the infinite and
semi-infinite crystals no specific model was introduced,
but we took advantage of their periodicity. To perform
actual calculations on crystals the microscopic response
must be obtained first, either from a point-charge' or
point-polarizable atom model, ' ' or from a microscop-
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ic Hamiltonian using linear-response theory. Al-
though some of our results are new, such as Eqs.
(94)—(97),. (116), and (117), most of them have been de-
rived before by other workers using different techniques.
However, the purpose of these calculations was to show
explicitly the generality of the formalism as well as to ex-
plore its potential as a computational tool. The way we
approach the problem offers for the first time a unified
view of the local-field effect, and it can be followed iri
more elaborate models of spatially fluctuating systems.
This will be the object of future research. This formalism
also offers a point of view which might be complementary
to the usual one, such as our treatment of the optical
properties of rough surfaces in terms of the surface local-
field effect.
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APPENDIX

Using our general local-field-effect theory we have
shown that the optical properties of a semi-infinite crystal
with microscopic response P(r, r') are the same as the op-
tical properties of a system with the response e (z,z')
given by Eq. (94). This response has microscopic fluctua-
tions along the z direction. We will show below that a
system with dielectric function V~(z,z') as given by Eq.

l

(A2)

where G is the electromagnetic Green's function of vacu-
um which obeys

1 V'+, —VV. G=l, (A3)
C

(G')—:G — 1,
CO

(A4)

E„and E„' are the x and z components of the external
field,

~~M =+M

~«M') =—«M') —1

(A5)

and E" and D' are averaged along the x-y plane, and are
therefore slowly varying in the z direction.

Using Eqs. (116) and (117) we find in Eqs. (Al) and
(A2) integrals such as

(113),and therefore with no microscopic fluctuations, has
the same optical properties. We consider only the case of
p-polarized light, since the s-polarized case is similar.

We start by writing Maxwell's equations for the latter
system in integral form as

D'=E' —G b,e E"+ (G ') h(e ') D*

OO OO OO a /2
I(z) =— dz' dz" dz"' dz""G (z,z')he (z'+z"",z""+z"')w(z"' z")E"(z") . —

a OO OO —a/2

Since E" is slowly varying, its average using m leaves it unchanged, so that performing the integral over z" we get
oo a/2

I(z)=— dz' dz"' dz""G (z,z')b, e (z'+z'"', z""+z"')E"(z'").
a OO —a/2

(A7)

(A8)

Since G is also slowly varying, we can approximate
G (z,z') =G (z, z'+z"") and E"(z'")=E"(z"'+z"")so
that Eq. (A8) becomes

I(z)= I dz' J dz "G (z,z')he (z',z")E"(z")

and

, G &e E"+,(G') h(e„-') D', (All)
C C

after a simple change of variables.
Proceeding in a similar fashion with the outer terms of

Eqs. (Al) and (A2), we finally obtain
2

~~ E"+ G"'&(e ') D' (Alo)

which are Maxwell's equations in integral fo~ for a sys
tern with response e . Therefore e and e~ lead to the
same optical properties

Notice that if expressions (118) and (119) were used in-
stead of (116) and (117), we would have arrived at Eq.
(A8) without going through Eq. (A7).
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