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Thei~odynamic properties of bcc crystals at high temperatures: The transition metals
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The second-neighbor central-force model of a bcc crystal, previously used in lowest-order anhar-
monic perturbation theory to calculate the thermodynamic properties of the alkali metals, is here ap-
plied to the transition metals V, Nb, Ta, Mo, and W. The limitations of the model are apparent in
the thermal-expansion results, which fall away from the experimental trend above about 1800 K.
The specific heat similarly fails to exhibit the sharp rise that is observed at higher temperatures. A
static treatment of vacancies cannot account for the difference between theory and experiment. The
electrons have been taken into account by using a model that specifically includes d-band effects in
the electron ground-state energy. The results thus obtained for the bulk moduli are quite satisfacto-
ry. In the light of these results, we discuss the prerequisites for a better treatment of metals when
the electrons play an important role in determining the thermodynamic properties.

I. INTRODUCTION

Since the first investigation by Fine' of the lattice
dynamics of tungsten, several calculations for the other
transition metals using Born —von Karman force con-
stants have been reported in the literature. These cal-
culations have primarily been concerned with the harmon-
ic properties. The harmonic force constants for interac-
tions between nearest and next-nearest neighbors have
been determined from the elastic constants. The extension
of these models for the investigation of the anharmonic
properties of transition metals is not feasible. More re-
cently, some attempts have been made ' to formulate a
theory where the dynamical matrix is broken down into
the contributions from the various sources such as ions,
electrons, etc., but the short-r'ange interaction is still fitted
to elastic constants. The extension of this approach to
study the anharmonic properties of transition metals is
also not feasible.

The reason for this impasse is that the lowest-order
anharmonic perturbation-theory calculation of the
Helmholtz free energy F( V, T) for volume V and tempera-
ture T requires knowledge of the anharmonic force con-
stants. These force constants can be determined from the
third- and fourth-order elastic constants, if known, but
they have not been measured for the transition metals.
Even if such a model can be constructed, it is difficult to
include the volume dependence of the free energy.

Recently, we have presented a well-defined procedure
for calculating the anharmonic properties of fcc and bcc
metals, using a modified Morse potential to represent the
atomic interactions. The procedure was successfully ap-
plied by Shukla and MacDonald and MacDonald and
MacDonald to the fcc metals in the nearest-neighbor ap-
proximation. F( V, T), and thence the other thermo-
dynamic properties, viz. , the thermal expansion c,, the
coefficient of linear expansion a, the isothermal and adia-

batic bulk moduli Bz and Bs, respectively, and the specif-
ic heats at constant volume and constant pressure, C~ and
Cz, respectively, were calculated for Cu, Ag, Ca, Sr, Al,
Pb, and Ni. The same procedure has been applied to the
alkali metals. ' In the latter case, the calculation is com-
plicated by the fact that a second-neighbor model is re-
quired for bcc metals because the first- and second-
neighbor distances are nearly equal. " The exact calcula-
tion of the harmonic and anharmonic contributions to
F( V, T) now requires the calculation of 25 Brillouin-zone
sums. These sums were evaluated for a range of volumes
characterized by the three dimensionless parameters
tet Icp K3 which depend on the first and second deriva-
tives of the potential function tp(r) evaluated at the
nearest- and next-nearest-neighbor distances r j and r~,
respectively. For the alkali metals, this theory represented
e very well. The calculated C~ (after allowance for the
vacancy contribution) were found to agree with experi-
ment with 3%, but the agreement for Cp was not so good
(within 6% of experimental values), largely, in our view,
because the electrons were treated additively.

Since our interest in calculating the anharmonic contri-
bution to the thermodynamic properties of crystals was
aroused by the observation of exceptionally high heat
capacities in the transition metals at high tempera-
tures, 'z '6 it is of particular interest to apply the theory
outlined above to these metals also. This can be done
directly for the thermal expansion and the lattice contri-
bution to. the specific heat and bulk modulus. In a prelim-
inary report, ' we have presented the results for e and Ct,
the lattice contribution to Ci, of niobium and tungsten, as
representative of the 5-valent and 6-valent metals, respec-
tively. However, because of the d-band electrons in the
transition metals, the electron contribution to the thermo-
dynamic properties must be treated differently from that
for the alkali metals, though it will still be assumed to be
additive.
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TABLE I. Data used to obtain the potential parameters: The Debye temperature OD (Ref. 18), the
sublimation energy U (Refs. 19 and 20), and the lattice spacing ap at 0 K (Refs. 18 and 21). Parameters
for the modified Morse potential in a second-neighbor model of the bcc lattice:
y(r) =[Do/(2b —1)][exp[ 2—ab(r —rp)] —2b exp[ —a(r —ro)/b] }.
Metal

V
Nb
Ta
Mo

rp
0

(A)

2.7479
3.0090
2.9790
2.8209
2.8331

a
(A ')

0.8963
0.7530
1.0294
1.5135
1.5568

Dp
(10 ' J)

1.2483
1.7582
1.9367
1.6891
2.1909

1.20
1.35
1.80
1.20
1.35

Q~D

(K)

326
241
247
459
388

U
(kJ/mol)

510.95
722.82
781.41
656.55
848.10

Qp
0

(A)

3.0184
3.3017
3.2935
3.1376
3.1559

In this paper, we present the results we have obtained
for the thermodynamic properties of V, Nb, Ta, Mo, and
W. Details of the theory pertinent to the transition metals
are given in Sec. II. The results for s, a, Br, Bz, Ci, and
Cp are presented in Sec. III. The discussion in Sec. IV
concludes our study of bcc metals.

II. THEORY

Full details of the theory and the method of calculating
E(V, T) and its derivatives have been given in Ref. 10. It
remains here to give details specifically for the transition
metals.

The experimental data' ' used to determine the pa-
rameters of the modified Morse potential and the values
of these parameters are given in Table I. It is also of in-
terest to note the ranges of Ki, K2 K3 values that are covered
by each of the transition metals as it expands, since these
are important in determining how well the theory survives
its first test, viz. , to reproduce the experimental values of
the thermal expansion. The ~ ranges are given in Table
II. We note here that the parameter ~2 lies in the range
0&K2&0.05 for tunsten and also, for most of the tem-
perature range, for molybdenum. This fact posed prob-
lems for the accuracy of the numerical procedures used to
calculate the derivatives of F(V, T) on two counts. First,
the values K=0,0.05 were the two lowest values of K2 used
as mesh points in the interpolation procedure that evalu-
ates the Brillouin-zone sums at any point (Ki, K2, K3), i.e., at

where

=K2 —K3 ~

B= [%"(r
1 ) —%'(r 1 )«1] .

To remedy the situation, the Brillouin-zone sums were
evaluated for a new mesh of points with Kz in the range
0 & K2 & 0. 1 and further, the parameter K2 =K2+ K3 was
used instead of K2 [see Eq. (1)]. With these two changes,
satisfactory values of d F/dr were obtained. Similar
changes were made for tantalum, where the largest ~2
value is only 0.12, and there was a significant improve-
rnent in d F/dr . As a check on the results with the
original inesh points, a finer mesh was also used for niobi-
um and vanadium. For niobium, there was a slight irn-
provement, and for vanadium, the finer mesh had negligi-
ble effect on the results.

The only significant change in the theory lies in the ex-
pression we use for the electron ground-state energy. For
the transition metals, it is important to take the d-band
electrons into account. To this end we have used the for-
mulation given by Wills and Harrison for the total ener-

gy per ion [see Eqs. (2), (12), and (25) in Ref. 22]:

any volume V. Second, K2 is defined as the difference be-
tween two terms that are nearly equal in these metals, viz. ,

K2 [e "«2 ) —e«z )«z ]/B
= [qr "(rz )/B] —K3

Metal K2

TABLE II. Ranges of lattice spacing r& and a] K2, K3 values in the transition metals.

r (K) r2 (A)

0
2000

3.0184
3.0884

0.876 02
0.93647

0.249 98
0.208 38

0.041 32
0.057 70

0
2300 .

3.3017
3.3650

0.872 78
0.915 39

0.272 19
0.244 93

0.042 41
0.054 17

Ta 0
3300

3.2935
3.4133

0.899 35
0.975 09

0.121 66
0.075 91

0.033 55
0.055 17

Mo 0
2650

3.1374
3.2000

0.91096
0.96026

0.054 75
0.003 88

0.029 68
0.040 66

0
2560

3.1559
3.2000

0.91480
0.943 00

0.039 50
0.010 10

0.028 40
0.034 60
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E,&

——2.21(fP/2m)Z, Iro —0 9.16(e !2)Z, Iro —(e /2)a~Z, /ro+1. Se2r Z, /ro

—0.SZ~(1 —Zd /10) 30 9.n ' (A Im )rd Ir ~ +nZd (11.4)(fi Im )rd lr ~, (2)

ro rq /(n ——~3)'/ (3)

where r& is the nearest-neighbor distance, ro is the radius
of the sphere occupied by one atom, rd is a characteristic
length calculated from band theory, and r, is the pseudo-
potential core radius. n is the number of nearest neigh-
bors, e, m are the free-electron charge and mass, respec-
tively, a~ is the Madelung constant, and Z„Zd are the
effective charges of the s and d bands, respectively, such
that the total ionic charge Z is correct, i.e., Z =Z, +Zd.
For the bcc lattice, ro is related to r

&
as follows:

III. RESULTS

A. Thermal expansion

The equilibrium lattice spacing r *(T)has been calculat-
ed over the desired range of temperature O~ to the melt-
ing point T for the each of the transition metals V, Nb,
Ta, Mo, and W. At the reference temperature tempera-
ture, 293 K, we obtain quite good agreement with experi-
ment, ' as shown in Table III. The thermal expansion
defined by

and therefore Eq. (2) can be expressed in terms of r~ as
follows:

r (T)—r (293 K)
r*(293 K)

(8)

Eel A I /r 1 +A 2 Ir 1 +A s jr ~ +A s /r
& +A s /r

&

where

(2') and the coefficient of linear expansion a,

A i ———(0.916Z, +a~Z, )(8m/3)'i v 3e2/4,

Aq 2 21(——fP/. m)0 75(8m. /. 3)~~~Z, ~

As ——(3v 3 m /2)e~r, Z, ,

A s =Z~( 1 —Zd /10)30. 9W2 (A' Im )rd,

As ——8Zd(11.4)(A' Im)rd .

(4)

a(T)= dv

r*(293 K) dT

are then calculated and the results are shown in Figs.
1—3. Comparison with the experimental values' ' tells
us immediately that the theory will not be successful at
temperatures much higher than 1SOO—2000 K, depending
on the metal in question. We attribute this, in the first in-

By differentiation of Eq. (2') with respect to r &, we obtain
the following expression for the electron contribution to
the isothermal bulk modulus:

BT (2r
&
/9r 2 )——(4A ~ Ir ~ + 10A 2/r ~ + 18A 3 Ir ]

+40As!r)+88As/r) ) . (S)

The total isothermal bulk modulus is then given as the
sum

Bg ——By+By .el
(6)

This is the value to be used in the calculation of the
C~ —C~ correction,

CI, Cv~+C.i+ z
N—a'(r')'Br T

where r is the equilibrium lattice spacing (second-
neighbor distance) at temperature T, and C,~ is the elec-
tronic contribution to the specific heat.

@0 ~

Cg

(:
0
M. ~{ ~

Q
X

LA

E
(D

D

r
X

r

~ X
/

Metal Experiment

TABLE III. Lattice constant at room temperature, 293 K.
Experimental values are taken from Ref. 21.

LA

C3

C3

C3
1

1000 1500 2000 2500

Temper at, ur e[K)
3000 3500

V
Nb
Ta
Mo
W

3.0284
3.3097
3.3002
3.1435
3.1603

3.0231
3.3066
3.2980
3.1405
3.1586

FICz. 1. Thermal expansion c(T) of 5-valent transition met-
als. Vanadium: theory (- ), experiment (H); niobium: theory
(———), experiment (4); tantalum: theory ( ~ ), experiment
()&). All experimental values are taken from Ref. 18.
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Mo Zd

TABLE IV. Parameters for electron ground-state ener
Total charge Z, d-band effective h Z,ec ive c arge Zq, d-state radius rq,
and pseudopotential core radius r, (Ref. 22).

Metal Z
LA

o&

C
0
(0

D
X

LLj

V
Nb
Ta
Mo
W

5
5
5
6
6

3.5
3.5
3.5
4.5
4.5

0.83
0.83
1.18
1.07
1.07

0.870
1.010
1.015
0.810
0.676

p

LA

C3

C3

C3

p-

p
p

p
p

p

9
p

I

500
I I I I

1000 1500 2000 2500

Temper atur e!.K)
3000 3500 GOOD

FIG. 2. Thermal expansion a(T) of 6-valent transition met-

als. Molybdenum: theory ( ), experiment (Ref. 18) {+ ).
Values have been increased by one unit. Tungsten: theory

(———), experiment (Ref. 23) ).
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FIG. 3. Coeff '
oefficient of linear expansion a(T) of v d'

niobium, tanta um
o vana rum,

an a um, molybdenum, and tungsten. Th
———), Ta ( ~ ~ ~ ~ ), Mo(—-—), and W (—-—). Ex-

periment (Ref. 18): V (0), Nb (E), Ta (&(), and Mo + ). Ex-
e . : ~). To avoid crossing of the curves, the

results for the individual metals have been displaced as follows:
V by 12 units, Nb by —5 units, Ta by 10 units, Mo b 4
and W by 1 unit.

uni s, o y 4 units,

stance, to the inadequacies of the modified Morse poten-
t e interaction between atoms.tial as a representation of

e corresponding ~z values are so small rt' 1

e a ice expands, wegsten and molybdenum, that, as the 1 tt'
are approac ing the unstable situation when "

2 0.w en' r2 (0.
For the Rydberg potential, higher values of wz are ob-

ture as was
served experimentally over the h 1w o e range of tempera-
ure, as was the case for the alkali metals. ' Th d'ff

tiation nnecessary to obtain a(T) emphasizes differences
between theory and experiment h

' F' ., as s own in Fig. 3.

B. Bulk modulus

The lattice contribution to the isothermal b lk
modulus,

a u

dT=
T

is about two-thirds of the total contribution (lattice plus
electron) to the bulk modulus. Th 1a" us. e e ectron contribution

z is quite sensitive to the values of rd and r used in E
(4). We find that sa satisfactory results are obtained with the
parameter values shown in Table IV. W
batic

e . e o tain the adia-
a ic bulk modulus Bs from the relation

&s

Cy+C, i

(11)

(10)

where BT and Cr are given by E s. (6) and (7qs. an 7), respective-
e o not include the contribution of vacancies to the

specific heat here, since we have ave no way o estimating

tion m
eir contribution to BT. The results for all for a ive transi-

'on metals are shown in Fig. 4, together with the avail-
able experimental values. For M d W, h is
good a reernent

or o an, there is

g en between theory and experiment. It is less
, h is quite

good for the 5-valent metals; certainl the th
produce the u

The
numerical evaluation of d I'/d d'

ey carry through to the specific-heat curves also.

C. Specific heat

(12)

In this theor y, we assume that the lattice electr d-

vacanci
~ ~

rons, an
cies make additive contributions to the sp

j ~ ~ )

Ctheor CI +C +C
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b

dence of the Fermi energy. Furthermore, we have intro-
duced a factor f which represents the modification of the
oo values that is necessary if we are to represent the high-
temperature density of states in the transition metals.
That some modification is called for becomes apparent
when we consider the implications of the high oc values
of the 5-valent metals. If we obtain Ci from Eq. (7) us-
ing experimental values for the other terms and with

C,I opT——to represent the electronic contribution, we find
that CI (expt) is less than the lattice contribution calculat-
ed for our model, ' a result which is quite unacceptable.
For the 6-valent metals, the comparatively small values of
&To cause the experimental values of CI to be larger than
the theoretical values, the more usual result in such a cal-
culation. Justification for a modification of crc is given by
Manning and Chodorow in their study of the density of
states at the Fermi surface for tungsten and tantalum.
According to their estimates, the electron contribution to
the specific heat is such that, at 500 K,

I I I I I I I

500 1000 1500 2000 2500 3000 3500 0000

TernPer Clt. ur e (K )

a=1.73oc for W,
cr=0.4lao for Ta,

(16a)

(16b)

where

dr
Cp ———T

dT y

r*(T)
C.I =aof r*(0)

(13)

(14)

FICx. 4. Adiabatic bulk modulus 8~(T) of the transition met-
als. Theory: V ( ), Nb (———), Ta (—-—), Mo ( ~ ~ ~ ~ ),
and %' (——). Experiment (Ref. 24): V (G), Nb (4), Ta ()&),
Mo {+ ), and W (g).

Cr ——Cp(1+98@a VT/Cp) (17)

C7

C)
LA

"fhis estimate for tungsten was substantiated by the exper-
imental data of Magnus and Holzman and it has been
further confirmed by the recent results of Ditmars.
With these values as a guide for the other transition met-

als, we have chosen f so that Ci ' is in good agreement
with CI" ' near 500 K, where CI" ' is determined from ex-
perimental quantities' ' ' ' according to the thermo-
dynamic relation

SfC„,=R exp
k

Ef Ef
kT kT

(15) C3

LA—
Vanadium

Sf and Ef are, respectively, the entropy and energy of
formation of single vacancies, k is Boltzmann's constant,
R is the gas constant, and oc is the coefficient of the elec-
tronic specific heat at 0 K. The values used for oII (Ref.
25), Sf, and Ef (Ref. 26) are given in Table V. In Eq. (14)
we have allowed for an explicit volume dependence of the
electronic contribution arising from the volume depen-

TABLE V. Parameters for electron and vacancy contribu™
tions to the specific heat: The coefficient of electronic specific
heat at 0 K, op (Ref. 25), high-temperature modification factor
f {see text), and energy for vacancy formation Ef (Ref. 26).
exp(Sy/k) =7.39 in all cases (Ref. 26).

~ o
Oa
E

LA

D
{D a

LA

U
LA

0
Q a
CL ~

C3

I I I I I I

Metal Op
(10-' Umol K) (kJ/mol)

250 500 750 1000 1250 1500 1750 2000 2250
Ternpet-atur e (K )

V
Nb
Ta
Mo
W

96.23
78.45
59.83
18.49
11.31

0.300
0.200
0.300
1.727
1.727

202.6
250.8
270.2
289.4
385.9

FIG. 5. Specific heat of vanadium. The lattice contribution
Cq is denoted by a dotted line ( ~ ~ '. ~ ), the lattice-plus-electron-
plus-vacancy contribution Cz ' is denoted by a short dashed
line (———), and Cp is denoted by a solid line ( ). Experi-
mental values of C~ (Ref. 12) are denoted by Cl. C~" ' is denoted
by $.
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Details of this procedure for niobium and tungsten, as
representative of the 5- and 6-valent metals, respectively,
have been given in our preliminary report. ' The values
of f used here are given in Table V. We now proceed to
calculate Ci, using Eqs. (7), (14) and the vacancy contri-
bution C„„[Eq.(15)]. The results are shown in Figs.
5—9. Although there is reasonable agreement with experi-
ment over the first 1000-K rise in temperature, it is clear
that the theory cannot account for the steep rise in specif-
ic heat observed at higher temperatures, unless the vacan-
cy concentration is much greater than that derived from
positron-annihilation experiments. Not surprisingly,
analysis of specific-heat data in terms of vacancy and
nonvacancy contributions does indeed yield higher vacan-
cy concentrations. ' For molybdenum, if we use the es-
timates of Chekhovskoi and Petrov [E& 179.5 kJ——/mol,
exp(Sy jk) =50.9] in Eq. (15), we obtain good agreement
with experiment over the whole temperature range. The
vacancy concentration is 2.9% at the melting point in this
case. However, this analysis makes assumptions about the
nonvacancy contribution to the specific heat, precisely the
subject of our investigation here, so the parameters cannot
be considered independent. Moreover, the analysis of a
different set of specific-heat data by Kraftmakher ' gives
significantly different results. The vacancy concentration
is 3.8% at the melting point in this case. For these
reasons, we consider the vacancy data from positron-
annihilation experiments to be the most reliable.

C3
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C3

D—
TckIl t B l le

LA

Q
E

D
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U
(D

LA

o ~
& o

C3
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CL

V3

PJ

500 1000 1500 2000

Temper atur e(K]

I

2500
I

3000 3500

FIG. 7. Specific heat of tantalum. The lattice contribution
Cq is denoted by a dotted line (. ~ ~ ), the lattice-plus-electron-
plus-vacancy contribution C~ ' is denoted by a short dashed
line ( ———), and Cz is denoted by a solid line ( ). Experi-
Inental values of C~ (Ref. 14) are denoted by &(. Cz"P' is denot-
ed by f.
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C,

C3
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I
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FIG. 6. Specific heat of niobium. The lattice contribution
Cz is denoted by a dotted line {- - .), the lattice-plus-electron-
plus-vacancy contribution C~ ' is denoted by a short dashed
line (———), and Cp is denoted by a solid line { ). Experi-
mental vaj.ues of C~ {Ref. &3) are denoted by D. Cy" ' is denot-
ed by 4.

FIG. 8. Specific heat of molybdenum. The lattice contribu-
tion C~ is denoted by a dotted line ( ~ - .), the lattice-plus-
electron-plus-vacancy contribution Cz ' is denoted by a short
dashed line (———), and C~ is denoted by a solid line ( ).
Experimental values of C~ (Ref. 15) are denoted by + . Cy" ' is
denoted by Q.
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IV. DISCUSSION

We have calculated the thermodynamic properties of
the transition metals V, Nb, Ta, Mo, and W from the
second-neighbor central-force model of a bcc crystal that
we used for the alkali metals. The results are reasonable
up to about 1800 K, but fail to reproduce the rapid up-
ward trend observed in the thermal expansion and specific
heat at higher temperatures. Although we might expect
the Morse potential to be a better representation of the in-
teraction potential in the transition metals owing to their

FIG. 9. Specific heat of tungsten. The lattice contribution
C~ is denoted by a dotted line ( ~ ~ ~ ), the lattice-plus-electron-
plus-vacancy contribution C~ ' is denoted by a short dashed
line (———), and Cp is denoted by a solid line ( ). Experi-
mental values of Cp (Ref. 16) are denoted by g . CP~' is denot-
ed by $.

large core overlap, the limitations of the theory that were
apparent in the alkali-metal results are felt more strongly
here. However, we note that C~"' and C~" ' are in very
good agreement over the limited temperature range for
which data are available. This was not the case for the al-
kali metals.

It is possible that higher-order perturbation-theory con-
tributions will improve the theoretical results. For the
inert-gas solids, it has been shown that the A, terms pro-
duce a significant increase in the specific heat when a
Lennard-Jones potential is used. A smaller increase has
been obtained with the Morse potential. Although we
know that both the sign and magnitude of the lowest-
order Q, ) anharmonic contribution are very sensitive to
the interatomic potential used in the model, it is likely
that the A, contribution will increase the specific heat of
the transition metals also, though not enough to account
for the experimental results.

Clearly, the electrons should not be treated additively,
as we have done here, but to do otherwise takes us into a
vastly more complex situation owing to the long-range na-
ture of the interactions, and the usefulness of our simple
approach is lost. In our view, it is the vacancies that are
most likely to be responsible for the high-temperature
behavior in these crystals. To treat them as static entities
is quite inadequate. They need to be treated dynamically
if their contribution to the thermodynamic properties is to
be correctly represented. Some support for this view is
given by our earlier work on rubidium. This Monte
Carlo calculation indicated that an increased heat capacity
was associated with large-scale atomic motions made pos-
sible by the presence of vacancies. Such motion cannot be
dealt with by perturbation theory.

This summary of the limitations of the theory con-
cludes our study of bcc metals.
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