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Metastability in the random-field Ising model
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Effects of metastability in random-field Ising systems are calculated for domains that are both curved and
rough. Villian's and Bruinsma and Aeppli's scaling forms for the domain size are obtained from the same
approach and the crossover between them is simply explained. Generalizations to random fields with
nonzero averages lead to a "freezing line" and are relevant to experiments on binary-fluid mixtures in gels
and in porous media.

Much controversy has existed in recent years about the
behavior of the random-field Ising model (RFIM).
Theoretically, conflicting results were obtained for the value
of the lower critical dimension dI of this model. This is the
dimension below which there is no long-range order even in
the presence of a vanishing small random field. Some
works gave dI =2, ' ' whereas others gave dI =3.6 The con-
sensus today is that most probably the lower critical dimen-
sion of the RFIM is two, d~ ——2, which agrees with the origi-
nal and simple domain argument of Imry and Ma. ' This
result is supported by a rigorous proof at zero temperature, s

by other works that carefully take into account domain-wall
roughening, 2 and by numerical investigations on finite-size
lattices. Possible faults in all present theories that predict
dr = 3 are very nicely summarized in Ref. 7.

The fact that at thermodynamical equilibrium there is or-
der in d = 3 (since most probably di = 2), does not agree, at
first sight, with neutron scattering experiments that are
done on diluted antiferromagnets in the presence of an
external magnetic field. ' In these experiments, ' as one
cools down the sample from high temperatures keeping the
magnetic field at a nonzero value (field cooling), domains
(sometimes very large) are observed even at very low tem-
peratures; hence a lack of long-range order is observed in
d = 3. The same system does show long-range order after a
zero field coo1ing, where-the sample is cooled in zero external
field and the field is then turned on.

A very likely explanation for these experiments can fol-
low if one distinguishes between the long-range ordered
state which is the equilibrium state of the d = 3 system at
low enough temperatures and random fields, and metastable
states in which domain walls are pinned by the random
field. As one field cools, the system can be trapped in one
of these metastable states even though the lowest-energy
state has long-range order. A theory that introduced these
ideas and calculated the scaling behavior of the domain size
8 as function of the random field H was developed recently

by Villain. " Close to the transition temperature R —H
with vH= 2/(2 —q), q being one of the usual critical in-

dices, ~hereas at low temperatures R —H 0 with vH ——2.
These results for vH do not depend explicitly on the system
dimensionality d and hold for d ) 2 (domain growth and
metastability were also investigated numerically). '2

Somewhat simultaneously and quite independently other
theories that also considered metastability were published.
Grinstein and Fernandez" arrived at the same result for
vH = 2 for low temperatures, whereas Bruinsma and Aeppli'
arrived at a completely different scaling form for R (H).
According to their theory R —H with vH=4/(5 —d),
which accidentally gives vH=2 for d =3 but does not agree
with Villain s result for other dimensionalities. Moreover,
even for d = 3 the temperature dependence of the prefactor
in the proportionality R —H differs for the two
theories.

In this paper, we propose an explanation for the apparent
disagreement between the two theories. "' We rederive
Villian's results using a somewhat different formulation.
We also obtain, from the same theory, Bruinsma and
Aeppli's result as a special limit which holds for very low
temperatures. To our knowledge, this is the first unified
explanation of the two formulas for R (H), since they were
originally obtained following a completely different line of
reasoning. We also calculate the effect of a constant mag-
netic field h on metastability in the RFIM. Hysteresis and
transitions between metastable states and the equilibrium
state are found in the h Tplane (keepin-g H fixed). These
predictions are relevant to systems of binary-fluid mixtures
in gels or in porous media. '

Our starting point is to write the energy barrier between
two metastable states of the system. " We look on a single
domain of "down" spins with a well-defined radius R em-
bedded in a region of "up" spins. At equilibrium this
domain is unstable in d = 3, i.e., it collapses. But due to the
effects of random-field pinning, the shrinking of the domain
is carried out by jumping over energy barriers that exist
between "successive" metastable states. "' ' Each one of
these states is characterized by an average displacement ~,
which is a measure of the roughness over a length scale b
(see Fig. I). It is important to note that the displacement is
measured with respect to the smooth interface that has a
curvature A. The energy barrier between such two states
can be written as

EF(w, b) = —g b ' — +b~ ' —+Hmo (b 'w)'~2,
b R
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FIG. 1. A domain (curvature R) of "down" spins embedded in a
region of "up" spins. On a length scale b, there are two possible.
metastable states of the interface, each with average displacement w.

~max

4/3

gF (b) o b(d+1)/3 (2)

and

,„(b)=
r ' 2/3
Hm P (5 d)/3b (3)

g being the interfacial tension, 0 the strength of the random
field, and —mo (+m, ) the average magnetization inside
(outside) the domain. The first term in Eq. (1) is the inter-
facial energy for the increase of area of a continuous inter-
face due to roughness (displacement w); the second term is
the Laplace contribution for a curved interface of radius R;
the third term is the usual magnetic fluctuation term that
scales as the square root of the difference in volume
between the two states. Notice that when R ~, namely,
the interface becomes flat but remains rough, we get back
the same expression that was used in Refs. 2 and 7 to prove
that roughness does not modify the Imry-Ma result' and
that dr =2. In Eq. (1), w and b are two independent vari-
ables; maximizing with respect to ~ we will get the max-
imum energy barrier for each length scale b. It is easy to
obtain this result in two limits:

(a) When w/R « (w/b), neglecting the second term of
Eq. (1) gives us the flat-interface results

0

FIG. 2. A schematic plot of the maximum energy barrier AF~,
„

and its corresponding displacemnt w~» as functions of the length
scale b. b is equal to (w~»R) . The dashed horizontal line is a
thermal fluctuation ka T.

ing functions of b, whereas for b )O', AF,
„

is b indepen-
dent and ~,

„
is decreasing. The radius of the minimal me-

tastable domain is easily determined by comparing the maxi-
mal energy barrier AF,„(b)with the thermal fluctuation
ks T. For a small domain, b F,„(b)& ks T for all b, and the
domain collapses since all barriers are smaller than the ther-
mal fluctuaion. For large domains, k~T is smaller. than bar-
riers on large length scales b, but is bigger than the smaller
barriers as is shown in Fig. 2. Hence, the minimal domain
size R;„is determined from ksT =AF,„(b'),b.F,„(b")
being taken from Eq. (4). This leads to Villain's result

R;,= gksT(Hmp)

(b) When w/R» (w/b), neglecting the first term in
Eq. (1) we get

0mp5F,„(b)=Rg, independent of b, (4)

and

w,„(b)=
r

HmpR
b

For b & b' both w,„andAF,„aremonotonically increas-

A schematical plot of LF,„and ~,„asfunctions of b is
shown in Fig. 2. The crossover between cases (a) and (b)
occurs at b such that b" = (w,„R)'/2. Using the value of
w,

„
from Eq. (3) or equivalently from Eq. (5) we get for

b
' 2/{d+1)

b' —R 3/2«+» 0

The exponent vH can be calculated in two cases:
(i) For low temperatures mo —1 and g = J/g ' —J/

a" ' (J is the exchange interaction and the correlation
length g is approximately equal to the spin separation a).
For this case R~;„—TH with pH = 2.

(ii) For temperatures close to the phase-transition tem-
perature T„using the same scaling laws for mp and
g = J/g ' as for the nonrandom case mo —g "s and
g Jm le we get R . I TJH m

[using the scaling law v/P = 2/(d —2+ q)]. Since the corre-
lation length g is always assumed to be smaller than R
this picture of metastable domains breaks down whenR;„=g —mo "/~. Thus, close to T„the domain size scales
with the random field with an exponent yH = 2/
(2 —q) = 1.0."

%e now proceed to show why at very low temperatures,
R (H) is not equal to R;„,but rather is the domain size as
was found in Ref. 14. In obtaining R;„,Eq. (7), the inter-
face was assumed to be continuous and well defined. This
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is true as long as w, the interface displacement, is bigger
than (, the width of the interface (g is also the bulk correla-
tion length). For large domains, w,„(b)) ( at least in a
range of length scales close to O'. As the temperature de-
creases, R;„decreases and so does w,„(b'),until at some
temperature w,„(b')= g. This now defines a new domain
size Rr [Eq. (5)],

w,„(b')= (HmpRt)'g '(b')'

so that

4/(s d)

(d+ i)/(S- d)

(8)

Equation (9) is exactly the result of Bruinsma and Aeppli. '~

In what follows we look at d = 3, where R t ——g~

x (Hmp/g) '= (Hmp/J) '. Hence, the scaling of R& with
H is (accidentally) the same as in Eq. (7), but the prefactor
is different.

The actual domain size R (H) as function of Hand Tean
be determined from the comparison between the two
domain sizes R;„and R ~. As long as R;„)R &

the
domain boundary is well defined and R (H) =R;„.In this
case the maximal energy barriers determine the minimal
size of metastable domains. This is correct down to tem-
peratures where R;„=R&,or, equivalently k&T = J. Using
the mean-field value of T, we get that this temperaure
T"= T,/6, where 2d J=ksT, . For temperatures lower than
T, R

& & R;„and the actual domain size wi11 be
R(H)=Rt. The reason for this is that for R (R& there
are no energy barriers at a11. Figure 3 summarizes our
predictions for R (H). For T ( T' = T,/6, R (H) =R

&= (H/J), which is temperature independent. For
T ) T', R (H) =R;„willgrow linearly with T and closer to
T, it will grow much faster until R (H) = g, where the
domain picture breaks down (Fig. 3). An additional remark
is that the crossover between R;„andR

&
is independent of

H only in d =3, where uH of R& is also 2. For d =2, vH of
R~ is 3, whereas vH = 2 for R;„.This implies a more com-

plicated crossover in the T-H plane for d =2. Our theory
assumes that the temperature is quenched rapidly from high
temperatures (so do Refs. 11—14), and also that there is no
relaxation out of metastable domains with barriers higher
than ksT. However, very slow (logarithmic) relaxation with
time is expected. "'

Constructing a simple theory that takes into account
roughness and curvature effects of domains, we obtain both
the results of Refs. 11 and 14. In three dimensions the
crossover between the two scaling forms of R (H) depends
only upon the temperature and the result of Ref. 14 holds
only for very low temperature. We apply the same ideas
also to explain other experimental realizations of the RFIM
which are binary mixtures in gels or in porous media. ' De-
tails will be given elsewhere' and here we state one of our
main findings which is also relevant for the-RFIM. When a
constant magnetic field h is added on top of the random
field H, the domain size R;„(H,h) is related to R;„(H,

0 T"=&/6 Tc Tc

FIG. 3. A schematic plot of the domain size 8 as function of
temperature T for a given random field H. The crossover between
8& and Rm;„occurs at T= T . The theory is consistent up to a
temperature where Am;„=g. Above this temperature we expect a
saturation of R.

h = 0) in the following way:

R;„'(H, h) =R;„'(H, h = 0) —hmp/g

= (Hmo)'/gka T hmo/g . — (10)

For a fixed H, there is a line in the T-h plane for which
R;„(H,h) ~. This line ksTg = (Hmp)'/hmp is a "freez-
ing line" separating the metastable region from the equili-
brium region. ' In concept it is similar to the de
Almeida-Thouless line' for spin glasses. We also find' a
hysteresis in the T-h plane depending on whether one cools
in constant field h & 0 or one cools with h = 0 and then ap-
plies a constant field. Even though in the magnetic systems
h corresponds to a staggered field which is not realizable,
for the gel plus binary mixture systems, our results could be
checked by putting the gel in contact with a reservoir of the
binary-fluid mixture, thus creating a difference in chemical
potential which acts as a constant magnetic field.

After this work was completed, we learned that T. Natter-
mann has obtained similar results about the relation
between Refs. 11 and 14, using a different approach.
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