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Configurational elastic energy in P-brass
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An analytic expression for the configurational elastic energy (CEE) in ordered phases is derived

using microscopic elasticity theory. Fourier methods are used to express the CEE for a given com-

position modulation in k space. The theory is app1ied to a P-brass which has the 82-type ordered

structure. Quantitative calculations are made on the GEE with use of the solute, solute-lattice, and

lattice coupling parameters obtained from x-ray- and neutron-diffraction experiments. For a given

Fourier component of composition modulation, the CEE in k space exhibits spectra on two separate

branches, which correspond to the optical mode and the acoustic mode of decomposition waves.

Both modes of the CEE are found to exhibit strong orientation and wave-vector-magnitude depen-

dence. Both modes have positive values at the special point (2, 2, 2 ) but negative values at the k

space origin, which indicates that the CEE works to depress the D03 ordering but also facilitates

spinodal decomposition in the P-brass.

I. INTRODUCTION

It is well known that coherency strains, which are
caused by the size difference of the solute and the solvent
atoms in alloy crystals, play an important role in the sta-
bility of alloy phases. For example, strain originating in
the size difference of atoms makes the solid solution un-
stable and tends to facilitate decomposition. Various cal-
culations have been made on the elastic energies originat-
ing from the coherency strain. The microscopic elasticity
theory is best known through its extensive use in calculat-
ing the elastic energies exhibited by the static displace-
ments on defects. The theory was first developed by
Matsubara and was greatly extended by Kanzaki who
calculated the displacements on substitutional atoms and
vacancies in argon. After the work accomplished on
point defects in crystals, the microscopic elasticity theory
was applied to order-disorder transition ' and omega'
and other lattice (structural) transitions. ' ' However,
attention should be paid to the assumption involved in the
theory that the elastic moduli or force constants of all the
phases or defects participating in the decomposition pro-
cess or pertinent to the structural transition are equal.
This assumption is not strictly true in the case of cluster
formation in solid solutions, because the relative differ-
ence in the elastic constants is of the order of 10 . On
the other hand, this is especially significant for the order-
disorder transition, because the elastic constants vary in
proportion to the square of the long-range order (g), and
in the ordered phase of g = 1, the elastic constants are an
order of magnitude larger than that of the disordered
phase. ' ' ' Therefore, in ordered phases, the elastic en-

ergies should be estimated using the elastic constants
which have different values from that in the disordered
phase.

The formation of an ordered phase imposes an addi-
tional condition in formulating the microscopic elasticity
theory. The appearance of ordered spots in reciprocal

space reduces the volume of the first Brillouin zone (BZ).
As a consequence, each discrete point allowed in the first
BZ should represent multiple (displacement or concentra-
tion) waves by the number of sublattices in the ordered
phase. This additional condition makes the theoretical
treatment intricate.

In this paper, we consider the configurational elastic en-

ergy (CEE) in ordered phases using microscopic elasticity
theory. Of course, this can be applied to various problems
of the ordered phase, but we pay attention only to the
elastic energies accompanied by coherent clustering and
continuous ordering in the ordered phase. Experimental-
ly, those phenomena have already been recognized in
many binary alloys such as Cu-Zn (Refs. 21 and 22), Fe-
Al (Ref. 23), Fe-Be (Ref. 24), and Fe-Si (Refs. 26—28) sys-
tems. The P-brass (Cu-Zn system) is a particularly in-
teresting system from the CEE point of view, because a
variety of transitions have been observed under the influ-
ence of elastic energies' and because all the parame-
ters necessary for calculating the CEE have been obtained
by experiments. ' The second purpose of this paper is,
therefore, to calculate the CEE in a P-brass (82-type or-
dered phase) and to consider the contribution of it to the
phase stability.

An expression for the configurational elastic energy in
ordered phases is given in Sec. II, where an analytical ex-
pression in Fourier form is derived in analogy to that of a
solid solution. In Sec. III the elastic energies developed by
the concentration waves with the wave vectors in the first
Brillouin zone are estimated for the 82 phase of Cu-Zn
system. The contribution of the elastic energy to the clus-
tering and to the continuous ordering is considered. A
brief discussion is given in Sec. IV.

II. REPRESENTATION OF ELASTIC
FREE ENERGY IN THE ORDERED PHASE

The microscopic or crystal-lattice-statics theory of elas-
ticity has been developed on solid solutions of metal al-
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loys. In this approach, the solute atom functions as a
center of force which acts to displace the lattice around it,
while the lattice displacement is in turn opposed by the
elastic resistance of the lattice. The former is called the
internal force and the latter is called the lattice force.

In the ordered phase, the crystal can be subdivided into
sublattices. Atoms on a particular sublattice may be dis-
tinguished from those on another sublattice. Consequent-
ly, both the internal force and the lattice force depend
upon the atom species and the sublattices on which the
atom is located. Mechanical equilibrium can then be ex-
pressed in a matrix form in Fourier space as follows:

—0'(q){?(q) =@(q)U(q),

where q represents the allowed triplet numbers (ql, q2, q3)
in the first BZ of the reciprocal-lattice space. The left-
hand side of Eq. (1) represents the internal force and the
right-hand side expresses the lattice force. The matrix
%*(q), which is an adjoint matrix of V(q), is a Fourier
transform (FT) of solute-lattice coupling parameters
(CP's) given in a matrix form; when the allay consists of t
species of atoms and contains N unit cells of the ordered
structure, each containing Z atoms distinguished by the
sublattice position y in the unit cell, %(q) is a
(t —1)Z )& 3(t —1)Z matrix with elements

where m y is the mass of an atom of the oth species on
the y sublattice. The solute-lattice CP's g' (ny y—')
represents the force which acts along the i direction from
a solute atom cr at location x(ny) on an atom o' at site
x(y). Hence, the internal force is expressed in terms of
the product of the solute-lattice CP's and the concentra-
tion variance y (ny) c—y, where ya(ny) is unity if the
oth atom is located at position x(ny) and otherwise it is
zero, c y representing an average concentration of the crth
atom on the y sublattice. On making the FT of the con-
centration variance, we obtain a ( t 1)Z—-dimensional
column vector g(q) in Eq. (1) with elements Q (y

~
q).

In the right-hand side of Eq. (1) the FT of a dynamical
matrix 4(q) is a 3(t —1)Z&&3(t—1)Z symmetric matrix
with elements + (y;y'

~
q) which is defined on the analo-

gy of the definition of the solute-lattice coupling parame-
ter ga (y;y'

~
q). U(q) is a FT of the displacement vector

u(ny) and is a 3(t —l)Z-dimensional column vector (see
the definition in Ref. 22).

Elastic free energy of the alloy can generally be ex-
pressed in a power series of Q (y

~
q) and U (y

~

q).
Making a harmonic approximation of the elastic free en-
ergy with respect to the Q (y

~
q) and U (y

~
q), and im-

posing the mechanical equilibrium condition expressed in
Eq. (1), we obtain the following expression of the total
elastic free energy in the ordered phase:

(i=1,2, 3; o,cr'=1, 2, . . . , t 1; y, y'=1, 2,—. . . ,Z),
E= g Q*(q)E(q)Q(q),

E(q) =L(q) —%(q)C '(q)%*(q),

(3a)

(3b)

(y;y'
I
q)= ~ (ny —y')

(may n'ay) n

Q exp[ik(q). x(ny —y')],

(2)

where L(q) is a (t 1)Z X(t ——1)Z matrix with elements
(y;y'

~
q), which are a FT of solute CP's

(ny —y'). The solute CP's represent the elastic ener-

gy to bring an atomic pair from the pure solute or solvent
to their ideal location defined by the average lattice of the
alloy: '

L .(ny y') = P'—(ny —y')Xk(ny y')Xl(n—y —y')(g y,;k+g—y,.k)

X(yjay~jl+yjay j!)Cars j'8(C&&rs+Ctrqs)r

L (0)=ggg+L (ny —y'),
0' n y y'

(4a)

where the implicit summation is indicated over the repeated suffixes i,j,k, and l. g y,.j is an expansion coefficient with
respect to the concentration of the ~th solute atom defined on the y sublattice and Vegard's law is assumed on all species
of atoms. Then, the stress-free strain or eigenstrain e y,&

of the crth solute atom is exPressed in terms of the concentra-
tion variance as follows:

0
&ay, il =nay, ij [ya(yiy ) Cay ] . —

From the definition of L(q), %(q), N(q), and from the translational and the rotational invariance of E(q) of Eq. (3b),
we can readily prove that L(q) and @(q) are real matrices and V(q) is a purely imaginary one. Therefore, the elastic en-

ergy modulus E(q) is real.
In order to make clear the physical significance of Eq. (3a), we rewrite it in the form derived by Khachaturyan. ' The

term L(q) in Eq. (3b) is expressed in terms of elastic constants using long-wavelength relations:

Nfl p XQ 2

Z g g g g ijkl(9ay ik+ Qa'y', lk )( 7ayj! + la'y'jl )C y ag g Cjikl !jay ik Pay jl(Cay )
r' 2Z-y

g Q'(q)[ Ii(q)@' '(q) Ii*(q)]Q(q),
q
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where the following identities are used to derive the above equation:

Q Q (y
~

q)Q* (y'
~
q) =m r[c ~(1—5 c r )5r~ ],

q

where 5r& and 5~~ are Kronecker 5 functions.
Khachaturyan has put the expansion coefficient g~z,~ in Eq. (6) equal to the stress-free strain e r,.J because he con-

sidered a crystal of pure solvent atoms as the initial state of the system. Hence, in Eq. (5), c~r should vanish and g r,j.
becomes equal to the stress-free strain e~r,~. In that case, the first term in Eq. (6) is the elastic self-energy which is a
simple sum of self- (stress-free strain) energies exerted by each solute atom in the solvent crystal and it would be observed
if the atoms did not interact. The second term is the energy created by the elastic image force which arises from relaxa-
tion (expansion or contraction of volume) of the unconstrained crystal surface. The third one is a configuration-
dependent term which results from the direct elastic interaction of solute atoms.

In treating the effect of elastic energy on the reconfiguration of atoms, one needs to consider only the direct pairwise
interaction since the. self-energy and image-force contributions are unchanged by the configuration of a fixed number of
solute atoms. Taking into account the above mentioned, the total elastic energy E of Eq. (3a) is rewritten to represent the
CEE explicitly in the following form:

(Sa)
y y'

E (y;y')= ggm [c (1—5 c ~ )5 ](Z (y;y'~q)),2Z
(Sb)

E o f(y y')=
2Z 222 Q.(y I q)[Z (y y'

I q) &Z —(y y'
I q) &]Q.* (y'

I q»
O' CT

Z, (y;y'lq)=L ..(y;y'lq) +,-(y;y'lq)+. .'(y;y'lq)+.*.(y;y'lq),

where submatrices 4' (y;y' ~q) and @ '(y;y'~ q) are
used for the convenience of explanation of the configura-
tional part of the elastic energy in each sublattice system.
The average (Z (y;y'

~
q)) should be done over the

wave vector k(q) in the first BZ of the crystal. In Eq. (Sc)
when the distribution of solute atoms is perfectly random
on the a and P sublattice, the term Q (y

~
q)Q (y'

~
q)

does not depend on wave vector k(q), and then the CEE
E„„f(y;y') vanishes in the disordered phase of the sublat-
tice system (y;y'). On the other hand, the elastic energy
Eo(y;y') always has a positive value which is brought
about by the dissolution of solute atoms into the solvent
matrix of the sublattice system (y;y'). lt is instructed to
indicate that g Q, E„~(y;y') is nearly equal to the
negative value of g Q, EO(y;y') for the 82 phase of
g=1 in the equiatomic binary system. This comes from
the fact that the nearest-neighbor pair of atoms in the 82
phase constitutes the standard state (no strain) configura-
tion of a binary alloy, and then g ~ [Eo(y;y')
+ E pgf(y;y')] is nearly equal to zero for the 82 phase of

the binary system. Hence, the g g .Eo(y;y') «rm may
be understood as the elastic driving force for the 82 or-
dering in the disordered 82 phase.

III. CONFIGURATIONAL ELASTIC ENERGY
IN A P-BRASS

The quantitative calculation of the CEE has been made
on the P-brass (Cu—38.9 at. % Zn) which has an ordered
82 structure. With the use of this calculation, Eq. (Sc)
can be expressed in a simple form as follows:

XXX+ (»y'
l q)«y

l

q)Q*(y'
I q»

q y r'

(9b)

where the summation over y and y' should be made on
the two sublattices a and P. The estimation of the CEE
modulus will be made using the solute, solute-lattice, and
lattice CP's. These values are listed in Table I, where the
notation ajar and PJ are used to represent the lattice cou-
pling parameters after Gilat and Dolling. The solute-
lattice coupling- parameters have been obtained by the
present author from the analysis of x-ray diffuse scatter-
ing of the P-brass. Out to third neighbors of atoms,
three constants a ~p, a pp, and u ~~ were obtained and two

constants a~~ and a~~ have been left unknown. In
performing the calculation, a~~ and a ~~ are assumed to
have the value —2.00&10 ' N and zero, respectively.
This comes from the experimental results obtained by
Cook and the present author that in the disordered P-
brass e' '+4a' '=3.39X10 "N, and in the ordered one
u pp+4o.'pp ——6.97&10 ' N. The solute CP's are es-
timated from Eq. (4), where the expansion coefficients are
assumed to be constant, 1 e Qyy Ij 0 0685Ij Three sets
of CEE E,(a;a

i q), E, ( Pai q), and E,(P;P i q) have
been calculated on the discrete reciprocal points q separat-
ed from each other by (b.q ) =(,~, ,~, ,~ ). Figures
1(a)—1(f) show the view of the contours representing the
CEE moduli, E,(y;y'

~

q)'s in the first BZ of the (001)
and the (110)* reciprocal plane. In order to explain the
physical meaning of the contour map, we consider the
case in which the degree of order (g) is unity in the
present P-brass. For the Cu—38.9 at. % Zn alloy in 82



H. KUB(O 32

01/20 1/21/20 01/20 1/21/20

—16.2

~'),th), VIiI K~V&"'

r.~ZB/|",&&=

. ~/yp/ 'gp~
~&~~&~ )P~~&i~~g~~

:gpss, pjljj'jg, t::I:::(
~.~li~iÃiFi'i't '
/zi&P~~&z~Z i'

-(&

--:&'I I:i',YP~P~~~~8ii"Ii"—~ 5-'I:)'I'/jP~~///~l/ie, ~f)J)~i)iI

, '~ ': 6'/i'//Ii~lll('Lk~~~li~SI

I I/PPZ~~/ll&I'&~~~r~P~) I

,/ i',~l/Z~F//)i'('"~~~~&~~~&

,///r', 4~~~~
'//&/)~~~Pi~v&~~~~'::: xX )
7/ASÃ~' —':. x ) )

-4.77

000 (.) E,{a;a) ) (0«) 1/200 000 1/200
(b) E {g.p)q) (001)

1/21/2001/20

(c& E,(&;Plq) (001)

Z, t ),~)I JII ILL&~&~"'

j' j'~'l, ~//('I e&==

:-::::::.:rg~/pe'::::::,H~W~~~—:::.&,~riP.&&~~&~

::/~gjli gpg+z, :7
r'/)~~&I~~+&& &',/-
(.

11.0
000 E (a;eg)

001/2

~~ i'f)0II I

- ~- -&/ah/gl

~jit~
~&lii~~»
zi~ir~~ I

/Pivot/ (

=&~ / f l

1/2 1/2 1/2
22.6

1.81
(1 TO)

1/21/20

4 xX%~9 3
x%%~9,& (

XXV,ikey, ( )

3 &)9)'III l

I ) III(II(l

1/21/21/2
-4.77

001/2
-4 77

—.3 I //~////i1r~~~xXX~~jXX k~ 'I I I6/t&~/////iFiw~@%~%%~%% )
~ )/PS/tl/illIII~( ( ~i%~%%i~»,'"

i'iiii~~zzzzutt, &'~ x~ixxx~ixsi~i I

J/, p/7/i'd// 4 ~ Nx 'i%%%%,'I'I'

//z~E/z' ~ -~iXX %~h%hV'I&Ii'&~—
l 3 'i I I I 3 '~iIIIIIIIIIII

(e) E.(a;j tq) (1TO)

1/21/2 1/2
21.1

001/2
—1 2.2

-J - I 1 I J tl

t Dt'If

Z7Z~A'/~ /~/~A'
,~7~&1~~

t
PXi/in

2.05
GOO

-0.06

E,{I;P~~) (1 10)
1/21/20

I I ('6'%XXVi ~
I '6i%'O'. X L

h V939,(&
'i h)V, Q()t

t:3

FKx. 1. Contours of configurational energy modulus E,(y;y'
~
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q) in the (110)~ plane, and (f) E,(p; p ~
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TABLE I. Numerical values used for the calculation of CEE
in P-brass. a~„and PJ are force constants. a~~„' and a~' are
solute-lattice and solute coupling parameters, respectively. The
elastic constants C,~'s are those obtained by the ultrasonic
method.

Lattice coupling parameter
(model 4E) (N/m)

pi
~&o

2
&11

3
CX &0

3
O11

4

4

Solute-lattice
coupling parameter

(10-" N)
~(])+ap
~(2)aa
~ (2)pp

(3)
&aa
~ (3)pp

Solute coupling parameter
(10 N m)

—(&)
&ap
—(2)au
—(2)pp
—(3)aa
—(3)
C7 pp—(4)
&ap

Elastic constant'
{10—» Nym2)

C11

Cia

2 (C11 C12)

Atomic vyeight

mc„——63.54

Lattice constant

a =0.2954 (nm)

8.420
11.340
7.110
0.730
1.070
1.190
0.280
0.370

24.2
—0.20

2.97
0.0

26.66
7.15

0.74
2.15

2.39
1.96

1.316
1.097
0.744

0.109

mz„——65.38

'Y. Murakami and S. Kachi, Jpn. J. Appl. Phys. 13, 1728
(1974}.

phase with g=1, all the a sublattice points are occupied
by Cu atoms. On the p sublattice, on the contrary, the
solid solution is formed with the composition of Cu—77.8
at. % Zn. Therefore, the decomposition is possible only
on the p sublattice. As a result, only the CEE E,(p;p q)
has to be considered. A second assumption is that the
free energy is entirely elastic. The estimated values shown
in Figs. 1(c) and 1(fl reveal the pronounced characteristics

of orientation and wave-vector-magnitude dependence of
the CEE modulus. The decomposition may occur at any
point q which has negative CEE value. When the (100),
(110), and (111) high-symmetry directions are con-
sidered, the decomposition takes place only along the
(100) directions which are elastically more soft than the
other two directions. It also stands for the case that the
free energy is taken into consideration, because only CEE
exhibits the strong anisotropy with respect to the direction
of k(q). This strong anisotropy is one of the characteris-
tics of CEE in metals and alloys. ' At early stages of
decomposition, the decomposition wave grows in propor-
tion to the exponential of the negative value of CEE.
Hence, among many points q, the decomposition may
occur predominantly at the point q which has a minimum
value of CEE, and the final phase which will be obtained
by continuous ordering or continuous decomposition can
be determined from the minimum point q. In the present
case of g = 1, it occurs at q =(—,',0,0) or (0, —,',0) as shown

in Fig. 1(c), which gives rise to the ordered phase of
M = 1 with the second kind of antiphase domain vector in
the B2 structure. It is to be recalled, however, that the
above consequence is not derived by considering the total
free energy but only from the CEE of the P sublattice of
the P-brass.

It is evident from Eq. (9b) that the CEE is the differ-
ence in elastic free energy between the decomposed phase
(cluster or ordered phase) Z(y;y'

~
q) and random solute

distributions (Z(y;y' ~q)). Cahn, on the other hand,
has only shown explicitly the term Z(y;y'

~ q )

=2&g Y'(y;y'
~
q) in his expression of the elastic energy,

and as indicated by Cook and de Fontaine, the term
(Z(y;y'

~
q) ) is only included implicitly in the equation. '

Therefore, in the expression used by Cahn in his continu-
um model, the elastic energy modulus always has a posi-
tive value, but in the present expression of the configura-
tional elastic energy modulus, it may have either positive
or negative value depending upon the relative magnitude
of Z(y;y'

~
q) and (Z(y;y'

~
q) ). It is to be noted that the

average (Z(y;y'
~
q) ) always has a positive value since it

represents the net elastic energy brought about by the ran-
dom distribution of solutes in the stress-free solvent ma-
trix. Therefore, the solid solution of the sublattice system
is elastically favorable to be decomposed into incoherent
(strain-free) phase.

Without any restriction on the amplitude of the decom-
position wave, we have to consider the eigenvalues of the
symmetric matrix E,(q) for obtaining the maximum and
the minimum CEE in the alloy system. By using the es-
timated values of the elastic energy moduli E,(y;y'

~

q)'s,
the eigenvalues e(+ ) and e( —), which are the maximum
and .the minimum CEE modulus, respectively, are ob-
tained as a function of the wave vector k(q). The relation
between the eigenvalues e(+ ) and the CEE moduli
E,(y;y'

~

q)'s can be readily understood from a drawing of
the CEE contour in an amplitude space whose base axes
are Q~ and Qp. Figure 2 shows a curved surface of the
CEE for the decomposition wave with the wave vector
k(q)=k(0. 05,0,0), which is taken into consideration as
an example. The Cartesian coordinates Q~ and Qp in the
figure represent the amplitudes of the decomposition
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iI EC

Q(+)

FIG. 2. Drawing of the CEE in amplitude space Q —Qs,
where the concentration wave is assumed to have the wave vec-
tor k(q) = k(0.05,0,0). The tangents of the eigenvectors Q( —)

and Q(+) are 1.13 and —0.99 in the Cartesian coordinate

Q —Qs, respectively.

E,(a;a
I
q)+v'D(q)]—

D(q) = [E,(a;a
I q) E,(I3;P

I q)] +4[E,(a—;I3 I q)]

(10a)

(10b)

It is straightforward from Eq. (10a) to specify the direc-
tions of eigenvectors Q(+) in the Q -Qp amplitude space.
That is, when the cross term E,(a;P

I q) is positive, the
eigenvector Q(+ ) must be directed in the region
Q Qp&0 and the eigenvector Q( —) must be in the re-
gion Q~Qp &0. On the contrary, when E, ( PaI q) is neg-
ative, the opposite relation holds between the directions of
Q(+) and the sign of Q~Qp. Thus, when only two sub-
lattices are present in the crystal, the cross term of the
CEE modulus determines the direction of the eigenvectors
in the amplitude space. It is evident that one of the eigen-

waves. Because the CEE is drawn in a form

Q„Q,E,(y;y'I q)Q(y I
q)Q'(y'

I q) for the particular
wave vector k(q), as shown in Eq. (9a), the modulus

E,(y;y'
I q) represents the curvature of the surface in Fig.

2. For example, at (q) =(0.05,0,0) the cross section of the
CEE surface is upwards concave along the Q axis and is
upwards convex along the Q~ axis. In fact the estimated
elastic energy modulus E,(a;a

I q) has the positive value
of 1.0X10 ' J/atom and the modulus E,(P;PIq) has
the negative value —7.7&&10 ' J/atom. From the es-
timated values of E,(a:a

I q), E,(a:P I q), and E, (I3:I3 I q),
the eigenvalues can be obtained as e(+)=6.25&&10
J/atom and e( —)= —12.9 && 10 ' J/atom. The corre-
sponding eigenvectors can also be obtained and are shown
in the figure as Q(+ ) and Q( —), respectively. It is readi-
ly understood from the figure that the decomposition
wave along Q( —) grows up at the maximum speed in the
system and decays most rapidly along Q(+ ) direction.

Because the decomposition waves along the eigenvec-
tors Q(+) are composed of two basic waves Q and Qp,
the growth or decay of the waves along Q(+ ) signifies the
concurrent growth or decay of the waves on the 0. and the
P sublattice. The amplitude ratio Q~/Q of the
"eigenwave, " which is identical to the tangents T(+) of
the eigenvectors in the Q -Qp amplitude space, can be
given by the following equation:

T(+)=2E,(a;~ I q)[E,(/3;~ I q)

(1+S)C~

Qp

«o

(1 —S)C
a sublottice

FIG. 3. Qptical mode of long-wavelength decomposition.
The two waves on the a and the P sublattice have the same
wavelength but have a different phase angle by m.

I

values is always in the region Q Q~ &0 and the other is
always in the region Q Q~ &0. It signifies that there are
two pairs of concentration waves with the same wave vec-
tor on the a and P sublattice, and that one pair has the
amplitudes with the same sign and the other has a dif-
ferent sign of the amplitudes. This conclusion derives the
concept of phase angle between the decomposition waves.
Because we consider many concentration waves on the
two different sublattices a and P, the phase difference can
be considered between the two waves which have the same
wave vector. For example, Fig. 3 shows the decomposi-
tion waves on the a and P sublattice, where the phase is
different by n, i.e., Q Qp &0. This mode of decomposi-
tion waves is, after the theory of lattice dynamics,
metaphorically called "optical decomposition waves. " On
the other hand, if two waves have no phase difference, i.e.,
Q Qp&0, they are called "acoustic mode of decomposi-
tion waves. " The theory of lattice dynamics insures that
the difference of phase angle should be n. for the optical
mode of vibration waves and that it should be zero for the
acoustic mode of vibration waves. The phase angle gradu-
ally changes with the wave vector from the origin to the
point on the BZ boundary to have the value n/2. This is
the same in the decomposition waves on the sublattices a
and P. Therefore, the situation that the phase angle is dif-
ferent by m as shown in Fig. 3 can be attained only in the
limit of very long wavelength, i.e., in spinodal decomposi-
tion. To identify the decomposition modes of concentra-
tion waves corresponding to the maximum and the
minimum eigenvalues e(+) and e( —), respectively, the
sign of the cross term E,(a;P

I q ) should be consulted
with. For example, in the vicinity of the origin in Fig.
l(b), it has a negative value along the (100) directions.
Therefore, the eigenvectors corresponding to the max-
imum and the minimum CEE modulus must exist in the
region Q~Q~&0 and Q~Qp&0 of Fig. 2, respectively.
Thus, the maximum CEE modulus e(+) is attained by
the optical mode of decomposition and the minimum one
e( —) is obtained by the acoustic mode of decomposition.
Figure 4 shows the view of the contours of the eigenvalues
e(+) in the (001) reciprocal plane [Figs. 4(a) and 4(c)]
and in the (110)* reciprocal plane [Figs. 4(b) and 4(d)].
There are always two kinds of decomposition mode with
respect to the same vector.

It is to be noted that if the decomposition took place in
a disordered phase, the eigenvalue of the optical mode of
decomposition could be drawn outside of the first BZ of
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FIG. 5. {a) Acoustic branches of the CEE moduli are shown
along high symmetric directions in k space. {b) The optical
branches of GEE in P-brass, where the waves with the wave vec-
tor k{q)= k{0,0,0) indicate ordering waves.

the P sublattice.
The curves e

~ ~o (+ ) and e ~ ~ ~ (+ ) in Figs. 5(a) and 5 (b)
exhibit characteristic features. The moduli e~t&&(

—) and
e~~o(+) which have the values 1.89X10 ' J/atom and
11.2&& 10 ' J/atom at the origin, respectively, have ener-

gy gaps at the point (q) =(0.45, 0.45, 0). This is originat-
ed in the variati6n of E,(a;P

~
q) with the wave vector

k(q). Corresponding to the variation of E,(a;P
~
q) with

k(q), the eigenvectors Q( ) change their directions in

Q —Qp space. For example, the eigenvector Q( —) lo-
cated in the region Q Qp & 0 at q = (0,0,0) rotates clock-
wise with the increase of the wave vector k(q, q, 0) and
coincides with the Q~ axis at the point (q)g ——(0.45, 0.45,
0), where the modulus E,(a;P

~
q) vanishes and the eigen-

value e( —) has the value E,(a;a
~
q). Because this wave

takes place only on the a sublattice, i.e., zero-amplitude
on the P sublattice, it can be either optical or acoustic.
On the other hand, the eigenvector Q(+ ) which coincides
with the P sublattice at (q)x exhibits the eigenvalue e (+ )

=E,(f3;P
~
q). Thus, either the optical or the acoustic

wave with the wave vector k(q)~ can have the different
eigenvalues e( —)=E,(a;a

~
q) and e(+)=E,(P;P

~
q) as

shown in Fig. 5, that is, the energy gaps appear at the
point (q)s. Hence, over the point (q)g, the eigenvector
Q( —) moves into the region Q~Q~&0. The eigenvalue

e ~ ~o(+ ) is, therefore, plotted on the right-hand side of
e~~o( —) as shown in Fig. 5(a). The similar features are
observed on the curves e~~~(+) in Figs. 5(a) and 5(b). It is
to be noted that the modulus E,(a;P

~
q) also changes the

sign across the point (q)=(0.36, 0.36, 0.36) as shown in
Fig. 1(e).

The theory predicts that the wave with the wave vector
(q)=( —,', —,', —,') cannot grow up, because both values of
e( ) have positive values at that position. 'Since this
wave is an ordering wave which makes D03 structure
from a 82 structure, the elastic energy evidently works in
a manner that depresses the D03 ordering. Figure 6 indi-
cates the D03 ordering waves on the a and the P sublat-
tice having a wavelength equal to 2a/V 3 the [111]direc-
tion. The solid curve on the P sublattice gives rise to the
maximum CEE and the dashed curve gives the minimum
CEE. Only the amplitudes of the two waves on the P sub-
lattice are essential with respect to the CEE for forming a
DO3 phase, because the sinusoidal composition waves
represented by the solid and the dashed curves in Fig. 6
would give the same crystal if the amplitudes were the
same. The ratio of the amplitude of the waves on the a
sublattice to that of the broken curve and to that of the
solid curve on the P sublattice is given by 1:0.6:1.7.

The point ( —,', —,', —,') is a special point of bcc structure
where two or more symmetry elements of the point group
of the disordered phase intersect. Therefore, the vector
representing the gradient. VV(q) of an arbitrary potential
energy V(q) must vanish at the special point. At present,
putting V(q) equal to e~~~(+) or e»&( —), we find that
the values e»&(+) must present extrema regardless of the
choice of CP's. By this reason, they have the maximum
values at the point (q) =(—,, —,, —,) as shown in Fig. 5. On
the other hand, the other curves in the figures may be in-
clined at the points on the BZ boundary, because they are
not special points.

IV. SUMMARY AND DISCUSSION

The microscopic elasticity theory has been used to con-
sider the role of the CEE in the ordered phase on the con-

C»

= Cl 1 11

Cp

AI2= 2&WY

I

FIG. 6. Schematic drawing of D03 orderin waves in a B2-
type ordered phase with the wavelength 2a/ 3 along the [111]
direction. The relative amplitude shown is the one estimated
from the configurational elastic energy of P-brass. Either the
solid curve or the dashed curve on the P sublattice takes part in
forming the D03 phase with the wave on the a sublattice.
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tinuous clustering and order-disorder transition. The
theory is applied to the P-brass, because all of the CP's
necessary for calculating the CEE have been obtained
from experiments. The results have been stated in terms

.of the CEE moduli E, (y;y'
~

q)'s and the eigenvalues
e(+). The direction of the eigenvectors in the amplitude
space argues that the sign of the modulus E,

~
a;P

~
q)

determines the phase angle difference between the waves
on the a and the /3 sublattice in the limit of very long
wavelength. As a consequence, two different modes of
decomposition waves, i.e., optical and acoustic mode of
waves, are found to be associated with the maximum and

the minimum elastic energies. The phase angle of the
decomposition waves have been considered intuitively on
the analogy of lattice dynamics. However, strictly speak-
ing, since the decomposition wave treats the concentration
of atoms and the lattice dynamics is concerned with the
atom displacements, they have nothing to do with each
other. Therefore, the results derived intuitively about the
phase difference of the decomposition waves should be
considered strictly. The single wave with the wave vector
k(q) is taken into account for simplicity. Then, the con-
centration variance b, c( ny) is expressed as follows:

b, c(ny) =Q(y
~
q)cos[2m(n~q+5)]cos[2n(n2q+5)]cos[2m(n3q+5)],

T

1 —g (optic branch) and + (acoustic branch) for P-sublattice,
2 2

0 for a-sublattice,

(1 la)

(1 lb)

(1 lc)

where the +5 indicates that the P sublattice position can
be expressed in terms of either way given by
x(nP)=x(n)+x( —,', —,', —,'). The phase difference 5 has
two different values expressed as (1—q)/2 and q/2 ac-
cording to the optical and the acoustic branches of the
CEE moduli, respectively. That is, the one wave vector
k(q) represents two different modes of decomposition
waves. The amplitude Q(y

~
q) is assumed to be real in

the above expression. We consider first the wave with the
wave vector k(q) =k( —,', —,', —,

'
) as a representative point on

the BZ boundary. It is clear from Eq. (11b) that the phase
difference 5 between the waves on the a and 13 sublattice
is n/2. Therefore, two possible concentration waves can
be drawn on the 13 sublattice as shown in Fig. 6. The
dashed curve exhibits the m/2 phase difference and the
solid curve gives the —m. /2 phase difference with respect
to the concentration wave on the o; sublattice. Both con-
centration waves give the same D03 structure, and only
the amplitudes are significant on the transition. With de-
creasing q, both curves on the P sublattice shift toward
the left-hand side relative to the curve on the a sublattice,
according to the phase difference +5. Consequently, in
this case the phase difference increases with the dashed
curve as indicated by the expression 5=(l —q)/2, , but it
decreases with the solid curve in proportion to 5=q/2.
In the limit of long wavelength, the dashed curve .has the
phase difference given by m with respect to the concentra-
tion wave on the a sublattice and the solid curve has no
phase difference. On the contrary, according to the phase
difference —5, both curves on the 13 sublattice shift rela-
tively toward the right-hand side with decreasing q. Con-
sequently, the concentration waves with a wave vector
k(q) have four different phase angles between the origin
and the point on the BZ boundary in k space. The solid
curve shifted by the angle —2~5 should exhibit the phase
difference —m in the limit of very long wavelength and
the dashed curve should show no phase difference there.
This configuration of concentration waves is identical to
that mentioned above in connection with the plus sign of

the phase difference. Thus, it is evident that the concen-
tration waves in the ordered phase can be treated in the
same way as the displacement waves in the theory of lat-
tice dynamics.

The role of the CEE on the transition can be made clear
by taking the total free energy into account. The pairwise
chemical interchange energies of the P-brass are obtained
by Inden to the second neighbor of atoms:

m' "= —320k', co[ = —180k',

where kz is the Boltzmann constant. The above numeri-
cal values are those obtained by Inden but multiplied by

to conform our definition of interchange energy
co=v;~ —(v;;+vjj)/2 where the symbols v,j indicate bind-
ing energy between i and j species of atoms. The sign of
the interchange energy co"' signifies that the 82 phase is
stable below the critical temperature T, for B2 ordering
and co' ' indicates that the 803 ordering takes place in the
82 phase. In fact, Inden has drawn the stable region of
D03 phase in his calculated equilibrium phase diagram.
However, no D03 ordering in a I3-brass has been reported.
This contradiction is thought to be caused by the neglect
of the CEE contribution in his calculation. To discuss
this problem, the Fourier transform of the configurational
chemical free energy (CEE) Q(y;y'

~
q) is considered. The

general form of Q(y;y'
~
q) in a 13-brass has been given in

Ref. 33. Calculation of CCE moduli is made on the 13-

brass with q=0.5e at 100'C which is the condition that
the spinodal decomposition takes place in the P-brass with
c=0.389. By using the CCE moduli estimated, the
eigenvalue Q( —) of the moduli can be obtained as shown
in Fig. 7. The contour map of Q(+ ) which shows mostly
optical modes of decomposition is omitted here, because it
is not important for the present discussion of the CEE ef-
fect on the total free energy of P-brass. A negative region
of the CEE appears around the origin and around the
point (q)=( —,, —,', —,') in Fig. 7. The wave vectors around
the origin indicate the waves for spinodal decomposition
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