
PHYSICAL REVIE& B VOLUME 32, NUMBER 8

Indexing problems in quasicrystal diffraction
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Various features of quasicrystal diffraction patterns are discussed. The projection scheme is used
throughout and applied in some detail to the pattern formed by icosahedral Al-Mn. Comparison
with the diffraction pattern formed by the vertices of a three-dimensional Penrose tiling leads to the
value 4.60 A for the rhombohedron edge length.

The icosahedral phase of Alo 86Mno ~q recently
discovered by Shechtman et al. ' provides a rare challenge
to crystallographers. While it is almost certain that some
application of their art is necessary to unravel the detailed
atomic positions, such an endeavor requires a major re-
vision of the classical formulation of the problem. The
incomplete state of present knowledge can be appreciated
when we consider the fact that even for the most compli-
cated cases of ordinary crystal structure (i.e., large unit
cells) at least the determination of the lattice parameters is
an absolutely straightforward task. The Al-Mn
icosahedral phase defies even this first step of the struc-
ture determination. There is no indication that in either
real or reciprocal space its structure can be described by
simply specifying the dimensions and angles of some
periodically repeating unit. Thus it appears necessary that
one incorporate into crystallography the possibility of or-
dered aperiodic structures.

The objective of this paper is to discuss characteristic
features of the diffraction pattern formed by structures
projected from higher-dimensional periodic lattices (quasi-
crystals). Some formalism for the special case of the
icosahedral quasicrystal is developed, and we even go so
far as to compute the "quasilattice constant" for
icosahedral Al-Mn. No attempt has been made to give
precise mathematical definitions; for these the reader is
referred to a separate publication.

I. QUALITATIVE PROPERTIES
OF QUASICRYSTAL DIFFRACTION

Independent of the issue of symmetry, there are some
qualitative differences between quasicrystal diffraction
(QCD) and ordinary crystal diffraction (OCD). The pat-
tern formed by OCD is an infinite lattice of Bragg peaks
of roughly equal intensity. In fact, if we put a single
pointlike atom inside each primitive Bravais cell, then the
intensities will be exactly equal. Smearing out the charge
density of the atom or, more generally, modifying the
charge density by adding more atoms to the primitive cell,
only modulates intensities without moving or adding
peaks. The most prominent of these effects is due to
atomic form factors which cause intensities to decay rap-
idly beyond some radius in reciprocal space.

The pattern of Bragg peaks formed by QCD is a dense
filling of reciprocal space. The nature of each peak is

in all respects identical to the 5-function peak of OCD.
By this we mean that the intensity of a peak is propor-
tional to the volume and has zero width in the absence of
strain. Moreover, all the mechanisms that can broaden an
OCD peak will apply also to a QCD peak. Nevertheless,
one now has the remarkable property that within any
volume of reciprocal space there are infinitely many
peaks. Fortunately, most of these peaks are extremely
weak, making it possible to distinguish individual ones.
In principle it is possible to surround a given peak by a se-
quence of smaller and smaller volumes such that the in-
tensities of all the other peaks in the volume become arbi-
trarily weak. This suggests there is an interesting new
kind of decay in peak intensity unrelated to anything in
OCD. Of course it is still possible to modulate intensities
in the conventional way by modifying the charge density
in the "quasicrystal unit cell." For example, the atomic
form factor effects will still continue to play a role and
will vary continuously with g, the position in reciprocal
space. We thus distinguish "g-dependent" effects from
the more subtle effects that occur in arbitrarily small
volumes of reciprocal space wherein g is virtually con-
stant. For the latter we use the expression "g& depen-
dent. "

II. PROJECTIONS FROM HIGHER DIMENSIONS

A natural way of representing the quasicrystal diffrac-
tion pattern is by means of projecting an ordinary higher-
dimensional reciprocal lattice. To emphasize the pro-
jected nature of the physical momentum we will adopt the
notation g~~ in place of g, and reserve the use of g for the
higher-dimensional lattice. Figure 1 shows the projection
g = (g~ ~,gi ) of a two-dimensional lattice into a one-
dimensional subspace. Provided that the space of "physi-
cal" reciprocal vectors given by the g~~ axis is incommens-
urate with the lattice, the projections will be dense. We
notice that two projections with very nearly equal values
of g~~ can arise only at the expense of having their corre-
sponding lattice vectors widely separated in the orthogo-
nal gi direction. The qualitative features of the quasi-
crystal diffraction pattern can thus be understood if one
assumes that the intensities decay with the magnitude of
gj. .

If experimental resolution is represented by the pair of
dashed lines in Fig. 1, then only the lattice vectors be-
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FIG. 1. Projection of a two-dimensional reciprocal lattice
into one dimension. Intensities are represented by the sizes of
the circles and decay with the magnitude of gq. Dashed lines
represent experimental resolution.

FIG. 2. A one-dimensional quasicrystal generated by project-
ing a two-dimensional periodic lattice. Only the points between
the dashed lines are projected onto the x~~ axis.

tween these lines give rise to observable peaks. Increasing
the resolution of the spectrometer has the effect of mov-
ing the dashed lines outward to a larger

~ gi ~, thus filling
in the regions between peaks on the g~~ axis with even
weaker peaks.

The detailed mode of decay of intensities with increas-
ing

~ gi ~, what we have called gi-dependent behavior, is
determined by the structure of the quasicrystal. A partic-
ularly simple quasicrystal structure is again obtained by
projecting a higher-dimensional lattice. ' %'e may con-
tinue the example above by considering the two-
dimensional lattice of vectors x reciprocal (in the conven-
tional sense) to the lattice of Bragg vectors g. This gives
us a two-dimensional crystal lattice of the usual kind. A
simple one-dimensional quasicrystal results if we now pro-
ject these lattice points into a one-dimensional incom-
mensurate space represented by the x~~ axis in Fig 2. Be-
cause we want the projected points to define a structure of
atoms of nonvanishing size, we avoid a dense pattern by
restricting ourselves to only those lattice points which lie
between two other lines (shown as dashed in Fig. 2) paral-
lel to the xll axis. The positions of these lines can be
specified in terms of their intersection with the orthogonal
axis at xi ——a and xi b Afinite——qu. asicrystal having N
projected points is of course bounded in the xll direction
as well.

By choosing the same orientation for the x
I I

and g
I I

axes in their respective lattices, the following identity
holds for any pair of vectors x =(xll,xi ) and g =(gll, gi ):

g lZ()g[] lZJ gjl=e =e e

actual distribution in the limit N~ao is dense and uni-
form on the interval (a,b). According to (2), the Fourier
transform of p(xi ) gives the structure factor

sinz

In the idealized situation under consideration we see
that the intensities are only gi dependent. If all the atom-
ic charges were spread out in the same way, the net effect
on (3) would simply be to multiply it by a function of gll.
More complicated decorations of the quasicrystal are also
possible and lead to structure factors having a more com-
plex g~~ and gq dependence.

The rather slow gi-dependent decay of intensities given
by (3) is due to the sharp discontinuities of the distribu-
tion p(xi ) at xi =a and xi b The s——hap. e of the distri-
bution will be different if the method for selecting the x-
lattice points is changed. For example, one might consid-
er the possibility of allowing the dashed lines in Fig. 2 to
wander or have small oscillations with some distribution
of amplitude in the xi direction (see Fig. 3). Consequent-
ly, it is not inconceivable to have a Gaussian p(xi), in
which case the gi-dependent decay of intensities would be
much faster (i.e., also Gaussian).

To see what effect these changes have on the actual
quasicrystal we first reconsider the original construction
with

~

a b~ chosen s—o that the dashed lines span exactly
one cell of the lattice, corner to corner (see Fig. 4). This

If for simplicity one places identical pointlike atoms at
each of the projections x II, n =1,2, . . . , N, then the (one-
dimensional) structure factor S(gll ) is given by the sum

S(gll) g e "II II g e
n=1

The second step was accomplished using identity (1) and
demonstrates that it is useful to know the distribution
p(xi ) of the values xi. From Fig. 2 it is clear that these
must fall inside the interval (a,b). In fact, the incom-
mensurate nature of the projection has the effect that the

FKx. 3. One possible way to generalize the selection of lattice
points.
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FIG. 4. By choosing the separation between the dashed lines
as shown on the left, the selected lattice points form a staircase
which projects into a sequence of long and short intervals.

creates the nice property that there now exists a unique
lattice path ("staircase") that is bounded by the two lines
and, in some sense, best approximates the incommensu-
rate slope. Notice that the points of the quasicrystal form
a sequence of long and short line segments.

We can now ignore the dashed lines of the construction
and consider modifications of the staircase itself. By pro-
jecting respectively into the x~~ and xz axes, it is possible
to follow the resulting changes in both the quasicrystal
and the distribution p(xq). The basic transformation
modifies a step in the staircase (see Fig. 5) and amounts to
swapping long-short combinations in the quasicrystal.
Suitable sequences of these transformations are capable of
generating the whole family of staircases having a fixed
average slope. Borrowing the terminology of interface
physics one might describe the original staircase as a
"facet" which is "roughened" by a step transformation.

Completely analogous constructions apply to d-
dimensional quasicrystals projected from D dimensions,
including the icosahedral quasicrystal with d = 3 and
D =6. ' Describing the higher-dimensional case in de-
tail gets rather involved geometrically and we only men-
tion the close analogy with the staircase picture above. It
is possible to distinguish between quasicrystals that are
optimal approximations of d-dimensional hyperplanes
and rough versions thereof. When projected into the
orthogonal D —d dimensions analogous to the x& axis,
these will lead to different distributions p. As before, the
Fourier transform of p is directly related to the gz-
dependent behavior of peak intensities.

peaks can be "indexed" or expressed as integer linear com-
binations of these six vectors. Again, it is useful to think
of a six-dimensional lattice which has been projected into
three dimensions. According to this view, each of the
vectors e~~ which generates the diffraction pattern is the
projection of a basis vector e of the six-dimensional re-
ciprocal lattice:

e'=(eI~, eI ) l =1 . . . 6.
This also points out the existence of another set of vectors
ez which span an orthogonal three-dimensional space.

When the vectors e~~ line up with the six fivefold sym-
metry axes of the icosahedron, the pattern of integer
linear combinations also has this symmetry. Although
the choice of positive directions is arbitrary, we will stick
to the convention shown in Fig. 6 with e~~ a polar vector
surrounded in cyclic order by el( ll

' ' ' ll' %"ithin
their own "pseudospace, " the orthogonal set of vectors eq
also form an icosahedral set. However, having already
made a definite choice for the vectors e

I ~, we must choose
the vectors eI as shown in Fig. 6. We notice that (1) the
directions of e q, e q, . . . , e z relative e z are reversed
and (2) the cyclic ordering of ej,e&, . . . , e~ is changed.
If we take all the vectors eI~ and ez to be unit vectors, "
then all the essential geometry can be summarized by the
scalar products

i
~ i, J ~ ~ ~

e~( e/~
= —eJ .eJ ——+ (i~j)v'5

where the sign is obvious from inspection.
A general Bragg vector may be written as

where the n; are integers and may be thought of as in-
dices. Here the scale is provided by the inverse of a, the
"quasilattice constant. " More precisely, a represents the
edge length of the rhombohedral cells that make up the
three-dimensional Penrose tiling. For each Bragg vector
given by (4), there corresponds a unique partner in pseu-
dosp ace:

III. ICOSAHEDRAL QUASICRYSTAL DIFFRACTION

Some notation will be useful in sorting out the remark-
able icosahedral quasicrystal diffraction pattern exhibited
by the recently discovered alloy of rapidly cooled Al and
Mn. ' Just as the Bragg lattice of ordinary crystals is gen-
erated by a basis of three vectors, the icosahedral pattern
is also generated by a basis e~~, although six in number
(i =1, . . . , 6). ' By this we mean that all the diffraction

2 5

FIG. 5. An elementary step transformation interchanges ad-
jacent long and short intervals.

FIG. 6. The icosahedral basis vectors in physical space and
pseudospace.
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In the primitive quasicrystal, with identical pointlike
atoms at the vertices of the rhombohedral cells, the inten-
sities are strictly functions of gj. Decorating the cells
with a more general charge distribution will add some
kind of g~

~

dependence to the intensities as well.
The significance of the "pseudo-Bragg-vector" gz can

be understood in the following way. It is quite easy to
show that suitable (integral) combinations of the basis set

eI~ will produce Bragg vectors densely in a region of g~~

space. If this region is small, then the intensity variations
due to g~~-dependent effects will likewise be small. If one
now examines the pseudospace partners of this local
group of Bragg vectors, one finds they are spread out over
a large region in gz space. In fact, a converging sequence
of vectors in g~~ space will actually diverge in gz space.
Thus the dense set of Bragg peaks in a small region will
have widely different intensities due to large variations in

Intensity values for the most prominent Bragg peaks of
the primitive icosahedral quasicrystal have been provided
in Table I along with the values of

~ g~~ ~

and
( gq ~

(units
are such that a= 1). As in the one-dimensional case, the
structure factor is given by the g~ Fourier transform of a
density p which is constant inside a region T and falls
abruptly to zero outside of T. The region T turns out to
be a triacontahedron, ' a very nearly spherical polyhed-
ron of 30 sides related to the icosahedron. The intensities
therefore depend strongly on the magnitude of gj with
relatively minute angular variations.
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FIG. 7. Progression of gq-dependent intensities for an even-

parity sequence a, b, c,d and an odd-parity sequence A, B. On
the right are shown the corresponding peaks in the diffraction
pattern (g~~ space).

IV. INDEXING THE ICOSAHEDRAL
DIFFRACTION PATTERN

Since the diffraction pattern of an ordinary crystal is
really just a Bravais lattice, the indexing of such a pattern
simply involves obtaining a set of three primitive basis
vectors that generate the lattice. A physical scale is easily
deduced from the minimum separation of Bragg peaks in
the three directions. Understandably, the situation'is not
nearly this simple for quasicrystals. In that the pattern of
peaks is dense, it is not even clear what sets the scale.

A useful way of dealing with the quasicrystal diffrac-
tion pattern is through the self-similarity transformations

TABLE I. A listing of peaks for the icosahedral quasicrystal having
~ n~~ ~

&25 and
~

nz
~

&3.4. The intensities given correspond
to the primitive quasicrystal with identical point charges at the rhombohedral vertices. The values of

~ g~~ ~

for A1086Mno, ~ may be
obtained by dividing the entries in the first column by a=4.60 A. Labels on the right refer to Figs. 9—11.

0.000
3.142
5.345
7.489
8.648

11.440
12.230
13.308
13.993
14.341
15.871
16.450
18.074
18.584
19.311
19.789
21.159
21.596
22.641
22.858
23.263
23.847
24.236

0.000
3.142
3.303
1.768
2.042
2.701
2.887
0.742
1.262
3.385
2.172
2.400
2.981
3.151
1.464
1.784
2.512
2.711
0.780
3.237
3.394
1.932
2.185

i(nj )

1.000 000
0.000043
0.000 800
0.238 225
0.134 874
0.013211
0.003 335
0.794 142
0.501 572
0.001 817
0.096 895
0.047 775
0.001 404
0.000001
0.387 990
0.230 827
0.031 390
0.012 579
0.774 703
0.000 253
0.001 633
0.172 020
0.093 199

Parity

0
1

0
1

0
1

0
1

0
1

1

0
1

0
1

0
1

0
0
1

0
1

0

n] n2 n3 n4 n5 n6

0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
2 1 1 1 0 0
2 1 1 1 1

2 1 1 1 1 1

2 2 1 0 0 1

2 2 1 I 0 1

2 2 2 1 0 0
3 1 1 1 1 1

3 2 1 1 1 1

3 2 2 1 0 0
3 2 2 1 0 1

3 2 2 1 1 1

3 3 2 0 0 1

3 3 2 1 0 1

3 3 2 0 0 2
4 2 2 1 1 1

3 3 3 1 0 0
3 3 3 1 0 1

4 2 2 2 1 1

Label

23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
5
6
2
4
3
1
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FIG. 8. Even- and' odd-parity sequences in the experimental
two-fold pattern (Ref. 14). The arrow indicates the peak
at 2.896 A
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which plays a fundamental role in the projection formal-
ism of the icosahedral quasicrystal. ' Note that M satis-

called inflation and deflation. ' These transformations
define sequences of peaks in g~~ space with gi-dependent
intensities characteristic of some scale. The rule for infla-
tion is given by the 6&(6 matrix

1 1 1 1 1

—1 —1

fies the polynomial M =M+1 so that the eigenyalues
are r= —,(1+V 5) and —r '. The matrix corresponding
to deflation is M '=M —1 which also consists of + —,

'

elements. Here our interest in the matrix M is to define
certain half-integral combinations of the icosahedral basis
vectors:

6

(eI()'= g M~jef( =wet(,
1

(5)
6

(ei)'= g Mij.ei —— r'e—'i .
j=I

We see that the vectors e
~~

are "inflated" by an amount r
while their pseudospace counterparts are "deflated" by the
factor r ' and reversed.

The matrix M can be used to generate special sequences
of Bragg vectors. A convenient shorthand for the Bragg
vector (4) is the list of integer indices (n&, n ,2. . . , n )6

The matrix M relates a pair of peaks with indices

M
(ni, n2, . . . , n6)~(ni, n2, . . . , n6),

where

6
n/ = g Mg)nq

j=l

provided of course that the new indices are integers as
well. A necessary and sufficient condition for this to be
true is that the sum n~+ . . +n6 has even parity. The
value of this parity along with the list of indices is includ-
ed with the selection of peaks in Table I. If the parity of
a peak is odd, then the appropriate transformation to use
in place of M is M . This is because M =2M+1 has
only integer elements.

Due to property (5), the effect of these transformations

Oo': oo

oo ooo
O Ooa

;...Q.
0Oo OO

O190, 02o
2I 22

0 aoo 21

25

0 0

Oo:
I7 l20 0 11 00 07 4l6 O

18
19 oO

.Q. .
0

0 OOO

FICx. 9. Comparison of experimental (Ref. 14) and theoretical twofold patterns. The theoretical pattern is that of the primitive
0

icosahedral quasicrystal with a rhombohedral edge length of 4.60 A. Intensities are represented by the areas of the circles and the
numerals refer to the listing of peaks in Table I.
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FICx. 10. Same as Fig. 9, but for the threefold pattern.

on the Bragg vectors is very simple. Assuming even pari-
ty,

gI. =(—& 'lgj. .

Similarly, for a peak with odd-parity indices we find that
application of M inflates g~~ by ~ while deflating g~ by—3

All this discussion can be summarized very simply.
The set of all Bragg peaks can be grouped into two types

according to parity. Every even-parity peak belongs to a
sequence of the form

Hg)(, k =0, +1,+2, . . .

with the corresponding sequence of pseudospace vectors
given by

( —~ ')"gg, k =0, +1,+2, . . . .

Odd-parity peaks also fall into such sequences, except that
r should be replaced by r . We notice (in both cases) that
as the magnitude of the physical Bragg vector increases,
the corresponding pseudospace vector diminishes in mag-
nitude. The progression of gz-dependent intensity values
for such sequences is sketched in Fig. 7. We see that the
peaks converging on the origin in g~~ space have rapidly
decaying intensities. Moving in the opposite direction,
outward from the origin, the intensities approach a con-

. 0'.,
Q ~ ~ io Q

oiz

0 0

OI9
02I 0

0

0

0

0

0
0

0
0

0

0 0
0

. 0
0

00

FICr. 11. Same as Fig. 9, but for the fivefold pattern.
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stant value. Examples of these sequences in the electron-
diffraction patterns of Alo s6Mno i4 (Ref. 14) are shown in
Fig. 8.

The above discussion applies most clearly to the primi-
tive quasicrystal when complicating form factor effects
are ignored. In this case the intensities are functions of
gi only and contain all the relevant scale information.
For the following it will be useful to express the intensity

I(g) =i (gia) =i (ni )

in terms of the dimensionless pseudospace vector

tal sequence that marks the crossover to decaying
behavior. For this peak one picks the term in the se-
quence (8) having

I ni I
=1 and then solves for a. A

scale determination based on this approach might very
likely be ambiguous up to a factor of r T.his suggests it is
advantageous to choose instead an odd-parity sequence.
Because successive terms in such sequences are related by
factors of r =4.236, it is considerably easier to decide on
the term having

I
ni

I
=1. Applying this strategy to the

Alo 86Mno 14 alloy we are led to identify an odd-parity
peak of the twofold pattern (indicated by the arrow in Fig.
8) with the peak

From the formula
2

i(n i)~ Ip(xi)e ' 'd xi

1, if xi ET
0, otherwise (7)

where T is the triacontahedron of unit edge length, it is
clear that i (ni ) is appreciable only for

I ni I
& 1 and de-

cays rapid» beyo nd
I
~i

I
=1.

Now suppose g, pt is an experj. mental peak having the
same angular position relative to the icosahedral axes as
the quasicrystal peak with indices (n, , . . . , n6). To this
peak we assign the intensity i(ni) and the quasilattice
constant is found by solving the equation

k =+1,+2, . . . (8)

with respective intensities i(ni). To decide among these,
one has to compare with the corresponding experimental
intensities. This amounts to "shifting" one intensity se-
quence relative to another by rescaling with factors of r.

Even when the intensity sequences do not give a perfect
match due to form factor or g~~-dependent effects, it is
probably still possible to identify a peak'in the experimen-

for a. If the index has even parity, we know from the
above that there is a whole sequence of alternative identi-
fications given by

a =~~a, n~~=r n~~, ni=( r) ni, —

ni
I
=0.742

listed in Table I. Using the value
I g,„p,I

=
I g~~ I

=2.896
one finds a=4.60 A. Figures 9—11 compare the

twofold, threefold, and fivefold electron-diffraction pat-
terns of Alo s6Mno i4 with the primitive quasicrystal pat-
tern adjusted to this value of the quasilattice constant.

In the above discussion it was assumed that the quasi-
crystal is not roughened in the sense described in Sec. II.
This suggests a modification of the analysis to allow for
the possibility that the pseudospace density p(xi) appear-
ing in (6) is no longer of the ideal form given by (7).
Roughening of the quasicrystal will lead to a broadened
p(xi), possibly Gaussian with some width deci. This im-
plies that the intensity function i (ni ) will now be concen-
trated over a smaller range than before, i.e.,
bni (()bc') . As a result, the intensities in the se-
quences (8) will begin to decay at the point where

I
ni

I
is

of order (deci )
' rather than l. It is not presently known

how seriously one should consider this roughening possi-
bility in the analysis of the Alo s6Mno i4 diffraction data.

Note added. At the time of wr'iting this paper the au-
thor received a copy of unpublished work by Bancel
et a/. ' which gives an indexing scheme for icosahedral
Al-Mn related to the present one by three deflations, i.e., a
scale factor of r .
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