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III. Structural and cohesive energies of the 5d elements Lu—Au

J. W. Davenport, R. E. Watson, and M. Weinert
Department ofPhysics, Brookhauen National Laboratory, Upton, New Fork 11973

(Received 22 March 1985)

The linear augmented-Slaier-type-orbital method is applied to the electronic band structures of
the 5d transition metals Lu through Au. Scalar relativistic, muffin-tin potential, and local density
calculations are performed for each metal in both the fcc and bcc structures. Special sets of k points
are used and the variation in crystal total energy as a function of mesh density ( = 10 to = 110points
in 1/48th of the Brillouin zone) are studied, and it is found that the total energy usually converges to
=1 millihartree when =30 k points are used. Cohesive energies are calculated (the hcp metals are
taken to be fcc for this purpose). A cohesive energy is the difference in energy between the crystal
and the free atom in its ground state; local density theory, as applied to the free atom, is usually ap-
propriate to the average of a number of multiplet levels. For those cases where the promotion ener-

gy to this average can be estimated, the resulting cohesive energies are in accord with experiment.
The fcc-bcc structural energy differences, taken as the difference in two total energies, are also cal-
culated. These agree with experiment as to which structure is the more stable. There are no ob-
served values for these differences but they are markedly greater in the middle of the Sd row than
the generally accepted values, obtained in the course of constructing phase diagrams for alloys using
regular solution theory. The present results suggest that these constructs should be reexamined.
The s, p, and d orbital character of the occupied electron levels is also examined using a Mulliken
population analysis, and the more standard analysis where the charge density, within a Wigner-Seitz
sphere, is decomposed into I components. The Mulliken analysis indicates somewhat greater d oc-
cupancy. More notably it indicates much less s and more p character than the Wigner-Seitz cell
analysis does for all the metals except for Au.

I. INTRODUCTION

The Sd elements Lu —Au form an interesting series for
study. Their large atomic numbers make relativistic ef-
fects extremely important yet largely because of the
lanthanide contraction their physical and chemical prop-
erties are often barely distinguishable from their 4d coun-
terparts. For this reason they are experimentally difficult
to isolate and two of them, Hf and Re, were only found in
the 1920's by x-ray spectroscopy. Included in this set are
the element with the largest cohesive energy, W, the ones
with the largest densities (Os and Ir with densities about
twice that of Pb), and the element which, by some criteria,
is most resistant to corrosion, Ir.

With the exception of W, which has been a prototype
for many years, there have been relatively few calculations
of the electronic structure of these elements, presumably
because of the importance of relativistic effects.

In this paper we present results of a systematic study of
the cohesive energy and . structural energy difference
(Ef«-Eb«) of these elements using density-functional
theory and the recently developed linear augmented-
Slater-type-orbital method' (LASTO). This method has
the virtue of retaining a physically appealing and inter-
pretable labeling of the basis, while at the same time per-
mitting systematic improvement in both the basis and po-
tential. We include relativistic effects in the j-weighted
average or scalar relativistic approximation, i.e., spin-orbit
coupling is neglected in the conduction bands (though not
the core) but all other relativistic effects (mass velocity,

Darwin) are included to all orders. The recent pseudopo-
tential calculation of Bylander and Kleinman for W indi-
cates that the cohesive energy increases by only 5 mil-
lihartrees out of 328 millihartrees when the spin-orbit in-
teraction is included. (We use hartree atomic units, one
hartree =27.212 eV.)

It is by now recognized that cohesive and structural en-
ergies are well described using the density-functional
theory. Examples include studies of C, Si, and Cre by
Yin and Cohen, calculation of the zone-boundary pho-
nons in Zr, Nb, and Mo by Ho et al. , and calculations on
bulk W by Jansen and Freeman and by Bylander and
Kleinman. Moruzzi, Janak, and Williams have calculat-
ed the cohesive energies, atomic volume, and bulk moduli
of the 3d and 4d row while Andersen and co-workers
have given the atomic volumes and bulk moduli for the
4d and 5d row.

Recently, Skriver has calculated the structural energy
differences for over 40 elemental metals using the LMTO
method and Andersen's force theorem. He finds, as we
do, that the crystal structures are correctly predicted in
the 5d row with the exception of gold for which bcc is
very slightly favored. Our calculations are. based on the
total-energy differences between the fcc and the bcc
phases rather than the force theorem. Therefore, our re-
sults confirm the accuracy of the theorem for these met-
als. We have made a detailed comparison between force
theorem and total-energy results elsewhere. ' For exam-
ple, it is well known that the force theorem requires that
the potentials in the atomic-sphere approximation (ASA)
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be frozen and that there is a delicate cancellation between
double-counted electrostatic terms in the two systems in
this case (fcc and bcc). This leads to the result that the
structural energy difference can be related to the sum of
the one-electron eigenvalues (the band energy). However,
we have shown that if the potentials are not frozen we ob-
tain the same structural energy difference (within —1 mil-
lihartree) but the eigenvalue sums do not reflect this
difference. ' In fact, judging by the self-consistent eigen-
value sums all of the 5d elements would be predicted to be
fcc. This means that the force theorem may be a useful
technique but that the interpretation of structural energy
differences as "due to" differences in eigenvalue sums is
questionable (although such an argument is given in Sec.
III). We believe that there is not yet a wholly satisfactory
physical explanation far the structural energy trends.

Qur structural energy differences generally predict the
observed crystal structure, but the magnitudes are signifi-
cantly larger than often quoted values. For most of the
elements the experimental structural energy differences
are not known.

Cohesive energies are generally an order of magnitude
larger than structural energy differences. On the other
hand, uncertainties in precisely how to treat the atoms
leads to relatively larger errors for the cohesive energy.
Indeed, we find that the trend of the cohesive energy
across the row is well reproduced by our calculations, but
that the absolute value depends on how the atom is treat-
ed.

The details of the LASTO method have been presented
in two previous papers'" (denoted as I and II below). In
Sec. II we review the method briefly and give results for
various convergence tests we have performed, including
choice of basis sets and convergence with respect to num-
ber of points in the Brillouin zone BZ. In general, we find
=30 points uniformly spaced in the BZ to be adequate for
=1 millihartree accuracy in the total energy. In Sec. III
we discuss the structural energy difference and in Sec. IV
the cohesive energies. Section V contains a summary of
wave-function character and Sec. VI a conclusion

II. CALCULATIONS

A. Basis sets

The LASTO method employs a Bloch sum of Slater-
type orbitals (STQ's) of the form

P„~~(r)=[(2$)"+'~ /v'(2n)!]r" 'exp( gr)Y~ (r—) (1)

in the interstitial region of the crystal (between nonover-
lapping spheres). Here the Y's are spherical harmonics
and the prefactor is the normalization constant. The
STO's are augmented within the spheres by numerical
solutions of the "j-weighted average" Dirac equation.
Therefore, there is a dual representation for the charge
density. In the region outside the spheres it is given by a
sum over the STO's which in turn depends on the number
of functions included in the basis set. Inside the spheres it
is given by a sum over angular momenta. We have found
that including up to A, ,„=8 inside the spheres yields total
energies converged to = 1 millihartree.

For the region outside small basis sets are desirable in
that only small matrices then need be constructed and di-

agonalized in the course of the band calculation, as well as
providing a simpler physical interpretation of the results.
However, there is a cost associated with such sets, namely
they must be optimized if reasonable results are to be ob-
tained. When doing a single calculation for some given
element it may well be more economic to use a large basis
set, such as in the linearized augmented-plane-wave
(LAPW) method, than to do the number of calculations
necessary to define an optimized small basis set. In this
section we are concerned with obtaining such sets for use
in future alloy calculations and to ascertain how well such
sets do.

Minimum basis sets involve one s, three p, and five d
STO's. It is plausible to assign them the principal quan-
tum numbers, n, appropriate to the valence bands in ques-
tion, but the g remain to be defiried. In the case of a d
band one might equate the log derivative of the STO to
Andersen's criterion for the center of gravity of the band,
1.e.)

1 dP
dr

(l+1)
~ws

(2)

where rws is the radius of the Wigner-Seitz sphere. (In
Andersen's calculations the atomic-sphere radius is taken
to be rws and there is no interstitial crystal region,
whereas here a muffin-tin potential with nonoverlapping
spheres is used. ) For s and p functions, Andersen recom-
mends

~ws
(3)

so that the s-band log derivative has zero value corre-
sponding to the bottom of the s band and the p-band W
lies below the bottom of the p band (note that the occu-
pied bands of a transition metal do lie below the onset of
the unhybridized p band). Now the log derivative of an
STO is

so that we obtain

n —I —1

~ws

n —I —1

~ws

~ws

~ws

(5a)

(5b)

n+1
~ws

(5c)

for s, p, and d functions, respectively. These are good
first guesses for the g. The g's were then varied so as to
minimize the total energy. It was found that Eq. (5a),
evaluated' at r, and not rws, suffices for g, yielding total
energies within a few tenths of a millihartree of the op-
timum choice. Similarly good energies were obtained
when Eq. (Sb) was replaced by

—M+0. 1 .
S

This is only Eq. (4), evaluated' at r„darnewritten with
an extra, empirically determined, factor of 0.1, where W
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FICx. 1. Slater-type orbital gd for the 5d transition metals in
both the fcc and bcc structures. The two curves are Eq. (Sc)
evaluated with the %'igner-Seitz and with the fcc muffin-tin ra-
d11.

is the p-shell log derivative calculated in the course of the
band calculation. As might be expected, the total energies
are more sensitive to the detailed choice of the gd. The gd
values obtained and used in these calculations are plotted
in Fig. 1. First consider the right-hand side of the figure.
The gd for Au with its filled d bands lie above Eq. (5c) al-
though below its counterpart, evaluated at the muffin-tin
rather than the WS sphere radius. In other words, the
Andersen criterion, Eq. (2), appears to be working but for
some radius intermediate between res and the muffin-tin
sphere radius, r, . The bcc gd lies higher than its fcc
counterpart because the bcc r, is smaller [hence ( n + l)/r,
is larger]. The gd's drop with respect to Eq. (5c) upon
moving left across the figure. Smaller gd are, from Eq.
(4), associated with W appropriate to energies lowered in
the bands and thus gd drops as the center of the occupied
bands falls increasingly below the band center of gravity.
This is what happens on moving left from Au to Lu.

Some idea of the sensitivity of the total energy to the
choice of the g's is given in Fig. 2, where the total energy
of fcc Ir is plotted as a function' of gz and of gd. The g's
based on Eqs. (5b) and (5c) are indicated and in this case
they lead to total energies which are poorer, by 4 and 1

millihartree, respectively, than the energy of the optimum
choice.

The effect of going to larger basis sets, with their con-
comitant increase in computing effort, has been investi-
gated for a number of the 5d metals. Doubling the
basis, ' so that there are two s-, two p, and two d-like
STO, was found to improve the total energy by 7 to 10
millihartrees. Adding an f-like STO, as well, produced a
further improvement of 2 to 3 millihartrees. LAPW cal-
culations effectively employ complete basis sets and com-
parisons, made in II for tungsten, indicated the LAPW to-
tal energy to be 2 millihartrees better than the seven STO
result. %'bile a total-energy improvement of the order of
10 millihartrees attends going from the optimized
minimum set to the seven STO set, the calculated energy
differences between the fcc and bcc structures, to be con-
sidered in Sec. IV, change by only 1 millihartree. It is an-
ticipated that the minimum STO bases should provide ac-
curate heats of alloy formation as well.
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FIG. 2. Example of the sensitivity of the total crystal energy
ta the choice of the g when one s-like, one p-like, and one d-like
STO is used. Shown is the dependence of the fcc Ir energy with
varying g~ and gd.

Linearized calculations also require the enrgy (or ener-
gies) at which the radial equation is integrated inside the
muffin-tin spheres. The present calculations employed

6Fe= —J en (e)de —0.04,
o

where n (e) is the band density of states and N the num-
ber of valence electrons. In other words, e was taken to be
the center of gravity of the occupied levels, with a shift
downwards of 0.04 hartree. Such a shift was observed to
produce a modest improvement in the total energy.

t.u presented particular problems because the one-
electron energies of its 4f (core) levels lie inside the bands.
These were treated as bands in the calculation (which
caused no problem since they were completely occupied)
and it became necessary to set e equal to the 4f level's en-
ergy. (Calculations where e was set equal to the 4f value
when integrating the f-like radial equation while using a
different e for the other l values produced an insignificant
improvement in the total energy. )

B. k meshes

The calculations have been done for a number of
meshes of special k points' ' ranging from the meshes of
eight and ten points defined' by Chadi and Cohen for the
bcc and fcc lattices to meshes of 112 and 110 k points for
the two lattices, respectively. In all cases they are uni-
form cubic meshes which include k points on the (1,1,1)
lines. The total energies, as a function of the separation
of the k points (in x, y, or z), are plotted in Fig. 3 (the re-
sults for %' have been reported in II and are not repeated
here).

As a rule, calculations including =30 k points yield to-
tal energies which are within =1 millihartree of the cal-
culations employing large numbers of k points. This is in
contrast with the full-potential augmented-plane-wave
(FLAPW) calculations of Jansen and Freeman for W
which employed the analytic linear tetrahedron method'
(which samples by interpolation between calculated k
points). They obtained total energies which increased by 2
and 5 millihartrees, when going from 30 to 90 mesh
points, for bcc and fcc W, respectively, and they were able
to extrapolate these to energies for infinitely fine meshes.
Au is the only case for which there is a similar variation,
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as indicated by the sketched in lines on Fig. 3, with vary-
ing special-point mesh size and the variation is markedly
smaller in magnitude. It would appear that total energies
for the fcc and bcc structures are better obtained with
30—40 special k points than with an equivalent number of
points with the analytic linear tetrahedron Inethod, al-
though the latter provides a much more detailed depiction
of the electron density of states. While the virtues of spe-
cial k points are widely recognized, it is perhaps surpris-
ing that as few as 30 points do so well for the total energy
of a transition metal with its partially occupied, rather
flat, d bands.
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The bcc-fcc structural energy differences can be read
off Fig. 3 and the resulting values are represented by the
bottom edge of the hatched region of Fig. 4. These calcu-
lations were done with touching muffin-tin spheres and
with a muffin-tin potential. Since there is a larger inter-
stitial volume in the bcc structure, there arises the ques-
tion of muffin-tin errors contributing to the structural en-
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FIG. 4. fcc-bcc structural energy differences for the elements
Lu though Au. The hatched region encompasses the present
predictions as discussed in text. The solid line for Lu and Hf is
the experimental hcp-bcc energy difference while the remainder
of the line is based (Ref. 18) on fcc-bcc energy differences which
bring regular solution theory into rough agreement with the ex-
perimental phase diagrams. The dashed line indicates hcp-bcc
energy differences obtained in the Engel-Brewer model of
transition-metal alloying (Ref. 19).
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ergy differences. One measure of this is to employ the bcc
spheres, which do not touch, in the calculations for the
fcc structures. Taking the resulting total energies for the
fcc leads to the values at the upper edge of the hatched
region —having done a poorer job on the fcc total energies,
the bcc structures are more favored.

The energy differences defining the upper edge of the
shaded region in Fig. 4 involved calculations for the fcc
structures employing the bcc atomic spheres. As can be
seen for the g~'s in Fig. 1, the basis set of g's change,
somewhat, upon going from the bcc to the fcc structure.
This raises the question of what g should be used with the
bcc spheres in the fcc structure. Investigation had shown
that it is the bcc g which are the optimal basis set in this
case, this implying that the changing g are primarily asso-
ciated with changes in r, rather than with the changing
structure. This would suggest that calculations, for other
structures or for alloys, can be done with the combined set
of an r, and its associated g;. Care must, of course, be
taken if factors such as strong charge transfer arise. The

.985—~ ~
0 ~

.925-

.890—

.275

.930—
Au

.895-t++
+ +

4
-19037.260-

y~r~+
+ +

t~
+

.265-

+ +

.900- . + +
.935—

10
I

0.5
(A)t)

0.5
(41[)

1.00.5
(A)r)

1.0

FIG. 3. Total crystal energies for the 5d metals (excluding
W) as a function of the separation (squared) of the k points in
the special k point meshes. The meshes associated with plotted
points to the right of each plot correspond to the eight point fcc
(the circles) and the ten point bcc (the crosses) meshes defined
(Ref. 14) by Chadi and Cohen. The number of points at other
separations can be read off the equivalent figure drawn For W in
II. The lines in the Au plot are drawn to help the eye. For clar-
ity, only the last three significant figures are shown on the y
axes except for the topmost point.
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full-potential LAPW calculations of Jansen and Freeman
for fcc and bcc W give an energy difference of 21 mil-
lihartrees which is roughly midway between our two
values. We presume that full-potential. calculations for
the other elements would also lie within the shaded area.

In all cases our calculation agrees with the observed
crystal structure (if fcc is predicted then "observed" can
be fcc or hcp). Possible ambiguities occur for Hf, Pt, and
Au, where the structural energy differences approach the
magnitude of our muffin-tin error. Unfortunately, there
is almost no experimental data for the magnitude of the
structural energy difference. Often quoted values' ' are
given as the solid curve in Fig. 4, but with the exceptions
of Lu and Hf where high-temperature hcp-bcc transitions
are observed, they are not based directly on experiments.
Rather they are obtained as fitting parameters in an
analysis of the phase diagrams of alloys using regular
solution theory' and, while in agreement for Pt and Au,
they are markedly smaller than our values for Ta through
Ir. An alternative approach' to the structural energy
differences, based on the energies required to promote
atoms to the various configurations deemed appropriate in
the Engel-Brewer model to the structures in question,
gives results (also given in Fig. 4) which are of the saine
scale as our calculations from Ta to Ir (but are larger for
Pt and Au). The fact that the values based on regular
solution theory seem low has been noted previously. '

We believe that the present results, for the first time based
on total-energy differences, necessitate the reexamination
of the adequacy of regular solution theory as a model for
the phase diagrams of transition-metal alloys.

The structural energy trend may be rationalized by
comparison of the fcc and bcc electron densities of states.
The n (e) for bcc Ta and fcc Ir, decomposed into s, p, and
d partial densities, appears in Fig. 5. The constructs in-
volved band calculations employing a 112 point bcc and a
110 point fcc k mesh (in —„ofthe zones). Individual con-
tributions were broadened by the derivative of the Fermi
function with a temperature of 3 millihartrees or =1000
K as was used for W in II. (This function resembles a
Gaussian with FWHM=0. 3 eV). While there are peaks
and hollows in the fcc n (e), it is, in its gross features, a
rectangle. In contrast, there is a large hollow in the bcc
n (e) with the Fermi level of Ta occurring at its onset and
that of W close to its minimum. The occurrence of the
Fermi level in a hollow implies that the occupied one-
electron levels have been pushed to lower energy (and the
unoccupied to higher) than is the case for an n (e) of the
same center of gravity and same overall width but without
the hollow. This tends to maximize structural bonding
energy. A similar hollow occurs in the n(e) of the hcp
structure (for which no calculations have been reported
here). The Fermi levels of Re and Os fall in that hollow
and they form in the hcp structure.

IV. COHESIVE ENERGIES

The cohesive energy is the difference in energy between
the ground state of the crystal and the free atom in its
ground state. Such an energy difference is more difficult
to calculate accurately than is the difference between two
crystal energies such as the structural differences of the
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FIG. 5. s (dotted line), p (dashed line), and d (solid line) par-
tial densities of states of bcc Ta and fcc Ir based on 112 and 110
k point meshes in 48 of the respective Brillouin zones. The
population weights were determined by a decomposition of an
occupied orbitals spherical charge density within a Wigner-
Seitz sphere into its A, =O, 1, 2, and 3 components. Individual
histogram contributions were broadened by the derivative of the
Fermi function corresponding to a temperature of 3 millihar-
trees or =1000 K.

preceding section. One frequently cited reason for this is
the difference in errors in applying local-density theory to
a crystal with its moderate electron densities in the inter-
stitial region versus applying it to a free atom with its
low-electron-density tail. However, there are more serious
problems than this, which are associated with the free-
atom theory here. We are dealing with heavy elements for
which relativistic effects are important: There exists no
relativistic Hartree-Fock theory which properly describes
a single Hund's rule multiplet level, and the problem is ex-
acerbated on going to local-density theory. Such relativis-
tic theories can deal with Shoitley's average over an atom-
ic configuration, where the number of electrons in each
shell with principal quantum numbers n and 1 (or n, 1,
and j) is assigned and where the I quantum numbers in
each shell are averaged over. The problem, then, is that
the calculated free-atom total energy is the center of grav-
ity of a set of multiplet levels, and in calculating the
cohesive energy one must estimate the promotion energy
from the atom's ground state to that center of gravity.
The, scale of the problem is indicated in Fig. 6, where the
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solid line is the experimental cohesive energy as tabulat-
ed by Kittel, and the dashed line the energy difference
between the lowest-lying (fcc or bcc) crystal energy and
the local-density free-atom d "s average of configuration
total energy. That is, the atoms were not spin polarized
and were fully (not scalar) relativistic. The configuration
was d" +', d"s, or d" 's . In order to. compare with our
scalar-relativistic solids the d3/2 level had 0.4 of the d
electrons. The difference between the two curves is pri-
marily due to the free-atom promotion energy although
there are contributions as well from any shortcomings in
the calculations and in the experimental data. The crystal
energies employed in Fig. 6 were obtained with the optim-
ized three STD basis sets and going to the extended sets
would have the effect of increasing the cohesive energies,
i.e., raising the dashed line and points by 10—15 millihar-
trees atom. In addition, the nonmuffin terms would con-
tribute" about 10 millihartrees (for W at least).

The promotion energies can, in principle, be obtained
from either theory or experiment. Coven the shortcom-
ings of local-density theory and the availability of atomic

I I I I I

Lu Hf Ta W Re Os Ir Pt Au

FIG. 6. Cohesive energies of the 5d metals (the hcp metals
were treated as being fcc in these estimates). The solid curve is
experiment as reported (Ref. 23) by Kittel while the vertical
lines off it indicate other reported experimental values for these
energies. The dashed curve is the calculated energy difference
between the crystal and the free atom in the average of the d "s'
multiplet levels (as discussed in text). Lacking the promotion
energy from the atom's ground-state multiplet to this average,
this is not the cohesive energy. The plotted points involve vari-
ous estimates of the promotion energy to the free-atom average
of configurations as discussed in the text [the cohesive energy
then being E(cryst)-E(av. of config. )-E(promotion)]. The pro-
motion energies were estimated using spectroscopic data and the
solid symbols indicate cases where the energies of all the multi-
plet levels of some configuration are listed, the half-filled where
some are missing, and the open where the data is sparse (the
high-lying multiplets tend to be missing, hence a cohesive energy
is then overestimated).

TABLE I. Cohesive energy of the 5d elements. d "s is the en-

ergy of the solid relative to the atom in the spin-restricted d"s
configuration. LSD is the local-spin-density result obtained by
subtracting the spin-polarization energy of the atom (Ref. 27).
LSD Ep is further corrected by the experimental promotion
energy to go from the ground state of the atom, d"s for Lu—Ir
and d "s for Pt and Au, to the average of the d "s configurations
with maximal spin. EE pt is from Ref. 23. Energies in millihar-
trees equal 0.0272 eV.

Element

Lu
Hf
Ta
W
Re
Os
Ir
pt
Au

Edn,

285
379
454
494
473
429
346
238
135

ELsD

250
314
353
347
375
368
313
224
130

ELsD Epro

156
232
299
333
310
319
271
224
130

EE.pt

163
237
298
327
295
300
255
215
140

spectra tables, it would appear that the latter is the
better choice. This is not altogether satisfactory because,
more often than not, for the Sd elements, only some of the
multiplet levels associated with a given configuration have
been seen. There are also questions of whether all the
multiplet assignments are correct and whether mixing be-
tween levels of like-symmetry shifts the energy of an indi-
vidual level and hence of the configuration average ob-
tained with it. The plotted points in Fig. 6 use the avail-
able multiplet data for the d "s, d" 's, and d" +' config-
urations to estimate promotion energies. These were then
combined with the local-density energy. Solid symbols
correspond to those cases where all the requisite multiplet
levels are reported in the spectral tables, partially filled
symbols when the data is almost complete, and the open
symbols to where the multiplet data is sparse. Since it is
the low-lying multiplets which tend to be reported for an
incomplete set, using them then leads to an underestimate
of a promotion energy. This causes the open symbols, as-
sociated with such cases, to lie highest above the experi-
mental line as is seen. In the case of Pt a relativistic cal-
culation in the d3/fdic/3s configuration, spin restricted,
moves the solid symbols down so that they lie on top of
the experimental result.

As an alternative, we have followed Moruzzi, Janak,
and Williams (MJW) and calculated the cohesive energy
using the spin-polarized atom energy. This was also the
procedure followed by Jansen and Freeman for tungsten.
In the 5d row this is a sensible hybrid approximation
where the core is treated fully relativistically but in the
valence shell the spin-orbit interaction is turned off and
spin polarization on. This approximates a single multiplet
in tungsten ( S) but not in Hf, Os, or Ir. There is, howev-
er, an added problem in the Sd row, namely the most of
the 5d elements have d" 's ground states while it is
known that the local-spin-density (LSD) theory favors the
d "s configuration. ' In the 4d row most (although not
all) of the elements have d "s configurations. Therefore,
the I.SD theory is expected to do worse on the 5d ele-
ments than the 4d elements. This is illustrated in Table I,
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where our solid energy relative to the scalar-relativistic
spin-restricted d"s configuration is given in the first
column. In the second column we have corrected for the
spin polarization as tabulated by Brooks and Johansson.
The errors are generally larger than would be found for
the 4d elements. In the third column we have corrected
these results by the experimental promotion energy to go
from the lowest multiplet level to the average of configu-
ration for the d "s state with maximal spin.

For example in Ir, the excited states with d"s configu-
ration and maximal spin make up two rnultiplets, F and
P. Averaging over both of these yields a promotion ener-

gy of 42 millihartrees. Brooks and Johansson also in-
cluded promotion energies in their analysis but apparently
used the lowest member of the multiplet, in this case
E9/2 which gives the promotion energy of 13 millihar-

trees.
This procedure reduces the errors considerably, and

they are now of the same scale (actually somewhat small-
er) as those reported by MJW. This good agreement is
partly the result of cancellation of errors between the
local-density theory, which overestimates the cohesive en-

ergy and the muffin-tin approximation and basis-set er-
rors in our calculations which underestimate it."

V. WAVE-FUNCTION CHARACTER

where H is the Hamiltonian, in our case (9&&9) and S is
the overlap matrix. X is a composite index giving the
quantum numbers of the STO basis set. By definition the
Mulliken population is

P~ ——+Re( C~S~iv Cg ) .
N'

Note that if S is diagonal then

Pzv ~
I
C (10)

which is the standard definition of a population using an
orthonormal set.

The Wigner-Seitz (WS) population was determined
froin the charge density inside the muffin-tin spheres.
Since the wave function is

4(r) =Q Civ Wiv «)

and inside the spheres

eN(r) y rN, iLpfi, (r) +i.p(r ) (12)

where the radial function fi„(r) is usually given in terms
of another radial function g and its energy derivative g
(see I and II). Consequently, the spherically averaged
charge density inside the sphere has a natural decomposi-

We have analyzed the wave-function character of the
occupied levels in two ways —a Mulliken population and
a Wigner-Seitz (WS) sphere population. The Mulliken
population can be determined directly from the secular
matrix which is

g Hz~ C& e+S&~Civ——

tion in terms of A, =0, 1,2, 3, etc. To obtain the WS popu-
lation we have smoothly extended these densities out to
the WS radius. We note that this is only a method of
analyzing the charge density, the WS radius plays no oth-
er role in our calculations. In general, these %'S popula-
tions do not add up to the valence charge, but for the
close-packed systems we have studied, we find that they
do to within a few tenths of an electron. The WS pro-
cedure has the virtue of being well defined. However, the
tail of some orbital, of given /', centered off the site in
question will appear to have quite different I character at
the site being sampled, hence leading to some question of
the physical meaning of such attributions. Also, when
dealing with a compound, any attribution of the charge
transfer between sites depends critically on the choice of
site volumes. There are also problems with the Mulliken
population analysis because it must deal with the
nonorthogonality of orbitals centered on different sites
and employ some scheme to apportion wave-function
character granted that nonorthogonality. Such an
analysis, of course, depends on the orbitals, hence the
STO g's, which were chosen so as to optimize the crystal
energy. While the absolute values of I population counts
resulting from such analyses should not be taken too seri-
ously, the changes in population with changing compound
or crystal structure should be meaningful, particularly if
the calculations employ common basis sets. One virtue of
applying such analyses to compounds is that they define
the charge associated with orbitals centered on some site,
and this is the natural way to define the ionic character of
the compound.

As expected, the d electron count is increinented by = 1

from element to element on traversing the 5d row. (Only
sina11 changes are obtained in the occupation numbers on
going from the fcc to the bcc structures for a given ele-
ment. ) The Wigner-Seitz cell analysis for fcc Lu yields a
d count of 1.45e which is incremented by values slightly
less than 1 on going up to fcc Os which has a value of
6.22e. Then the increments are slightly greater than 1

with fcc Au having a d count of 9.39e. The Mulliken
analysis yields values which range. from 0.3e greater for
Lu to 0.05e greater for Ir, Pt, and Au.

The WS cell analysis yields non-d electron counts
which lie between 1.55e and 1.75e across the row. Small
amounts of this charge are associated with higher l but
the bulk is s and p like. The s counts are almost constant,
between 0.82e and 0.89e and the p counts range between
0.67e and 0.92e, thus indicating roughly equal s and p
character in the bands. The situation is quite different
with the Mulliken population analysis, as can be seen for
W in Fig. 7. The s count is much less, namely =0.3 for
Lu through Os, then rising to 0.7 by Au. The p counts
are roughly 4 times the s for the first half of the row and
drop to a factor of 2 larger for Pt while being almost
equal for Au. Bylander and Kleinman employed the
Lowdin orbital-population analysis to their calculation
for W and obtained a disparity in s-versus-p occupation
similar to that here.

It has been recognized for some time that the d count
in the transition metals is markedly less than the count
appropriate to the d"s' atomic configuration. Important
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ization is primarily d-p in character. The modification of
this when an atom has unlike nearest neighbors should be
an important aspect of compound formation.

At this point we note that there is a long-standing
disparity between the band-theory description of transi-
tion metals and the Pauling-Engel-Brewer view' which
associates fcc metals such as Pt and Au with d" (sp)
configurations, hcp with d" '(sp) configurations, and
bcc with d "s. It might be argued that the disparity is due
to the almost universal use of WS-type populations rather
than Mulliken type in the band- theory literature. How-
ever, our Mu1liken populations tend to side with the
band-theory description on this issue. For example, we
find a remarkable constancy in the non-d electron count
across the row which is inconsistent, within the Pauling-
Engel-Brewer picture, with the observed crystal-structure
trend. Also as discussed in Sec. III the structural energy
differences are readily understood in terms of differences
in the d-band density of states. Finally, the d count while
roughly the same in the WS and Mulliken senses is
nevertheless slightly larger for the Mulliken, which is less
in accord with Pauling-Engel-Brewer theory than the
more traditional estimates of band populations.

FIG. 7. s and p partial densities of states for bcc W employ-
ing the Mulliken population analysis (dashed histograms) and
the Wigner-Seitz population analysis (solid histograms). Indivi-
dual histogram contributions have been broadened as in Fig. 5
and the results are based on a sampling of 112 special k points
in 1/48th of the Brillouin zone. The s Mulliken population goes
negative (though slightly) in several places. As is well known,
this is due to the way the Mulliken scheme handles the
nonorthogonality between orbitals centered on different sites.

to this is the hybridization of non-d character with the d
bands, particularly for the lower-lying portion of the d
bands. This allows, for example, a metal such as Au with
its filled d band to have less than ten d states per atom
throughout the eleven states per atom in the occupied
bands. Lacking orbital-population analyses, the balance
of s and p orbital behavior has been less obvious until
now. The large-Ji (versus s) occupations obtained by By-
lander and Kleinman for W and obtained here would
suggest that the hybridization in the lower d bands is
largely d-p in character. Inspection of Fig. 7 supports
this: There is little s character, except in the vicinity of
—0.2 hartree below the Fermi level and little s or p above.
The lack of s or p character at energies overlying the
upper half of the d bands is important to the relatively
constant s and p population counts across the 5d row. It
is difficult to define the exact lower bound of the d bands
but it is in the vicinity of —0.25 hartree. Granted this, it
would appear that the depletion of s character, as ob-
tained in the Mulliken versus the WS sphere analysis, is
associated with the lowest-lying levels both above and
below the onset of the d band. While viewing Fig. 7 it
must be remembered that, though the orbital-population
analysis may make more chemical sense than a sampling
within a WS sphere, the results do depend on the scheme
employed to handle orbital nonorthogonality. Neverthe-
less, there is the strong suggestion that the d-band hybrid-

CONCLUSION

To summarize, we have utilized a new method in band
theory to calculate the cohesive and structural energies of
the 5 d transition elements. Our scalar-relativistic
muffin-tin potential results complement the cohesive ener-
gies calculated previously for the 3d and 4d rows. How-
ever, since d" 's configurations predominate in the Sd
row over d "s (which local-density theory favors), we find
it important to include the appropriate promotion ener-
gies. Having done so, our results agree slightly better
with experiment than those of Moruzzi, Janak, and Willi-
ams. This good agreement is partly due to cancellation
of errors between the local-density theory (which overesti-
mates cohesion) and the muffin-tin and basis-set errors in
our calculations.

Our structural energy differences, which are based on
total energies, confirm Skriver's LMTO —force-theorem
results. Both show that muffin-tin potentials do correctly
predict the proper crystal structure of these elements with
the exception of gold. However, the magnitude of the
structural energy is larger by an order of magnitude than
the often quoted "experimental" values of Kaufmann.
This disagreement is not a muffin-tin effect (by compar-
ison with the full-potential results for tungsten). There-
fore, we believe that the "experimental" values should be
reexamined. In most cases they are not actually measured
but are derived from fitting the results of regular solution
theory to the phase diagrams of alloys.
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