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An experimental arrangement suitable for the observation of acoustic-wave localization in a system
where the excitations are one dimensional is proposed. Explicit predictions about the outcome of such an
experiment are made. Some useful information about third-sound dissipation can also be obtained.

The localization of acoustic waves in a two- or three-
dimensional fluid containing a random distribution of hard-
disk or hard-sphere scattering centers has been discussed by
one of us. ' First the acoustical boundary value problem was
transformed into a multiple-scattering one by using standard
techniques. The resulting multiple scattering theory for
sound-wave propagation was identical in structure to the
theory of electron motion in a disordered solid. A discus-
sion of sound-wave localization was then given by using the
techniques developed by Vollhardt and Wolfle4 for the elec-
tron problem.

Previously a field theory and renormalization-group for-
malism had been used by John, Sompolinsky, and Stephen5
to describe the transition to localized phonon modes in a
disordered elastic medium in 2+ ~ dimensions.

The general conclusion of localization theory is that sound
or acoustic waves are always localized in d ~ 2, regardless of
the amount of disorder or of the impurity density. Howev-
er, the effects of localization become important only when
the localization length is smaller than the size of the experi-
mental system. Recently, an experiment was proposed and
analyzed for the observation of localization in a two-
dimensional system. The system considered was a super-
fluid helium film and the localized excitations were third-
sound waves. Both here and in Ref. 6 the techniques used
to describe sound-wave localization are identical to those
given in Ref. 1. We know from the analogous electron
problem7 that localization effects are strongly enhanced by
lowering the dimensionality; here, we propose an experi-
mental arrangement suitable for the observation of wave lo-
calization in one dimension and make explicit predictions
about the outcome of such an experiment.

The system we consider is also a superfluid 4He film and
the excitations are also third-sound waves. The tempera-
ture is assumed to be low enough that the normal fluid
component can be neglected. On the substrate we set up an
array of thin parallel strips of another material whose van

der Waals interaction with the film is as different as possible
from that of the original substrate. The strips will be as-
sumed to have a uniform width 2a, while the distance
between them is random. We only specify the strip density
n (see Fig. 1). Our treatment allows for overlapping strip
configurations.

The equilibrium thicknesses on the substrate, h~, and on
the strips, h2, are related by equating the van der Waals po-
tentials as seen by the film surfaces on both regions. To a
good approximation, h2/h~= (a2/u&)' ', where o. t and o2
are the van der Walls force constants corresponding to the
original substrate and the strips, respectively. The unper-
turbed speed of sound C is the same in both regions.

The shape of the film profile in thp boundary between
two substrates has been studied by Cole and Vittoratos.
The region where the film thickness changes is very narrow
( & 100 A) for thin films. Consequently, for a reasonable
strip width (say, a & 1 p, m), the waves essentially see a
sudden change in film thickness. This allows us to derive
boundary conditions on the strip sides and evaluate the
transition matrix corresponding to the scattering of a wave
by a single strip. Using well-known multiple-scattering tech-
niques, ' ' " the complicated boundary value problem aris-
ing from considering the random distribution of strips is

c

FIG. 1. Sketch of the random arrangement of parallel strips of a
different substrate. A third-sound wave with speed Con the unper-
turbed substrate is coming from the left.
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@(x,t~0) =0 (2)

Bt
(x, t=0) =f(x)

for a given initial perturbation f(x). The corresponding
Green's function is defined by

P(x, t) =J) dx' G(x, tlx') f(x') (4)

and it satisfies the differential equation

tansformed into a tractable many-body problem.
The calculation of the Green's function averaged over the

random distribution of scatterers leads to explicit formulas
for the renormalized speed of sound and the added dissipa-
tion due to the disordered substrate. On the other hand,
the dissipation of third-sound waves on "clean" sub-
strates'2 '4 is not yet completely understood in spite of the
several different mechanisms that have b'een con-
sidered. ' By varying the size or density of the scatterers
in an experiment like the one put forward here, it should be
possible to describe quantitatively the contribution of sub-
strate disorder to third-sound attenuation. Such a descrip-
tion would shed some light on the complex dissipation prob-
lem.

For reasons discussed elsewhere, 7 the analysis of localiza-
tion effects requires the calculation of functions involving
the averaged product of two Green's functions. We carry
out this evaluation using a self-consistent diagrammatic
theory, which will allow us to determine the localization
length as a function of the physical parameters involved.

Qf course, in a scattering experiment, the third-sound
wave should be created in such a way that it propagates per-
pendicularly to the strips. Similarly, a one-dimensional lo-
calized excitation would have its "crests" and "valleys"
parallel to the strips.

Under the conditions described above, the problem con-
sists of solving the wave equation

ay ~'~ =0, (1)
Bx2 C2 Qt2

for the velocity potential @(x,t) (v, = 8@/Bx, where u, is the
velocity of the superflow). The initial conditions can be tak-
en to be identical to those in Refs. 1 and 5,

where 1, 2, and 3 denote, respectively, the regions x & X
—a, X —a &x&X+a, and Xi+a &x.

In the operator notation used in Ref. 1 the %-scatterer
(N ~) Green's function can be expressed in terms of an
infinite series of T; operators describing scattering from the
ith scatterer,

N+ e + + a + +
GE GE G+ g GE, OTi (E)GE, O

i=1
N

+ g GE OT~ (E)GE OTJ (E)GEO+
i&j

Here the subscript 0 denotes the free Green's operator and
(e 0)

R oo

GE+ (x I
x') =„dte"~+""G(x t

I
x') =

& x I Gg I
x')Jp

is the E-dependent Green's function in a coordinate
representation, circumflexes denoting operators. In the
momentum representation one has

&plGE lp) = dxdx'exp( —ipx+v x')&xlGE lx}
2m ~

(9)
The transition matrices in Eq. (7) can be readily computed
from Eqs. (5) and (6). The final result has the general
form

&p I T, (E) Ipt) =-exp[i(pt —p)X] &p I T —+(E) lp, ), (10)

where the Xi dependence appears only in the exponential
factor. %'e give & p I T -+ (E) Ipt) only in the long-
wavelength limit, which is the relevant case under most ex-
perimental conditions

a (h) —hp) C'
&pl T'-(E) lpga) =—pt(phd —pih»

mh)h2

+iC(p~a) (Ea) (ht —hp)
(pht'+ pth2 )

7rh h

(»)
when pa, p~a, Ea/C && 1. As for the general result, we
only point out that it satisfies the relevant Ward identity,

02

Qx

'Q2

C2 Bt
G(x, tlx') =0, Im&pl T+Ip)-

(5)
= +(~/2Ec)(l&plT 'Ip) I'+ l&plT-'I —p}l'-)

ht $(x, t) I) = h2 at x=Xi —a

p(x, t)12=p(x, t) I3 at x= X+ a

h2 @(x,t)12 hl
~

f(x t) at x +'+ a8
Qx

together with the appropriate initial conditions. We have al-
ready commented on the validity of considering a sudden
change in film thickness at the strip sides. Although the
velocity potential is continuous, mass conservation requires
a discontinuity in its first derivative at the locations
x = X; + a of the strip sides, where the ith strip is supposed
to be centered at Xi. Hence, the boundary conditions on
$(x, t) and G(x, tlx') are, for the ith scatterer,

@(x,t) lt = @(x,t) I2 at x = X, —a

for p = E/C ("particle number conservation") and that, for
N integer, &Nm/2a I T —IN7r/2a) =0, this last result coin-
ciding with the condition for a transparent barrier.

Since space is homogeneous on the average, the Green's
function averaged over the random location of the scatterers
(the averaging is denoted by ( )„)is diagonal in the
wave-number representation and can be written in terms of
a self-energy X as

«p I
GE-+

lpga})

..= g(p —pi) (G(p E + i~)).,
= 5(p —p, ) [ C'p' —(E + i~)' —X,+-(E)]-' .

(12)
The diagrams corresponding to the self-energy, which can

be written as X~+-(E) =I ~(E) +icr~(E), are identical to
those in Ref. 1. Taking into account only the leading con-
tribution for na & 1 yields X~

+—(E) =2mn&pIT+(E)lp);
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the renormalized speed of sound is

C2 = C2+ 27r np ~ Re (p I T -+
I p )

= C [1—2na(ht —h2) /hthq] (13)

We observe that C ( C, as expected, since interference in
the scatterer generates a lag in the wave transmission. This
renormalization effect should be measurable: a conserva-
tive estimate (nt = 2u2, na —0.2) gives a correction of the
order of one percent. The imaginary part of the self-energy
is, on the other hand,

rr~(E) = +27r n Im(p I T +—(E) Ip)

(h, —h, )'(h,'+ h,'), (14)

P„(xI
x') = „~, dt exp [ i( o) + to) t] G'(x, t I

x')

= Jt Gs+~„/2 (xlx') Gs /2 (x lx')

++co
Pp „(xlx') (15)

The quantity we calculate is

(Ps(k, o&)),„=,J d(x —x') exp[ —ik(x —x')] (P~ (xlx')),„.
(PE(k, co) ),„

is the k and co Fourier component of the aver-
age intensity resulting from the E Fourier component of a
pulse excited at the origin. We call (PE(k, co)),

„
the inten-

sity propagator.
The intensity propagator can be calculated as in Ref. 1.

In the long-wavelength (k 0) small frequency (co 0)
limit one obtains

PE(k, o)) C
E —' +kD(E, )

(17)

Physically Eq. (17) implies that the intensity of a pulse
created at the origin diffuses in this random system with a
frequency-dependent diffusion coefficient D (E, co). The lo-
calization of third sound is described by the behavior of
D (E, o) 0).

Following Vollhardt and Wolfle, 4 D (E, cu) can be calculat-
ed diagrammatically. Retaining the lowest-order (or
Boltzmann) contribution and the maximally crossed dia-
grams important in the theory of electron localization, the

Carrying out the inverse Fourier transform of Eq. (2.12),
we find an attenuation length which is L, =2C'p2//Eo~(E).
The attenuation constant X= L, ' can be evaluated from
Eq. (14). For o,'t=2o. 2, na —0.2, X= a/A. 2, where X is the
excitation wavelength. Note the strong effect of an increase
in strip width. The attenuation constant has the same fre-
quency dependence as the normal hydrodynamic attenuation
constant. The frequency dependence is stronger for higher
dimensionalities: for example, the two-dimensional model
of Ref. 6 leads to X —A. 3. Writing C2=o.aha, we also see
that the attenuation increases essentially with the cube of
the equilibrium thickness, a behavior quite different from
that predicted by the other proposed attenuation mecha-
nisms and which should be easy to detect experimentally. '

As mentioned above, an analysis of localization effects in-
volves the average of the squared Green's function. We de-
fine,

self-consistent result is

D(E, o))
r

=Ds(E) 1 — —J dq
~s/c(E) 6 II 1

2gr C' E " q' —i ~/D(E ~)

Here Ds(E) is the lowest-order contribution:
t & 2 r '2

Ds(E) = h&h2

Although we have used different boundary conditions, the
frequency (E) and scatterer-size dependence of Ds(E) fol-
low the same rule as in the case of hard-core scatterers in
higher dimensions Ds(E) —n 'a 'dC(C/E)d+'. We
also note a power-law divergence, Ds(E) —(h~ —h2)
when ha h2, indicating that in the absence of impurities
(PE(k, co) )., is no longer diffusive.

The fact that one-dimensional excitations are always local-
ized in the presence of impurities is reflected in the second
term in Eq. (18). The only solution to Eq. (18) as co 0 is
D(E, co) = —ice( (E) +0(co ). Inserting it in Eq. (18)
yields (in space-time language) an intensity propagator that
is constant in time for long times and localized in a distance

Consequently, g is called the localization length. It can
be explicitly determined from Eq. (18). We obtain

g(E) =— (20)
n Ea ha2 —h22

The frequency dependence of the localization length is
identical to that predicted by John, Sompolinsky, and
Stephen. ' We note that g —(5 V, ) ~, where 5 V,
= [2a I ht —h21] is the excess volume of 4He on the strip per
unit width. To get reasonably short localization lengths, it is
necessary to use relatively high frequencies ()2x10' Hz)
and low speeds of sound ( & 10' cm/sec) (which means the
film cannot be too thin), together with strips which are not
too narrow (a ) 10 3 cm). The use of nuclepore, a sub-
strate on which C has been shown to be considerably re-
duced2' should be considered. For thick films, surface ten-
sion causes the film profile at the edge of the strip to
change slowly and thus our approximation of considering a
sudden change in film thickness is no longer strictly correct.
However, we believe that Eq. (20) would still give a good
description of localization, since (i) we are still in a long-
wavelength region and Ea/C « 1 for a wide range in the
parameters, and (ii) 5 V, will be essentially conserved, even
if its spatial distribution is modified.

We conclude with some remarks.
(1) The main results of this paper are given by Eqs. (13),

(14), and (20). Equations (13) and (14) give the renormal-
ization to the speed of third sound and attenuation constant
in the average Green's functions. For experimental situa-
tions where the localization length is very large, the aver-
aged Green's function adequately describes the propagation
of third sound. Equation (20) gives the localization length
in terms of known quantities. When g is less than the size
of the system, the third-sound excitation is localized and
does not propagate. The localization effect is stronger than
in higher dimensionalities and we estimate that it is experi-
mentally observable, as are the renormalizations mentioned
above.
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(2) Generazio and co-workersz~ zs have recently studied
experimentally the effects that an isolated "groove" or
"edge" has on the propagation and attenuation of third-
sound waves on an otherwise smooth substrate. This sug-
gests the possibility of considering a collection of parallel,
identical grooves distributed at random distances from each
other on a given substrate. Since the isolated scatterer ef-
fects can be computed by the methods used in Ref. 23, it
should be possible to analyze quantitatively the modifica-
tions introduced by the disorder in the distance between ir-
regularities. The individual groove modifies the behavior of
the film through a thickening due to capillary condensation.
As for the result of a third-sound experiment carried out on
a substrate with a random distribution of grooves, we expect
the (nE') ' dependence of the localization length to be
universal for all one-dimensional acoustic random systems.
Furthermore, we expect g —(BVs) ', where SVs is the ex-
cess volume of He in the groove per unit width. Since, typ-
ically, " 5 Vg && 5V„grooved substrates should be extreme-
ly good candidates for short localization lengths.

(3) It is easy to create a flow in the superfluid film. It
would be interesting to study how a flow pattern affects the

localization properties, both from an experimental and a
theoretical point of view.

(4) In the theory presented here we have neglected intrin-
sic dissipation which is analogous to inelastic scattering in
the electron problem. Although dissipation destroys locali-
zation on a very long time scale, we estimate that under
usual experimental conditions it can be neglected in the
third-sound experiments we are proposing.

For our one-dimensional system an exact analysis of lo-
calization may be possible using the ideas of Berezinskii. ~4

However, on the basis of its success with the electron locali-
zation theory4 we believe that the self-consistent formalism
we have used here, being far more tractable, gives a correct
description of the problem.
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