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Electromagnetic response of systems with spatial fluctuations. I. General formalism
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We obtain closed-form expressions for the macroscopic dielectric response of systems with spatial
fluctuations, taking into account the local-field effect. The macroscopic response is written, without
reference to any specific representation, in terms of the microscopic dielectric operator and the pro-
jection operators that extract the average and the fluctuation components of the microscopic fields.
The results are very general since few assumptions are made about the nature of the system and of
its microscopic response, and very relaxed conditions are imposed on the average and fluctuation
projectors. We put special emphasis on systems for which the length scale of the fluctuations is

much smaller than the wavelength of light.

I. INTRODUCTION

The calculation of the optical properties of spatially in-
homogeneous systems has attracted the attention of many
workers since the early stages of development of the elec-
tromagnetic theory of light.! In this paper we develop a
very general formalism to calculate the macroscopic
dielectric response of a system, taking into account the ef-
fect of spatial fluctuations such as those due to the atomic
structure of matter, to density fluctuations, or to any oth-
er kind of microscopic inhomogeneities. This effect is
generally known as the local-field effect.? These calcula-
tions are usually devised in accordance with the specific
characteristics of the system and to the nature of the spa-
tial fluctuations. For example, the use of periodicity in
the calculations of the local-field effect in crystals® pre-
cludes their extension to nonperiodic structures. Howev-
er, the formalism developed here offers a unified view and
a systematic approach to the problem, and it shows an
underlying structure in the macroscopic dielectric
response of diverse spatially fluctuating systems.

We define the macroscopic dielectric operator &
through the relation

D,=é&éyE, , : (1

where D, and E, represent the macroscopic average of
the displacement and electric field, respectively, and the
caret of €, refers to its operator character, which in the
space-time representation takes the form

D,(r,0)= [ ar [ d* &, (5,0t —tE,(r',t"), 2)

where translational invariance in time has been assumed.
We will restrict ourselves to nonmagnetic systems. Then
the optical properties of the system can be expressed in
terms of & through the solution of the macroscopic
Maxwell’s equations. By optical properties we understand
the dispersion relations of the bulk electromagnetic modes
in a boundless system and the reflection and transmission
amplitudes, as well as the dispersion relations of surface
electromagnetic modes in bound systems.
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A well-accepted procedure to determine the macroscop-
ic dielectric operator is to start with a model for the sys-
tem expressed in terms of a Hamiltonian. Then, through
the use of linear-response theory,4 one calculates what is
known as the microscopic dielectric response € which re-
lates the total displacement field D to the total electric
field E as

D=¢E . (3)

In general, both of these fields possess microscopic fluc-
tuations, induced by the microscopic inhomogeneities of
the system, which are coupled to the macroscopic fields
by the fluctuations of €.

Since the macroscopic operator €, relates the average
parts of the displacement and electric fields, one requires,
as the next step, an averaging procedure to relate € to €y,.
In this procedure, the influence of the spatial fluctuations
of € must be incorporated in the macroscopic dielectric
operator. The construction of a general formalism to han-
dle this averaging procedure is the central issue of this pa-
per. We concentrate our attention on systems with spatial
fluctuations whose characteristic length scale is much less
than the wavelength of light.

The main advantages of the formalism developed here
are its simplicity of structure and its generality. In order
to make this generality explicit and to show how our for-
malism can be used in actual calculations, in the following
paper of this series’ we obtain the macroscopic dielectric
response of four different systems: the bulk crystal, the
polarizable liquid, the semi-infinite crystal, and the rough
surface.

The paper is organized as follows: In Sec. II we obtain
an exact expression for the macroscopic dielectric opera-
tor of nonmagnetic systems in terms of the microscopic
dielectric response. For this purpose we discuss
Maxwell’s microscopic equations and the properties of the
average and fluctuation projectors. In Sec. III we use the
longitudinal and transverse projectors in order to obtain
several approximate expressions for the macroscopic
response of systems with small length-scale fluctuations.
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The relationship between the macroscopic dielectric
response and other useful microscopic response functions
is discussed in Sec. IV, and Sec. V is devoted to con-
clusions.

II. FORMALISM

Maxwell’s equations in a medium are
V'D=47Tpex’ V:-B=0,

4
1 9B 47 . 1 3D
VXE= c ot’ VXH= ¢ =T o

where p., and j,, are the external charge and current den-
sity, respectively, and all the other symbols have their
usual meaning. It is usually assumed® that these equa-
tions describe macroscopic fields that have been submitted
to an averaging procedure which erases the microscopic
fluctuations induced by the microscopic inhomogeneities
of the system. Nevertheless, it is also possible to define D
and H to include the microscopic fluctuations, and still
obey Maxwell’s equations as given in Egs. (4). As an ex-
ample, consider’

Dir,)=E(r,0)+4r [ _dr'j(r,e),
| (s)
H(r,?)=B(r,?),

where j is the quantum expectation value of the induced
current density. This definition might lead to some diffi-
culties,® such as a singularity of D at the surface of mag-
netic materials due to the presence of surface currents.
We will restrict ourselves to nonmagnetic materials, and
so we will not deal with these difficulties.

The problem can now be stated as follows: Starting
from a given microscopic dielectric response €, derive an
equation which relates only the average parts of the fields
as in Eq. (1). There are different averaging procedures
from which to choose the most adequate, according to the
specific characteristics of the system under study as well
as the particular length scales involved. Thus, we formal-
ly define two operators f’a and f’f =T—ﬁa (1 is the unit
operator) which extract the average component F, =ﬁaF
and the fluctuation component Fy =ﬁfF of any function

F,
Fy

F=F,+F;— , ' (6)
where we introduce the column-vector notation for later
convenience. Since a second average cannot remove from
F, the fluctuations that were already removed from F by
the first averaging, P, should be idempotent,

P2=P,, )
and thus

Pi=P;, (8)

p,p,=P,B,=0, )

which simply means that f’,, and f’f are projection opera-
tors.
Also, since the average part of the fields must obey the

macroscopic Maxwell’s equations, we demand that f’a

~ commutes with the space and time differential operators.

As specific examples of averaging procedures, we men-
tion ensemble-average’

F,(M\)= 3 P.F,(7), (10)

spatial-average!'®
Fn)= [ &% P,(r—r)F(r'), (11)
and wave-vector truncation'!

F(q)=P,(q)F(q), (12)

where P, is the probability of finding the system in the
configuration ¢ of the ensemble, and F,(A) is the value of
a function F(A) in that configuration of arbitrary argu-
ment A, P,(r) is a weight function, and P,(q) cuts off the
high wave-vector components of the Fourier transform
F(q) of the function F(r). There are still other useful
procedures such as time averaging. The appropriate
choice of which procedure to use depends on the nature of
the system. For example, in crystalline solids an ensemble
or time average does not erase the spatial fluctuations due
to the lattice periodicity. We also want to point out that
since f’,, is idempotent [Eq. (7)], in addition to being
smooth,'? P,(r) should obey

[ &% Pax—r)P,(r)=P,(1) (13)

which is not satisfied by any positive definite weight func-
tion. For the same reason, its Fourier transform should
obey

PXq)=P,(q), ' (14)

which implies that P,(q) has the value 1 for small q, and
changes abruptly to O for large q.

It seems to us that the requirement of idempotency has
not been recognized previously in the literature, and
nonidempotent averages—such as a spatial average with
an arbitrary smooth weight function P,(r) (Ref. 12) or
wave-vector truncation with a smooth cutoff P,(q) (Ref.
11)—have frequently been used. These averages may still
be used in our formalism, but then our results would be
restricted to the class of fields F for which

P,B,F=P,F. (15)

It can be shown that when F has two very different length
scales of variation, such as when light with wavelength A
shines on a crystal with lattice parameter a <<\, Eq. (15)
is satisfied approximately by almost any smooth, normal-
ized weight function.

Now, we rewrite Eq. (3), projecting it into the subspaces
a and f, as

D,
Dy

E,
Ef

~ A
€aa Eqf

) (16)

€ Efr

where we wrote
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G Cur the average and the fluctuating part of the fields. This
aa a, . .
o=t e +Eutey— | . a7 correction is the local-field effect.
€ra €ff III. MICROSCOPIC SPATIAL FLUCTUATIONS

in matrix form, and we define

0up=P,0 Py, a,B=a.f, (18)
for any operator O.

Thus the problem of calculating the macroscopic
dielectric response [Eq. (1)] is to decouple D, and E,
from Eq. (16), by finding a relationship between E; and
E,. This we obtain from Maxwell’s equations for the mi-
croscopic fields,

VXVXE— 2 Jext-f- D (19)
If the external current has no fluctuations!® the fluctuat-
ing part of Eq. (19) can be written as

(20)

(IxVx rr |Bp= '—?faEa ,

e __ci
ff >

where we used Eq. (16), and we put a caret over V to em-
phasize its operator nature and to make our results repre-
sentation mdependent ¥ becomes (04,3,,9;) in r space,
and it becomes iq in q space. Solving Eq. (20) for E;,
substituting back in Eq. (16) and comparing the result
with Eq. (1) we obtain

-1

€y =840 —E4p (VXVX)pr | &n. @D

2
e
ff )

This result is exact. The macroscopic dielectric response
of a system is given by the average of its microscopic
response, plus a correction due to the coupling between

In this section we analyze our previous result in the
cases in which the characteristic length scale of the spatial
fluctuations is much less than the wavelength of light,
what we call microscopic spatial fluctuations.

In order to carry out this analysis, it is convenient to in-
troduce the longitudinal (L)

PL=UV 2V, 22)
and the transverse (T)
=—UxV-29x, 23)

projection operators, such that FL=PLF is the irrotation-
al and FT=PTF the solenoidal components of an arbi-
trary vector field F= =F" + F'. Here we introduced the
inverse of the Laplacian operator v- 2 represented in r
space by the integral operator which acting on any func-
tion G(r) yields

) _ _1_ 3.

¥V =26)n=— [d

(r'), (24)

|r—r'|
and represented in q space by —1/g2% PL and P T satisfy
PYPL=PL, PTPT_pT
PLPT_PTPL—g, (25)
PLyPT=T,
and they commute with P, and P;.
Now we project Eq. (21) onto the longitudinal and

transverse subspaces, and write the inverse of the operator
within large parentheses:

-1

ALL ALT

N a & €rir €57

[ —(VXVX)pr] 1= o
@}}‘ @ff-i-—VZPTPf
€~' o o @RV 2etre Tt —(@k el v -2

= +— S A~ ~ AT A “+ (26)

0 0 c? _V—ze}'}(eLL)—l V“zPTPf

as a series in which each consecutive term is smaller than
the previous one by a factor ||(w?/c®)V '2Pf1|~12/7»2,
where [ is the length scale of variation of the fluctuations
of the field, and A=c /27w is the free-space wavelength.
Here we defined

O =pP40P? 4,B=L,T 27)
and used a notation similar to that of Eq. (17). In the

cases in which / <<A, we can retain only the first term in
Eq. (26), and write (21) as

G =80 —Eur(€FF)T'Ep, . (28)

This is our main result for systems with microscopic spa-
tial fluctuations.

To make the expansion (26), and therefore to obtain the
approximate result (28), we assumed A2/I?>>||€||. If the
system has an undamped resonance, this condition may be
violated in its immediate vicinity. The validity of macro-
scopic theories when the wavelength of light inside the
medium A/||€y,]|'/? is of the order of atomic dimensions
has been questloned and discussed by Sipe and Van
Kranendonk.*

Note that if we choose a spatial average or a wave-
vector truncation, then / <<A is a condition imposed on
the averaging procedure f’a, i.e., which wave vectors
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should be considered macroscopic. On the other hand, if
we choose an ensemble average, then I << A is a condition
imposed on the physical system itself, i.e., on the length
scale of its thermodynamic fluctuations. For this reason,
the macroscopic response of systems such as a fluid near
its critical point, for which there are fluctuations on all
length scales, cannot be obtained from Egs. (28).15

It can be shown that our neglect of all terms of order
I12/A? and higher in Eq. (26) is equivalent to the neglect of
the transverse fluctuating electric field. That it is negligi-
ble can be seen by considering a system of polarized mole-
cules. The part of the electric field which fluctuates with
a length scale ! is produced by molecules at a distance ~
from the observation point. If the molecules have a dipole
moment p, the Coulomb (longitudinal) part of this field is
proportional to p /I3, while its radiation (transverse) part
is proportional to w?p /c?l, so it is 12/A? times smaller (for
a more general discussion, see Refs. 16 and 17). There-
fore, the effects of light scattering, such as a complex €,
for systems with no true absorption,!® are not taken into
account by Eq. (28). However, we believe that the vast
amount of systems with spatial fluctuations of microscop-
ic length scales®!’~!° and whose macroscopic response
can be obtained from Eq. (28) following a unified ap-
proach, makes ours a very attractive formalism. For sys-
tems with significant fluctuations of long length scales,
the exact result, Eq. (21), may be used.?’

In a similar way, starting from the microscopic equa-
tion

E=¢~'D, (29)

we calculate the macroscopic inverse dielectric operator
defined by

E,=¢5'D, , v (30)
and we obtain

e =@ Vg — (@ Vg [(E" N1 UE N, BD
where

(@ Y17 @ "f=FPT. (32)

It can easily be checked that the expressions given by
Eqgs. (28) and (31) obey

A
ey =6euén'=P, . (33)

Note that f’,, is the same as the identity operator when re-
stricted to the nonfluctuating fields on which the macro-
scopic response ought to operate.

It can also be easily shown, using the partitioning
theorem,?! that the longitudinal-longitudinal projection of
Eq. (28) and the transvers-transverse projection of Eq. (31)
can be written simply as

(eh-l=(et);!, (34)
and
[Ex) T =@~ 1T, . (35)

In these equations the a-f coupling is taken into account
by first inverting and then taking the average.
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We recall that in the absence of longitudinal-transverse
(LT) coupling, as in the case of an isotropic system or a
system with cubic symmetry, the full macroscopic
descnptlon of the dlelectrlc response is given solely in
terms of €5} and (€3,1)™T

To simplify the inversion procedures which appear in
Egs. (28), (31), (34), and (35) we have found it convenient
to use the relations

[(é\—l)TT]——1=€TT_€TL(€LL)~—1€LT

=é—@@E)-lg (36)
and
(@)-1=97V ~2<€°°>—1v
=V(e#) -9 -9, (37)

where we introduced the scalar operators (€°)~! and
(@%)~! which we call the charge-charge and the
potential-potential inverse dielectric responses. For exam-
ple, Eq. (34) can then be simply written as

@ 1=9 92~V
=V(@) V29, (38)

where we only have to invert a scalar operator.

Even this type of inversion might not be necessary if we
rely on the following interpretation of (e°°)~! and
(€%?)~!: In the absence of transverse electric fields, the
external and total charge densities are related by

( cc)_lpext ’ (39)

and the external and total Coulomb potentials are related
by

¢=(€%)"1¢¢, . (40)

Thus (@)~ ! and (€%%)~! can be calculated directly from
the response of the system to an external perturbation by
neglecting retardation effects. -

If we now write p,,, in terms of an external polarization
field, pexy= — VP, and then use Eq. (37), we can write

Bl= 47 -1p,,, . (41)

Then (€')~! is the external-polarization—electric-field
response function in the absence of retardation.

The results we obtained in this and the previous sec-
tions are very general although they are written in a quite
abstract notation. In the next paper of this series® we il-
lustrate their use in actual calculations of the dielectric
and optical properties of several systems of physical in-
terest. '

IV. FURTHER DEVELOPMENTS

Our starting point in the previous sections was the mi-
croscopic dielectric response. A very important problem
we did not consider there is the calculation of this
response from the Hamiltonian operator of the system.
This is usually done by dividing the Hamiltonian H into a
nonperturbed part H, and a time-dependent perturbation
H, and.the time-dependent polarization induced by this
perturbation is calculated using linear-response theory.
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The nature of the microscopic response function obtained
using this scheme depends on how H and H are chosen.

For example, in the random-phase approximation
(RPA),2?2 H, contains no electron-electron interaction and
H contains the interaction between the electrons and the
total electric field. Thus in the RPA one obtains an
approximation to the microscopic susceptibility
X=@€-1)/4r from which the macroscopic dielectric
response could be calculated using the results of this pa-
per. However, if we keep in H the full electron-electron
interaction, H; would contain the interaction with the
external field only and we would obtain an external sus-

ceptibility X oxt defined by
P=XexBex: - . (42)

Similarly, if we keep in H, the longitudinal electron-
electron interaction and take account of the transverse in-
teraction by including in H the interaction with the po-
larization field??

EP = Eext + El{'ld ’ (43)

where EZ, is the transverse induced field, we would ob-

tain an approximation to the pseudosusceptibility X p de-
fined by

P=X,Ep . (44)

In this case, the results derived previously are not immedi-
ately applicable. However, our formalism can be easily
extended?® so that, using the same approximations as be-
fore, we obtain the following expressions for the macro-
scopic dielectric response in terms of X,; and X p:

A

2
1—4r L

(,‘2

(3% =/i+477'(i/ext)aa ﬁL+ [ﬁ _lﬁT

-1
(i\/ext )aa ] 4

(45)
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e =147 p)oa[1—47P LR p)oa]1~!, (46)

whel,'\e B3-! is the inverse of the D’Alembertian operator
O=V?2 4 w?/c? This expression will be the object of fur-
ther research.

V. CONCLUSIONS

We have obtained very general expressions [Egs. (28),
(31), (34), and (35)] for the macroscopic dielectric response
of systems with microscopic spatial fluctuations in terms
of their microscopic dielectric response. The only approx-
imation made in the derivation of our main results was
the neglect of the transverse component of the microscop-
ic fluctuations of the electric field. This approximation is
appropriate whenever the microscopic scale of variation is
much smaller than the free-space wavelength of the fields
involved: this is the case for most systems which can be
described from a macroscopic point of view.

Our results can be applied to a very wide range of sys-
tems. The reason for this is that in their derivation we
avoided particular representations of the fields and opera-
tors involved. We also introduced average and fluctuation
projectors which were left almost unspecified; only their
most important properties were required. In the next pa-
per of this series® we obtain from these results in a unified
way expressions for the dielectric and the optical proper-
ties of systems of the most diverse nature.

ACKNOWLEDGMENTS

We want to thank R. Del Sole for communicating to us
his results prior to publication, and A. Bagchi, R. Fuchs,
and E. Martina for very fruitful discussions.

ISee, for example, E. Whittaker, A History of the Theories of
Aether and Electricity (Thomas Nelson and Sons, London,
1951), pp. 117-127.

2See, for example, J. H. Van Vleck, The Theory of Electric and
Magnetic Susceptibilities (Oxford University Press, London,
1932), p. 14.

3Max Born and Kun Huang, Dynamical Theory of Crystal Lat-
tices (Oxford University Press, London, 1954), pp. 248—255
and 398—401.

4R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

5W. Luis Moch4n and Rubén Barrera, following paper, Phys.
Rev. B 32, 4989 (1985).

6J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New
York, 1975), Sec. 6.7.

D. L. Johnson, Phys. Rev. B 12, 3428 (1975).

8J. de Goede and P. Mazur, Physica 58, 568 (1972).

9See, for example, S. R. de Groot and L. G. Suttorp, Founda-
tions of Electrodynamics (North-Holland, Amsterdam, 1972).

I0H. A. Lorentz, The Theory of Electrons (Teubner, Leipzig,
1909), p. 134; L. Rosenfeld, Theory of Electrons (Dover, New
York, 1965), p. 15.

11See, for example, F. N. H. Robinson, Macroscopic Elec-
tromagnetism (Pergamon, Oxford, 1973), pp. 34—39.

12G. Russakov, Am. J. Phys. 38, 1188 (1970).

13Otherwise it is unreasonable to attempt a macroscopic formu-
lation.

143, E. Sipe and J. Van Kranendonk, Phys. Rev. A 9, 1806
(1974); Can. J. Phys. 53, 2095 (1975).

15D. Bedeaux and P. Mazur, Physica 67, 23 (1973).

16R. Del Sole and E. Fiorino, Solid State Commun. 38, 169
(1981).

17Rubén G. Barrera and W. Luis Mochdan, in Proceedings of the
International Workshop on the Electromagnetic Response of
Surfaces (Instituto de Fisica, Mexico City, 1985), p. 63.

18W. Luis Mochdn and Rubén G. Barrera, in Proceedings of the
International Workshop on the Electromagnetic Response of
Surfaces (Instituto de Fisica, Mexico City, 1985), p. 79.

19R. Del Sole and Annabella Selloni, Phys. Rev. B 30, 883
(1984).

20We have checked that our Eq. (21) is equivalent to Eq. (2.17)
of Ref. 15, when P, is an ensemble average.

21F. Ayres, Jr., Theory and Problems of Matrices (Schaum, New
York, 1962), Chap. 7.

22H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

23R. Del Sole and E. Fiorino, Phys. Rev. B 29, 4631 (1984).



