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Equation of state for the infinite cluster and backbone in the anisotropic square lattice
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We use a real-spa'ce renormalization-group procedure recently developed for calculating equations
of state for geometrical problems, to treat bond percolation in the anisqtropic square lattice. By
choosing a convenient self-dual cluster, we calculate, for all Ualues of the occupancy probabilities p„
and p~ (along the x and y axes, respectively), the order parameters P (p„,p~) and P„(p„,p~),
respectively, associated with the complete percolating infinite cluster and with its backbone. An in-

teresting difference appears between these two quantities whenever one of the occupancy probabili-

ties, for example p„, equals unity: lim~ lP„(p„,p~) is discontinuous at p„=0 (where P„jumpsp

from 0 to 1), whereas limp lP„(p„,p„) continuously increases from 0 to 1 when p„ increases from

0 to 1. Through a convenient extrapolation procedure which includes the use of the best available
values for the critical exponents P and P, we obtain values for P„and P „which are believed to be

numerically quite reliable. In particular, P „(p,p)-3 (p —
z

)~ (P= 3'6 and 3=l.25) and

P (p,p)-A~(p —
2

)+ (/3~=0. 53 and 2~=1.92).

I. INTRODUCTION

The real-space renormalization-group (RG) techniques
are employed mainly to evaluate critical points (or more
generally critical frontiers) and exponents. However, in
principle, nothing precludes their use to calculate various
thermodynamical quantities (free energy, specific heat, or-
der parameter, susceptibility, : etc.) for the entire range of
the external parameters (typically temperature). As an ex-
ample, we can mention the work by Niemeijer and van
Leeuwen' where a RG formalism is developed for calcu-
lating several thermodynamical quantities.

Recently, some of us have developed a RG procedure
which provides equations of state corresponding to statis-
tical geometrical problems (not necessarily related to
Hamiltonian formalisms). The approach is as simple as a
mean-field approximation, preserving nevertheless the cri-
ticality of the problem. It has been used for calculating
the order parameters (site mass density) for the complete
percolating infinite cluster and for its backbone, noted
P (p) and P (p), respectively, for all values of the bond
occupancy probability p on an isotropic square lattice.

The aim of the present paper is to extend the above type
of treatment to the anisotropic square lattice for arbitrary
occupancy probabilit&es p„and py (along the x and y axes,
respectively). By using a convenient self-dual cluster (see

Ref. 3 and references therein) we calculate P„(p„,py) and
P (p„, py). In Sec. II we present the RG formalism and
the results; in Sec. III we apply a quite efficient extrapola-
tion procedure (first introduced to improve RG results
for surface tension in Ising systems) to obtain numerically
reliable results for P and P; we finally conclude in
Sec. IV.

II. FORMALISM AND R„ESULTS

We consider a square lattice whose bonds are randomly
and independently occupied (or "active") with probability

p„ for the x axis and p~ for the y axis. To construct the
RG recursive relations in the (p„,p„) space we adopt the
treatment ' based on the self-dual clusters indicated in
Fig. 1, which have proved to be extremely performative
for the anisotropic square lattice. Note in Fig. 1(c) the ex-
istence in the cluster of two entry points and two exit
points; if the configuration is a spanning one, it will simu-

late the infinite percolating cluster and all four entry
and/or exit points will be considered to belong to it. The
cluster of Fig. 1(a) [Fig. 1(c)] contains one (nine) relevant
bonds, and presents consequently 2 (2 ) different occupan-
cy configurations. The analysis of these configurations
shows that only half of them percolate, and are respon-
sible for the following RG recursive relations: '

P„' =P„Py +4P„Py (1—
Py )+6P„Py(1—

Py ) +4P„Py(1 —
Py ) +P„(1—

Py ) + 5P„(1—P„)Py+20P„(1—P„)Py(1—Py)

+27p„(1—p„)py ( I —
py ) + 14p„(1—p„)py(1 —

py )3+2p„(1 —p„)(1—p )~+ 10p„3(1—p„)2p~

+36p„( 1 —p„) py ( 1 —
py ) +40p„( 1 —p„) py ( 1 —

py )2+ 14p„( 1 —p„)2p ( 1 —p )3

+P„(1—p„) (1—py) +9p„(1—p„) py+26p„(1 —p„)3p (1—p„)+20p„(1—p„)3p (1—p )2

+4p„(1—p„) py(I —py) +3p„(1—p„) py(l —py) +6p„(1—p„) py(1 —py)+3p„(1 —p„)~p (1—p )2=f(p„,p )
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The percolation "order parameter" is defined as fol-
lows:

&L(p.,p, )
P (p„,py)= lim

I.~m
(4)

(c)

FIG. 1. Self-dual cells (the arrows represent the entrances to
and exits from the cell). The closed circles (open circle) denotes
internal (terminal) site.

where L is the (dimensionless) linear size of a (finite)
squire lattice, and XL is the average number of sites
which belong to the biggest cluster (which, in the L~ ao

limit, generates the unique infinite percolating cluster).
Consequently P is the probability of randomly choosing
a site which belongs to the infinite cluster. Following
along the lines of Ref. 2, we associate a dimensionless
"mass" mo with each site. The parameter mo changes
under renormalization as follows:

m o =g (px ~py )m o ~

and

py' =f(p„p. ) . (2)

where g(p„,py) satisfies g(1, 1)=b (d is the dimension
and equals 2 in our case) and has to be established. The
order parameter we are looking for is given by

lnb

ink,
=1.042,

ln(249/2 )
(3)

where b =2 is the RG linear scale factor and

[df (p p)~dp'] —=in.

In Eq. (2) we have taken into account the p +~py sym-
metry of the problem [see Fig. 1(b)]. The flow diagram
determined by Eqs. (1) and (2) is shown in Fig. 2. The ex-
act critical line p„+py=1 is recovered, as well as the
correct universality classes (one-dimensional percolation
for p„=0 or py =0, and two-dimensional percolation oth-
erwise). The "correlation" length critical exponent v cor-
responding to anisotropic square lattice is given by

(n)mo (p„,py)P (p„,py) = lim (6)

where mo"'(p„,py) is the nth iterated mass value, through
Eqs. (1), (2), and (5), starting from arbitrary values for
mo, p„, and p~. In short, the procedure consists in choos-
ing, for given p„and pz such that p„+pz & 1, an arbitrary
initial value for mo (e.g., mo ——1), and then performing
the recurrence determined by Eqs. (1), (2), and (5) up to
arrival to the fixed point (p„,py, mo)=(1, l, mo ') [which
is always warranted by the fact that g (1,1)=b."]:
P (p„,py) is proportional to mo '. For p„and py such
that p„+p~ ( 1, the procedure automatically yields
I' =0.

I.et us now determine g(p„yy). We impose the aver-

age mass of the spanning cluster to be preserved through
renormalization. The set of configurations of cluster of
Fig. 1(a) provides 2mop„'. With respect to the cluster of
Fig. 1(c), two typical configurations are indicated in Figs.
3(a) and 3(b), and their respective contributions are
7mop.'(1 —p. )2py'(1 —py) and 6mop„'(1 —p. )2py2(l —py)2
When all the configurations are taken into account, the
preservation of the average mass yields

0.5 '

0
0

FIG. 2. RG flow diagram. I' (NP) denotes the percolating
(nonpercolating) phase.

FIG. 3. Two typical configurations appearing in the calcula-
tion of the function g (p„,p~) in Eq. (5).
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2mop» =[8p»py+32p»py(1 —py)+48p»py(l —py) +32p»py(1 —py) +8p»(1 —py) +40p»(1 —p»)py

+158p„(1—p„)py(1 —py)+210p (1—p„)py(l —py) +106p„(1—p„)py(1 —py) +14p„(1—p„)(1—py)

+80p„(1—p„) py+280p„(1 —p„) py(1 —py)+298p„(1 —p„) py(1 —py) +96p„(1—p„) py(l —py)

+6p»(1 p») (1 py) +72p»(1 p») py+194p»(1 p») py(1 py)+134p»(1 p») py(1 py)

+24p„(l —p„) py(1 —py) +24p„(l —p„) py+40p„(l —p ) py(1 —py)+18p„(1—p„) py(1 —py) ]mo

=—A (p»~py)mo . (7)

Comparison with Eq. (5) and use of Eq. (1) provide

g (p„,py ) =h (p„,py )/2f (p„,p„),

the formalism being thus closed. The fact that for estab-
lishing Eq. (7) we have used the clusters of Figs. 1(a) and
1(c) destroys, strictly speaking, the p„+~py symmetry of
the square lattice (the same problem would of course arise
if we were to privilege the y axis instead of the x axis).
The numerical discrepancies are, however, practica1ly
neglected over the entire range of p„and p„. The RG

flow determined by Eqs. (1), (2), and (5) [with Eq. (8)] is
illustrated, for p„=py, on Fig. 4. The results obtained are
indicated in Table I (upper row) and Fig. 5. The critical
exponents (occurring along the entire two-dimensional
critical line p„+py =1) and critical amplitudes (occurring
at p„=p„—+ —,

'
) are indicated in Table II.

Let us now focus the backbone of the infinite percolat-
ing cluster (all dangling bonds or sets of bonds are to be
eliminated). The corresponding order parameter
P „(p„,py ) is calculated, within the present RG procedure,
in precisely the same manner as for P„(p„,py) but substi-
tuting Eq. (7) by the following one:

2mo p„' =[8p„py+30p„py(1 —py)+42p„py(l —py) +26p„py(l —py) +6p„(1—py)"+38p„(1—p„)py

+ 142p„(1—p„)py (1—
py )+ 178p„(1—p„)py (1—

py ) +86p„(1—p„)py(1 —
py )3+ 12p„(1—p„)(1—

py )~

+70p.'(1—p. )'py'+234p'(I —p )'p,'(1 —p, )+246p'(I —p )'p,'(1—py)'+84p'(I —p. )'p, (1—p, )'

+6p„(1—p„) (1—py) +58p„(1—p„) py+158p„(1 —p„) py(1 —py)+120p„(1 —p„)3py(1 —py)

+24p„(l —p„)py(1 —py) +18p„(1—p„) py+36p„(1 —p„) py(1 —p„)+18p„(1—p„)"py(1—py) ]mo .

TABLE I. RG values of P (upper vakte) and P„(lower value) for typical (p„,p~). ? refers to the fact that this value is not
uniquely determined.

0.2 0.3 0.4 0.5 0.6 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0.538

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.928
0.519
1

0.647

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0-
0
0.899
0.51 1

0.960
0.636
1

0.720

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.886
0.509
0.940
0.633
0.974
0.715
1

0.779

0
0
0
0
0
0
0
0
0
0
0
0
0.882
0.510
0.932
0.633
0.961
0.715
0.982
0.777
1

0.827

0
0
0
0
0
0
0
0
0
0
0.884
0.514
0.930
0.637
0.956
0.717
0.974
0.779
0.988
0.828
1

0.870

0
0
0
0
0
0
0
0
0.891
0.519
0.935
0.642
0.957
0.722
0.972
0.783
0.983
0.831
0.992
0.872
1

0.907

0
0
0
0
0
0
0.907
0.527
0.945
0.649
0.964
0.728
0.975
0.788
0.983
0.836
0.990
0.877
0.995
0.911
1

0.942

0
0
0
0
0.936
0.540
0.964
0.659
0.977
0.736
0.984
0.795
0.989
0.842
0.992
0.881
0.995
0.915
0.997
0.946
1

0.973

0
1 '

0.564
1

0.674
1

0.747
1

0.802
1

0.847
1

0.885
1

0.919
1

0.948
1

0.975
1

1
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FIG. 4. Flow diagram in the mo-p space (p„=p~=p). The
dots indicate the values of the order parameter P„(p), where p
corresponds to the starting point of the flux line. 0.6—

The results we obtain are indicated in Table I (lower row)
and Fig. 6; the two-dimensional critical exponents and
critical amplitudes (in the limit p„=pz ~—, ) are indicated
in Table II.

III. EXTRAPOLATION PROCEDURE 0 'i

0
I

0.2 0.4
I I

0.6 0.8

In order to numerically improve RG results for the sur-
face tension of the Ising model, some of us developed an
extrapolation technique ["single extrapolation procedure"

FIG. 5. Typical sections . of the RG order parameter
I'„(p»p~~. (a) fixed p~; (b) fixed g=—(1—p~)/(1 —p„).

TABLE II. Present RG and extrapolation, Tsallis et al. RG (Ref. 2), and exact or Monte Carlo results for the critical exponents
(v, p, p ) and amplitudes ( A, A ~) associated with the quantities P„and P „(see the text).

Present RG

(b=2)

ln2
1 042a

ln(249/2 )

ln(2' /961)
ln(249/2 )

1.19

pB

ln(2 /205)
ln(249/2 )

1.41

Other RG 1.428 (b =2)
1.380 (b =3)
1.305 (b =

~ )

0.428 (b =2)
0.338 (b =3)
0.198 (b =

~ )

2.09 (b =2)
1.84 (b =3)
4.0 (b=~)

0.550 (b =2) 2.45 (b =2)

Present

extrapolation

4c
3

5 c
36 1.25 0.53' 1.92

Exact or
Monte Carlo

36
—0. 139' 0.53'

'Reference 3 and references therein.
Results obtained from Ref. 2.

'These (exact or almost exact) values are input (and not output) within the present extrapolation procedure.
Exact: Ref. 7.

'Exact: Ref. 8.
Monte Carlo: Ref. 9.
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y=—(P„b) ~~,

0.8

0.6
P~

0.4 0.8

p =0

where pb, vb, pb, and P„b are, respectively, the critical
point, "correlation" length critical exponent, order-
parameter critical exponent, and order parameter obtained
within a RG which uses clusters corresponding to a linear
scale factor b; p„v, and P are the exact (or best available)
values for the corresponding parameters (hopefully
limb pb

——p„ limb vb ——v, and limb pb
——p); P b is

the extrapolated order parameter we are looking for
(hopefully limb „P„b lim——b „P„b P'„""——'). xb and x
vary from 0 to 1 when p varies from the critical probabili-
ty to 1. We introduce the following relation:

y =fb(x)yb (14)

where the correction function fb(x) has to be found. For
p= 1 (hence x= 1), both y and yb are exact and equal to
unity, therefore fb(x) satisfies

fb(1)=1 .

PB"06 Furthermore, relation (14) implies

dP b dfb(x)

P dp p=] dx &=i & —Pc

Vb dI b+
Pb dP p=&

0.2
hence

0
0

I

0.2 0.4
I

0.6
li

0.8

FIG. 6. Typical sections of the RG order parameter
I'„.(p„,p„): (a) fixed p~; (b) fixed g—= (1—p„)/(1 —p„). with

dfb(x)
dx

Pc vC —vb
C

l3 Pb
(17)

r

I-Pb "
xb (P):

& —Pb
(10)

x(p)= P —Pc

Pc

yb= (P b) '— (12)

(SEP) in Ref. 4] which proved to be quite efficient. We
intend to apply here the same technique for improving the
RG results for P (p) and P (p). The procedure uses, as
input, the exact (or almost exact) values for the critical
point (p, ), the critical exponents v and P (or P ) as well as
that of the slope of P (p) [or P (p)] at p=1. Its central
basis is that the extrapolation should be "soft" (polynomi
al correction) if rescaled "natural" variables are intro-
duced in the problem. More specifically the asymptotic
equation P ~(p —p, )~ can be rewritten as y ~x with
x cc (p —p, ) and y cc P ~, which defines the natural vari-
ables just mentioned (note that x and y are variables
which currently appear in standard finite-size scalings). It
is in the (x,y) space that the polynomial extrapolation will
be performed. Let us describe it in detail. We define

Cb =(dP b/dp)p

C = (dP „b/dp)~, =(dP'„"'"/dp)~ (19)

dfb(x) =0.
dx ~ o

The simplest function which simultaneously satisfies con-
ditions (15), (17), and (20) is the parabola

T

I Jc +b Vfb(x)=1+ Cb ——C (1—x ) .
2v pb p

(21)

where we have imposed that the slope of P b at p=1
equals the exact one (currently known, through simple ar-
guments, for the particular lattice under analysis). More-
over, the correcting function fb(x) has been introduced
mainly to redress the possibly wrong slope of P b at p = 1

[fb(x) = lVx, if the exact slope is reproduced by the RG],
and we want its effects to gradually relax while approach-
ing p, (hence x =0); it seems therefore sensible to demand
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b = P (prese

0.5—

0
0 0.5 0.5

FIG. 7. RG order parameter P„as a function of p„p„=—p.
I'he upper full line corresponds to our b=2 proposal; the
dashed line is the corresponding extrapolated curve; the lower
solid line is the b =

~ result of Tsallis et al. (Ref. 2); the dots

represent Monte Carlo data (Ref. 11).

FIG. 8. RG order parameter P „as a function of p„=p~ =—p.
The solid lines correspond to our b=2 proposal and the b=2
result of Tsallis et al. ; the dashed line is the extrapolated curve.

The expression for the correcting function is now unique-
ly determined; however the extrapolation procedure is not
yet closed, as we still have to indicate the arguments of y
and yb in Eq. (14). We postulate the following transfor-

mation:
xb(p)=x(p) . (22)

Summarizing, Eqs. (10)—(14) and (22) lead to the follow-
ing extrapolation algorithm:

r

Pc
Paob(P) 'fb(l. (p Pc)~(1 Pc)] ) Paob Pb+(1 Pb)

1 —p,

V/Vb Vb /pb p/V

(23)

which, together with Eq. (21), completely closes the pro-
cedure.

Equation (22) is the central assumption of the present
procedure and states that a kind of law of corresponding
states holds for the RG approximate functions (P b(p))
associated with different cluster sizes. Note that Eq. (23)
becomes identically satisfied if, in the b ~ Oo limit,
Pb~p„vb~v, pb —+p, and Cb +C [in short, —if P„b(p)
regularly approaches P'""'(p) for increasingly large clus-
ters]. The present formalism essentially reproduces that
used in Ref. 4 (for the surface tension) for the particular
case p=(d —1)v and pb=(d —1)vb (we recall that the
singularities of the surface tension and the correlation
length are, in general, intimately related). For the d=2
Ising model the present extrapolation procedure yielded

errors inferior to 3%%uo (l%%uo) for the b=2 (b=5) RG ap-
proach, over the whole domain of temperatures. The
main interest of the procedure comes from the fact that
the knowledge of commonly available information (p„v,
P, and C) and a single RG approximate result provides a
curve which is hopefully satisfactory over the entire
domain of bond concentrations.

In our present b=2 RG approach we obtain the P re-
sults indicated in Fig. 7 and Tables II and III, where we
have used that pb ——p, = —,', v= —,, vb —1.042, p= —,', ,

pb=0.095, C=0, and Cb ——0. The results correspond-
ing to P are indicated in Fig. 8 and Tables II and III,
where we have used that p =0.53, pb-0. 334, C =0,
and Cb=4
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TABLE III. RG and extrapolated order parameters P„and P„for the isotropic case (p„=p„=p).

0.5
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1

RG (b =2)

0
0.764
0.814
0.844
0.865
0.882
0.895
0.906
0.915
0.923
0.930
0.956
0.972
0.982
0.989
0.994
0.997
0.999
1

P
Extrapolated

0
0.655
0.721
0.786
0.791
0.814
0.833
0.849
0.863
0.875
0.886
0.926
0.952
0.969
0.982
0.990
0.996
0.993
1

RG (b =2)

0
0.303
0.380
0.434
0.476
0.512
0.543
0.570
0.594
0.616
0.637
0.720
0.783
0.834
0.877
0.913
0.946
0.974
1

PB

Extrapolated

0
0.167
0.241
0.335
0.346
0.389
0.427
0.462
0.495
0.525
0.553
0.674
0.769
0.845
0.905
0.951
0.982
0.999
1

IV. CONCI. USION

A real-space renormalization-group formalism (based
on an appropriate cluster and extending a previous one
has been developed to calculate, for all bond concentra-
tions on an anisotropic square lattice, the infinite cluster
and backbone order parameters [P (p~,p~ ) and
P (p„,p~ ), respectively]. They exhibit an interesting
difference: while P (p„,y) presents discontinuities at
(p„,p~) =(1,0) and (0,1), P (p„,p~ ) continuously vanishes
while approaching the critical line p„+pz ——1 (exactly
recovered within the present approach). The treatment
slightly destroys the p„~~pz symmetry of the square lat-
tice. It should not be hard to restore it by performing ad
hoc averages (frequently adopted in the literature) between
the p„and p~ equations: this seems, however, unworthy,
the numerical breakdown being practically negligible.

In order to obtain quite reliable values along the
p„=pz ——p axis (isotropic square lattice), we have imple-
mented an extrapo1ation procedure which has proved to
be very efficient in other similar problems. Our best pro-
posals appear in Table III (exact values for P and P
are unavailable in the literature). In the vicinity of the
critical point p, = —,,we obtain P -A (p —I/2)~ with

P= —,', (Ref. 8) and A=1.25, and P -A~(p —1/2)~
with P =0.53 (Ref. 9) and A =1.92.

In conclusion, within simple real-space renormal-
ization-group frameworks (not harder than mean-field ap-
proaches), it has been possible to obtain numerically reli-
able results for "geometrical" order parameters over the
entire range of the external parameters. The extension of
this type of techniques to other quantities (both geometri-
cal and thermal) and other lattices would be very wel-
come.
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