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Quantum corrections to the behavior of a nearly classical system may be determined via the Green’s-
function formalism, or via the Wigner-distibution-function (WDF) method. Recently, it appeared that
there is a serious discrepancy between the results obtained by these methods for the melting temperature of
the two-dimensional Wigner crystal. We resolve this problem by showing that the ‘‘effective-potential’’
technique of implementing the WDF method is invalid, and we present a correct approach.

The two-dimensional electron lattice is a focus of continu-
ing interest as a test of the Kosterlitz-Thouless-Nelson-
Halperin-Young theory of melting.!-> In this case the
essential parameter determining the melting temperature is
w, the shear modulus.*> Owing to anharmonicity, the shear
modulus itself displays a significant variation with tempera-
ture, and an accurate determination of the melting tempera-
ture must take account of this fact. The shear modulus is
found from the long-wavelength dispersion relation for
transverse phonons:
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where m is the electron mass and #n; is the areal density of
electrons. To determine the temperature dependence of w,
one must therefore compute the frequency shift A,(k) for a
transverse phonon, due to anharmonicity. In general,
A,(k) includes corrections which manifest themselves in
two ways: classical thermal corrections (terms ~ T, T2,
etc.), and terms ~#2, £*, etc., which represent the effects
of quantum fluctuations. :

Morf® estimated thermal anharmonic corrections to the
phonon spectrum in a Monte Carlo simulation. His result,
which yields a melting temperature close to the experimen-

tal value,”"1° was subsequently corroborated in a Green’s-
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function!!"12 calculation of Fisher.> Both thermal and quan-
tum corrections to the shear modulus were calculated by
Chang and Maki,!* who found good agreement with Fisher’s
result for thermal effects. Somewhat earlier, Fukuyama!*
proposed a method for calculating quantum (but not ther-
mal) corrections to the phonon spectrum via an ‘‘effective
potential’’ derived from the Wigner-distribution function
(WDF). However, Chang and Maki note a substantial
discrepancy between their result and Fukuyama’s. Thus far,
experiments on electrons at the liquid-helium surface have
been confined to the low density, classical regime, but re-
cently proposed experiments using thin He films!® should
provide an opportunity for the study of quantum effects.
Here we show that the effective potential defined by
Fukuyama cannot be used to derive the frequency shift due
to quantum fluctuations, and that the method is, quite gen-
erally, invalid. In addition, we show that Green’s-function
and WDF calculations predict the same results for the fre-
quency of an anharmonic oscillator. We thereby resolve the
apparent conflict between Green’s-function and WDF pre-
dictions for the melting temperature of the two-dimensional
electron lattice. )

The (unnormalized) density operator for a canonical en-
sgmble at inverse temperature 8=1/kT is Q = e A, where
H is the n-particle Hamiltonian. The corresponding (unnor-
malized) WDF is!é-17
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where ¢g; and p; are coordinate and momentum vectors for the ith particle. [The range of integration in Eq. (2) and all sub-
sequent formulas is from —o to +o00.]  may be obtained by solving the phase-space representation of the Bloch equa-

tion.!%17 In terms of Q, the ensemble average of any function F(§1,3,, . .
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and the partition function is
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in d dimensions. Fukuyama!4 proposed that the integration
over momenta be regarded as defining an effective potential

V.
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To derive the effect of quantum fluctuations on the phonon
spectrum, Fukuyama began with the electon lattice Hamil-
tonian (including cubic and quartic anharmonic terms in the
potential) and worked out the dynamical matrix correspond-
ing to the effective potential ¥ [computed via Eq. (6)]. The
renormalized shear modulus is then derived from the long
wavelength limit of the effective dynamical matrix. Thus,
in Fukuyama’s method, V is treated as a classical potential
which is supposed to generate quantum corrections to the
dynamics.

We shall now offer a critique of this application of the ef-
fective potential. In general, from Egs. (3)-(6) it follows
that the ensemble average of a function of coordinates may
be expressed as
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but it is not obvious that ¥ describes the dynamical
response of the system accurately. Since the Wigner distri-
bution is but one of a host of possible phase-space distribu-
tions,!”18 it is not clear why it should be selected for gen-
erating the effective potential. Employing some other
phase-space distribution (e.g., _the Kirkwood distribu-
tion'®1?) would give a different V. In other words, Vis not

unique. In fact, the effective potential is not an observable
i
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quantity. Only quantities which are obtained by integration
over both momenta and coordinates [such as Z in Eq. (5)]
qualify as observables, and in fact the same value for Z is
obtained from a variety of effective potentials.!® In other
words, using Wigner’s prescription for the definition of a
distribution function, V is to be regarded as a quantity
which occurs at an intermediate stage of the calculation of
such quantities as {(g), and should not be assigned any
physical significance per se. If one used, for example,
Kirkwood’s prescription for the definition of a distribution
function, then a different quantity, Vg, say, would emerge
which could be used to calculate the same value of such
physical quantities as (g). The nonuniqueness in ¥ arises
from the fact that when one uses a generalized distribution
function,”® Q,=0Q, say, where 0 is an operator in phase
space depending on derivatives with respect to momenta
and coordinates, then a different effective potential em-
erges. However, the same physical results are again ob-
tained,? since one also has to use the fact that 4,=07'4,
where 4 and A4, are the cla§sica1 phase-space quantities cor-
responding to an operator 4 in the Wigner and generalized
distribution function approaches, respectively. By the same
token, ¥ and V, are simply parts of H and H,, where H and
H, are the classical phase-space quantities corresponding to
the Hamiltonian H, in the Wigner- and generalized-
distribution function appraoches, respectively. It is to be
emphasized'® that Hy= H, which underlines the fact that the
classical phase-space quantity corresponding to H should not
be regarded as a classical Hamiltonian.

We will now illustrate our remarks by considering a one-
dimensional anharmonic oscillator, subject to an external
force vy, i.e., the Hamiltonian
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We shall be interested in the vibrational frequency of the
oscillator as a function of temperature when y =0; in apply-
ing the WDF it will, however, prove useful to examine the
response to an applied force y and set y =0 at the end. Us-
ing the Wigner-Kirkwood expansion,'®!7 one readily finds
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The meaning of the second and third terms in Eq. (9) is that they represent quantum corrections to the classical distribu-
tion exp(—BH). They arise from terms in the Wigner-Kirkwood expansion [see Eq. (2.82) of Ref. 17] involving deriva-

tives of the potential appearing in Eq. (8).
When y =0, Eq. (6) yields
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Now according to Fukuyama’s prescription, we must regard
the coefficient of ¢? in ¥ as +mw}, with wg the renormal-
ized frequency. This is completely analogous to extracting
the renormalized phonon frequencies from the effective
dynamical matrix. Evidently, to first order in A and %2,
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According to this result, quantum fluctuations cause a shift
in the frequency of a harmonic oscillator (A =0), which is of
course absurd. Thus the effective potential gives an in-
correct frequency even in the simplest case. In the electron
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lattice calculation of Fukuyama there is also a frequency
shift in the absence of anharmonicity [see Eq. (3.5) of Ref.
14], but this term does not contribute in the long
wavelength limit. -

The actual frequency shift of the oscillator whose Hamil-
tonian is given by Eq. (8) (with y=0), is readily evaluated
via the thermal Green’s-function method. A computation
paralleling the approach of Ref. 11 yields

i
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Expanding, one has
2
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The first term represents the shift due to thermal fluctua-
tions, and the second is the lowest-order correction due to
quantum fluctuations. The corresponding term in the effec-
tive potential result, Eq. (12), is too large by a factor of 2.
In light of the failure of the effective potential method as
applied to this elementary problem, there is no reason to
believe the result for the electron lattice. Ipso facto, more
elaborate calculations which consider the effect of a magnet-
ic field?! are also invalid.

The foregoing observations raise the following question:
Can the frequency shift A be determined by means of the
WDF? We believe that this may be accomplished in several
ways, but for the present we consider only the following
straightforward approach. If the frequency of an oscillator
(in the limit of vanishing amplitude) is w, then the response
to an applied force vy is

<q>,=7n1—+ 0(y?) (15)

w?

Hence we take
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Using the WDF, Eq. (9), we find to first order in vy, A, and
h—Z

(y—0) (16)
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in agreement with the Green’s-function result. This result
may also be obtained without the artifice of an external
force, by using the WDF to compute the correlation func-
tion (g(z)g(0)). We have also used the WDF to obtain a
result valid to all orders in # and first order in A, which
agrees with the more complete Green’s-function result
given in Eq. (13).

In conclusion, the discrepancy between the predictions of
Refs. 13 and 14 regarding the effect of quantum fluctua-
tions on the melting temperatures of the two-dimensional
electron lattice has been shown to be an artifact of the ‘‘ef-
fective potential””> method employed in Ref. 14. The effec-
tive potential is not valid for describing the dynamics of the
system. In addition, our results have broader implications
in that they establish the equivalence of using the Green’s
function or the WDF and, at least for the problem con-
sidered, we found that the use of the WDF method was
conceptually and computationally simpler.
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