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The phenomenon of macroscopic quantum coherence is examined within the framework of a two-level

system coupled to an Ohmic bath. A bound is obtained for the temperature above which the macroscopic
variable cannot display the oscillatory behavior characteristic of quantum coherence. Different approxima-
tions for the dynamical behavior of the macroscopic variable in the low-dissipation limit are compared.

The purpose of this paper is to report on a criterion for
how low the temperature must be in order to experimentally
observe the phenomenon of macroscopic quantum coher-
ence. ' The sense in which the word "observe" is used here
requires some explanation. The phenomenon is most likely
to be seen (if at all) in an rf superconducting quantum in-
terference device (SQUID) in a suitable external magnetic
field' and Chakravarty and Leggett' have given a theory of
it based on a model consisting of a two-level system
(representing the two states of the macroscopic variable-
the trapped flux in the case of the rf SQUID) coupled to a
bath of oscillators (representing the environment). 4' The
fundamental quantity of interest is the expectation value
P(r) of the flux at a time r, given that at t =0 it has a value
corresponding to one of the two degenerate minima of the
potential energy, and the environment is in equilibrium with
the flux held fixed at that value. It is found that unless the
temperature and the dissipation arising from the coupling to
the environment are both very low, P(t) does not oscillate
back and forth; instead, it relaxes monotonically to its
equilibrium value. %hile a detailed experimental study of
features such as the temperature dependence of the relaxa-
tion rate would provide some support for the model, an ob-
servation of oscillatory behavior would be much more
dramatic and satisfying evidence for the superposition of
macroscopically distinct states. I obtain in this paper an
upper bound on the temperature T' for these oscillations to
exist. This is a much more precise criterion than the order-
of-magnitude estimate given in Ref. 3 and, since for
currently fabricable SQUID's the temperatures at which os-
cillations occur are on the very verge of feasibility, it should
be of value in an experimental search for them.

It should be noted at the outset that T does not demar-
cate (in the way that a phase boundary does) two regions of
sharply differing behavior. The oscillations become progres-

~here the cr's are Pauli matrices in the two-dimensional
Hilbert space of the flux, 60 is the bare tunneling frequency
between the two states, qo is a measure of the flux differ-
ence between them, and the {x,p ) are the coordinates
and momenta of a set of oscillators with masses {m ) and
frequencies {cu ).' The coupling constants c are con-
strained only by the spectral density J(co), which is taken to
be of the Ohmic form:

J(co) =——X(c2/m a) )S(u —a) ) =qcuexp( —o)/o), ), (2)

where q is the friction coefficient, and cu, is a cutoff fre-
quency that is much larger than Ap or ksT/t, but is much
smaller than the classical small oscillation frequency in ei-
ther well. It is convenient to introduce the dimensionless
dissipation parameter o, .'

n=qqp2/27rt .

As shown in Ref. 3, P(t) can be formally written as

(3)

sively more damped as the temperature increases, and one
may need temperatures two to three times below T' for
them to persist long enough. Further, T' can only be relat-
ed to b„ff, an effective tunneling frequency that will prob-
ably have to be found by trial and error in actuality, since it
depends strongly on the amount of dissipation [see Eq. (12)
below]. Within the resistively shunted-junction model of
the rf SQUID, however, it can be related to the SQUID
parameters fairly accurately, and that should assist in nar-
rowing the search considerably.

The approach of this paper follows that of Ref. 3 very
closely. The model Hamiltonian is given by
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tions Qt and Q2 are second integrals of the real and imag-
inary parts of the influence functional. For the spectral
density (3), these take the form

Q)(r) =71tan '(co,r), (7a)

+Jk +2j, 2k+1 ++2J —1, 2k ~2j, 2k +2j —1,2k+I i (6c)

where P„, =Q&(r„—t ), R„, =Q~(t„—t ), and the func-
02(t) =~gin(l +co2r') +gin sinh

Pf
(7b)
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where P = I/k~T, and it is understood that to equals —~ in
the above formulas.

The expression (1) can be thought of as a grand partition
function of a system of interacting "blips, " which are de-
fined to be the segments t2, i ~t ~tq, . (The remaining
segments are called "sojourns. ") The quantity S, is the
self-energy of a blip, A,k is the interaction between blips,

I

and X&k is a "blip-sojourn" phase factor. Following Ref. 3,
we now assume that the only important configurations are
those in which the blips are much narrower than the "so-
journs. " In that case one can neglect A,k altogether, as well
as all the phase factors X,k except those with k =j —1,
which can be approximated by R2, 2, i. The resulting ap-
proximation to P(t), denoted Po(r), is then given by

r t2& Pl

Po(r) = X( —I)"„,«z. „, «2. -i . „, «i gf(r2g —41-i),
Pl j=1 (8)

where

2

f(t) = 602cos Qi(r) exp
7rf

2' 02(r)
mh

treated via a transfer matrix whose eigenvalues and eigen-
vectors can be found numerically. ' The resulting approxi-
mation to P(t), denoted Pi(t), has the following structure:

It is advantageous to switch to the analogue of an isobaric
ensemble via a Laplace transformation, ' which converts Eq.
(8) into a geometric series whose sum is

(10) =&. fe ( )]'"'

(13)

(14)
Here, the tildes denote Laplace transforms, and X is the
transform variable. As A./cu, 0, f( A. ) is asymptotically
given by

j()i) —6',,„' (2y)2 'I (u+ A./2y)/r(I —u+~/2~), (11)

where
' a/(1 —a)

0jeff ~0
o)c
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and y =7rksT/t. By taking inverse Laplace transforms, one
can4 reproduce all the results of Ref. 3.

The approximation of neglecting interblip interactions is
not quite as arbitrary as it seems, provided one does not
want P(t) for very long times. " This is because Q2(t)
grows with t and thus suppresses long blips via the S& fac-
tors. Further, the aproxirnation improves with increasing
temperature, and if we can show it to be good at T =0, we
will have justified it for all T &0. We can do this fairly
convincingly everywhere except in the range ~ & a & 1, but
since P(r) oscillates only if a & ~, this shortcoming will not
matter for the purpose of this paper. Since the interactions
can be of either sign (i.e., gigk can equal + 1 or —1), their
contribution vanishes as o. as 0, 0, and it can be argued
that it also vanishes as (1 —2a) as n ~. A somewhat
more quantitative assessment can be made by including only
the nearest-neighbor interblip interactions. These can be

Here, Po(t;b, ) is given by Eq. (24) of Ref. 3, with A(n)
set to unity, AP(t) set to zero, and b,,rr replaced by 5
The first two eigenvalues e (n) and related amplitudes
A (n) for m =1,2 are shown in Table I for selected values
of 0.. Note that A2 is never greater than about 5%, and that
it vanishes both as n 0 and as a — ~. %e do not show
the A 's and e 's for m «2, since they are much smaller
and their contribution is entirely negligible. ' The correc-
tions to Pi (t) vanish as (1—2u)2 as 0.

Since 4i » 42, 43, . . . , the terms with m «2 in Eq.
(13) dominate the behavior of P(t) at very long times. By
these times, however, P(r) is very close to zero, and if one
is interested primarily in looking for oscillatory behavior, it
suffices to retain only the first term in Eq. (13). The result
is the same as would be obtained by inverting Eq. (10) (at
'1=0), except for minor corrections to A,rr and the overall
amplitude of P(t) In light of. the earlier discussion, we can
expect Eqs. (10) and (11) to provide an even better approx-
imation for T &0.

The upper bound T'(a) is now obtained by noting that
for n & ~ and T =0, Po(X) has a pair of complex-conjugate
poles on the circle iA. i =h, rr, and a branch point at X=O.
The poles lead to the oscillatory part of P(t) and the branch
point leads to the incoherent part Pi„„defi ed nin Eq. (24) of
Ref. 3. As the temperature is increased, the branch cut de-
generates into a set of poles on the negative real A. axis,
with an uneven spacing that grows roughly linearly with T.

TABLE I. Eigenvalues and associated amplitudes for the nearest-neighbor interblip transfer matrix for
selected values of n [see Eqs. (13) and (14)].

ei

0.1

0.2
0.25
0.3
0.4
0.45
0.495

1.012
1.039
1.052
1.06
1.06
1.05
1.01

0.988
0.962
0.950
0.94
0.94
0.95
0.99

0.00525
0.0218
0.0350
0.0525
0.0105
0.0145
0.0195

0.00913
0.0283
0.0390
0.048
0.053
0.040
0.006
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(Note that there is no pole at A. =0.) The complex-
conjugate pair of poles moves towards the negative real
axis, eventually hits it, and then moves along it in opposite
directions. If we now define T'(n) to be the temperature
at which these two poles coincide, it is clear that for
T ) T (n), P(t) is given by a sum of decaying exponen-
tials, and cannot show oscillatory behavior. It is straightfor-
ward to show that

FIG. 1. The upper bound T (o.) on the temperature above
which P(t) cannot show oscillatory behavior.
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FIG. 2. Real and imaginary parts of the complex frequency 0 for
PNMR(g) (broken line) and P„,(t) (solid line). Since the two ima-
ginary parts are too close to resolve on this figure, only that for P„,
is shown. The unit of frequency is b,off.

The first approximation [denoted PNMa(t)] is obtained by
doing perturbation theory in o,. One can write down a set of
Bloch-like equations for the "spin" components (a-;(t)),
which lead to the following equation for PNMR'.

t

2m kT'(n)
A h, ff

r(n+ u')
u' I (1—u+ u')

lt/(2 —2a)

(1S)
with

~ ~

NMR 2 NMR 0 NMR (19)

where u' is the real, negative solution to the equation T2
' = muhpcoth(fop/2k' T) (20)

u'[y(u+u') —y(1 —n+u')] =1, (16)

where P is the digamma function. The results of solving
Eqs. (1S) and (16) numerically are shown in Fig. 1. As

0, the solutions for y' and A.
' are given by

y'/A, rt(n) =u ' —inn+0(nlnn),
'/A, tr(n). = —1+nlnn+0(n21nn)

(17a)

(17b)

Similarly, as n

y'/A, tt(n) = I +4( ~ —u) 't'+ 0 ( I —2n),
A, /h, tt(n) = —1 —, 2(~ —u)'t +0(1—2n)

(Iga)

(ISb)

I conclude this paper with a comparison of two approxi-
mate treatments of the very low u region (less than 0.1,
say). This region is likely to be the most relevant to the ex-
perimental observation of oscillations in P ( t) for two
reasons; First, in absolute terms, T' drops even more pre-
cipitously with increasing o. than Fig. 1 would suggest, be-
cause of the o. dependence of 4,ff. Second, even at T =0,
the oscillatory part of P ( t) has a 0 factor of
~cot[vru/2(1 —n)], which also decreases rapidly with in-
creasing a.

The second approximation [denoted P„,(t)] is obtained
by inverting Pp(k), and retaining only the contributions
from the complex-conjugate poles for T ~ T', or the two
real poles into which they transform for T & T'. '4 The
neglected terms can be shown to be order o. for T =0, and
of order n' for T & T'.

Plainly, P„,(t) satisfies the equation of motion of a
damped harmonic oscillator, which will in general differ
from Eq. (19). It is clear that the perturbative approach
misses the frequency renormalization effect, but one might
wonder how well it does even if this is put in by hand, i.e.,
Ap is replaced by b„tt everywhere in Eqs. (19) and (20).
Figure 2 shows the real and imaginary parts of the complex
frequency associated with both P RN(Mt) and P„,(t) as a
function of T for n=0.05. It is amusing that while the
damping rate is virtually the same for the two approxima-
tions, the true oscillation frequency [which should be very
close to that of P„,(t)] is higher than that indicated by

PNMR( t) ~
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