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Pinning of incommensurate spin-density waves by impurities
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The pinning of incommensurate spin-density waves (SDW s) by both nonmagnetic and magnetic
impurities is investigated in quasi-one-dimensional systems. Nonmagnetic impurities pin the SDW
weakly by inducing a distortion of the total electron density near the impurity sites. Magnetic im-
purities have a stronger effect. Because of the local magnetic field produced by the SDW, the ener-

gy density has a periodicity equal to half the SDW wavelength. The dependence of the energy den-

sity on an external magnetic field is analyzed and predictions are made on the possibility of observ-

ing narrow-band noise in "sliding" SDW's.

I. INTRODUCTION

In recent years, there has been a considerable interest in
inorganic chain compounds which exhibit a phase transi-
tion associated with the formation of an incommensurate
charge-density wave (CDW). ' Their unusual transport
properties are due to the collective response of electrons
condensed in the CDW state. In one dimension, the elec-
tron density for a given spin direction y is

Py (x)= zpo+Picos(2kFx —p),
where po is the total (linear) electron density, 2P& is the
CDW amplitude, kF is the Fermi wave number in the
direction of the chain, and P determines the position of
the CDW.

The first evidence for collective CDW dynamics was
the observation of nonlinear dc conductivity in NbSe3 at
very low applied dc electric fields E. Non-Ohmic conduc-
tion was later shown to occur only after a well-defined
threshold electric field ET is exceeded. For low applied
dc fields the CDW is assumed to be pinned by impurities,
and only when the electric field exceeds the pinning force
does the CDW become mobile and contribute to the con-
ductivity. A particularly striking feature in the nonlinear
regime is the presence of coherent current oscillations (or
narrow-band noise) whose fundamental frequency is pro-
portional to the current carried by the condensate.

The "sliding" motion of the CDW was originally pro-
posed by Frohlich, and subsequently analyzed by Lee
et al. , who showed that the translational electron-phonon
collective mode, or phason mode, is responsible for the
CDW motion. Despite intense theoretical and experimen-
tal work, the microscopic process of CDW depinning and
conduction is still unclear. Bardeen has suggested that
CDW motion arises from Zener tunneling of the CDW
condensate through an impurity pinning gap. Gruner
et a/. have proposed a simple explanation i'n which the
CDW is considered as a rigid object moving in a wash-
board impurity potential. Other classical theories
take into account internal degrees of freedom of the
CDW. Bardeen's theory gives the best overall fit to the
current-voltage characteristics. It must also be mentioned
thai the narrow-band noise can be generated by a

Josephson-type mechanism, ' although a quite different
approach attributes the origin of the narrow-band noise to
the contact regions. ' '

Lee et al. have speculated that a similar sliding
motion was expected for incommensurate spin-density
wave (SDW) systems, even if the formation of a SDW
condensate arises out of direct electron-electron interac-
tion. The existence of SDW's was first proposed by
Overhauser' who showed that, in the Hartree-Pock ap-
proximation, the paramagnetic state of an electron gas is
unstable with respect to the formation of a static SDW
below a critical temperature T, . In one dimension, the
electron density for a given spin direction y is

pr (X)= 2 pp+ptcos 2kFX +p ——$2
(2)

where y = 1 and —1 for spin-up and spin-down bands,
respectively. In the incommensurate case, the SDW con-
densate is not supported by the underlying lattice and has
uniform density. Chromium' has provided much of
the early interest as an example of antiferromagnetism as-
sociated with static SDW's in three dimensions.

Recently, Takada has shown that in one dimension
the inclusion of the translational spin-wave mode leads to
a collective conductivity analogous to the CDW case, but
without electron-mass renormalization. Experimental
studies of the frequency dependence of the conductivity
of tetramethyl tetr aselenafulvalene-hexafluorophosphate
[(TMTSF)2PF6] in the microwave region have provided
some evidence for a collective response of SDW's in a
linear chain compound. Nevertheless, no appreciable
threshold electric field for the onset of nonlinear dc con-
ductivity was found and, in the nonlinear regime, there
was no evidence of the narrow-band noise typical of in-
commensurate CDW's. These results have been explained
by assuming that nonmagnetic impurities couple weakly
to SDW's. In the approximation up to the first order in
the electron-impurity interaction, there is no pinning be-
cause the total electron density is constant in the SDW
case. Nevertheless, the interaction between impurities and
conduction electrons might generate a small distortion of
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the charge density near the impurity sites in the form of
Friedel oscillations which, in turn, could produce a very
weak pinning. ' In the present paper, we show that the
inclusion of second-order terms gives rise to a weakly
pinned SDW. These terms represent the Josephson-type
mechanism originally proposed by Barnes and
Zawadowski' for CDW's. They showed that the CD%
condensate can be thought of as the superposition of two
macroscopic quantum states. Each state is composed of
electron-hole pairs with, respectively, total momentum
+2k+ in the chain direction, where kz is the Fermi
momentum. Two subsequent impurity scatterings with
large momentum transfer can scatter coherently an
electron-hole pair with momentum 2kF into an electron-
hole pair with momentum —2k~, and hence the two mac-
roscopic quantum states are weakly coupled in analogy
with the Josephson effect. In the present paper, we con-
sider only the case p~ &&po and hence we neglect the ef-
fects due to the second-order CDW harmonic that appears
when p& &po even in the absence of impurities. These ef-
fects were considered by Lee and Rice to explain the
weak pinning of the SDW in Cr by Ta impurities. ~7

A different situation arises when magnetic impurities
are included. Even in the approximation of undistorted
SDW oscillations, magnetic impurities can pin the SDW
condensate. In the present paper we show that this effect
occurs because the orientation of the impurity spins is af-
fected by the local magnetic field generated by the SDW.
As a consequence, the energy density is periodic in space
with periodicity equal to half the SDW wavelength.
Nevertheless, when a strong magnetic field is applied so
that all the impurity spins are aligned in the same direc-
tion, the energy density regains the same periodicity of the
SDW. - Furthermore, we consider the distortion produced
by magnetic impurities on the total electron density, and
we compare the results with the CDW case.

We safely assume that the magnitude of the SDW order
parameter is independent of the magnetic field. This as-
sumption is corroborated by the fact that the transition
temperature in chromium is not dependent on the applied
magnetic field. ' It must also be noted that in NbSe3 the
transition temperature is not affected by magnetic fields
up to 206 kG, even if the threshold electric field is
strongly suppressed at temperatures below 20 K. To ex-

I

II. MODEL HAMILTONIAN

The SDW condensate is assumed to consist of a single
domain analogous to the domains proposed by Fukuyama
and Lee ' for CDW's. Neglecting the electron-phonon in-
teraction, we consider the following one-dimensional
Hamiltonian for the incommensurate case:

Ho g f dx——fr(x)
r

8
2Yfl

(x)

+—g f dx gr(x)g r(x)f r(x)g~(x),

where gr(x) and g&(x) are field operators with spin index
y=+1. The Coulomb interaction has been replaced by a
repulsive contact potential (g &0) between electrons with
opposite spin and on opposite sides of the Fermi surface.
The field operator g&(x) can be split into "right" (R) and
"left" (L. ) parts as

gr(x) =gg, r(x)+QL„r(x),

r(x)=l g e' at, &
(a=R,L),

ak ( &0)

(4a)

(4b)

where a as a multiplicative factor means + or —for
a=R or L, respectively, 1 is the (linear) size of the
domain, and at, r (at, z ) is the destruction (creation)
operator of an electron in the state (k,y). The relevant
Green's functions are defined by the relation

Gz '~'(x&, xq, t& —tz)= i(TQ—~ &(x~, t~)ft3r(xz, tz)),

where the angular brackets denote averaging over the
Gibbs distribution with Hamiltonian Ho. The mean-field
approximation of Ho for a SDW instability is

plain the anomalous resistance in NbSe3 at very low tem-
peratures, Coleman has proposed the coexistence of
SDW and CDW states.

We develop the formalism for SDW's in Sec. II, we dis-
cuss the case of nonmagnetic and magnetic impurities in
Secs. III and IV, respectively, and we summarize our re-
sults in Sec. V.

Hsgw ——g f dx tg(x)
f2 Q2

z gr(x) —g iyb f dxe gz ~(x)QL r(x)+H. c. +2~ b,
~

1/g,
2m Q~

where the complex order parameter 5 is given by the gap equation

6= —gyG~ ' '(0, 0, t=0 ) .

At zero temperature, one obtains
~

A(T=O)
~

=2('e '~ with A, =g/2nvz, where g is an appropriate energy cutoff, A, is
the dimensionless coupling constant, and v~ is the Fermi velocity. It must be noted that in (TMTSF)zPF6 the critical
temperature is about 11 K, which is considerably smaller than the critical temperatures' for CDW instability in linear
chain compounds.

The energy spectrum of Hsow is independent of the phase of b, which, on the other hand, determines the position of
the SDW. Setting 5=

~

b,
~

e '~, the electron density for a given spin orientation y is

p& (x)= —,po+p~cos 2krx+y ——P
(0) 1

2
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where p~ ——2
~

b,
~
/g. Alternatively, one can assume 5 real and positive in Eqs. (6) and (7) and then make the following

gauge transformation:

f r(x)~e f r(x), (9)

where the phases are different for R and I.. The electron density iri the form of Eq. (8) is recovered by setting

P =PL —Pz. There is no such gauge invariance associated with a commensurate SDW.
With the help of Eq. (9), the Careen's functions of Eq. (5) can be rewritten in the form

6' '~'(x~, x2, t& t2)=—e ee ' 'e'r' ~' 6' '~'(x —x, t~ t2), — (10)

where the 6's are spin and gauge independent.

III. NONMAGNETIC IMPURITIES

The interaction between conduction electrons and nonmagnetic impurities is given by the Harniltonian

HNM= Vg gr(RJ )fr(RJ.),jr
/

where V is the strength of the interaction, RJ is the position of the jth impurity, and the impurity distribution is random.
Only the backscattering part of HNM is kept, i.e.,

HNM ——Vg [gz z(RJ )Pr„r(RJ.)+H.c.], (12)

because the diagonal part only yields a damping term, which is not essential to the present analysis.
The first-order term of the Gibbs average of the interaction energy vanishes because the SDW is undistorted at this or-

der of approximation. Assuming the case of time-independent phases and keeping only anomalous pairings, the second
order term is

UUM= I dt ([HNM(t), HNM(t )])

8V
cos[2$—2kF(RJ+R~)] I dt'1m[6' ' '(Rt —RJ, t')G' ' '(RJ RI, —t')] .—

j,l
(13)

UUM, s = —U NM, scos[2(0 —00)]

where

(15a)

(2)U NM, S
2vpg 2kB T (15b)

and T is the temperature.
The contribution from impurity pairs may be compar-.

able to the single-impurity term, if the (amplitude) coher-
ence length is larger than the average distance between

This expression contains single-impurity (j=l) as well as
pair contributions.

The single-impurity (j=l ) term implies evaluation only
of the function 6' ' '(x =O, t), which is easily calculated
by analogy with the expression for the Josephson
current. The summation over the impurity distribution
gives

ge '=C2e ' (C2 real),
j

where, for a random distribution, Cz is proportional to
X; z, N;mz being the total number of nonmagnetic impur-
ities in the SDW domain. Thus, the single-impurity term
has the simple form

impurities. Nevertheless, the pair term is st;i11 proportion-
al to Xjmp

Equation (15) is similar to the corresponding expression
for CDW's, ' because the distortion produced by nonmag-
netic impurities on the condensate is qualitatively the
same in both cases. Therefore, one would expect the ex-
istence of a threshold field and of a narrow-band noise
which have not been observed yet. A possible explanation
is that the SDW oscillations are generally much smaller
than the CD%' oscillations, and, hence, the coupling turns
out to be very weak.

If we consider the special case of a single impurity at
the origin, the dependence of the interaction energy on the
SDW phase P is a consequence of the change in the elec-
tron density at the origin which is

5pr(x =0, p)lp, = —
2 2 tanh cos(2$) . (16)

8vFR 2kB T

The change in the electron density at the origin is the
same for both spins, and this feature is expected in all
higher-odd orders in the impurity potential V. Assuming
v~-IO crrisec ', g=3&10 eVcm, and V=O. lg, it
follows that (i) at T=O, max ~5p& ~

=0.26p~, which is
consistent with our perturbation approach, and (ii) at
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FIG. 1. Change 5p~ in the electron density at the impurity
site as a function of the SDW phase P ( V&0). The amplitude

p~ of the undistorted SD% at the impurity site is also shown for
the sake of comparison.

T & T„max
~ 5pr ~

&&p, , and this effect may be too small
to be detected experimentally. Figure 1 shows the change
in electron density at the impurity site as a function of the
phase P.

Equation (15) predicts that, when a dc electric field is
applied, the fundamental frequency v of the coherent
current oscillations deperids on the average current IsD~
carried by the SDW condensate through the relation

IsDw/&=po~ ~

where A, =m. /2kF. This is in contrast with the CDW case
where the fundamental frequency is one-half the above

value because of the contribution from the undistorted
component of the CDW condensate.

We notice that the change in electron density near the
impurity sites modifies the effects of the electron-electron
interaction. This variation leads to a spatially dependent
order parameter h(x). A self-consistent calculation of
b.(x) can be performed analytically only at zero tempera-
ture, as in the CDW case, and it does not modify Eq.
(15) because it involves only higher-order terms.

Teisseron et al. have shown that, in the SDW phase
of Cr doped with Ta, to one part in 10s the spin density at
individual Ta sites is essentially random and does not take
a unique value. This result indicates a weak coupling so
that the individual impurities do not minimize the local
SDW-impurity interaction energy as in the strong pin-
ning, but rather the SDW phase only pins to large-scale
fluctuations in the impurity density. Unfortunately, the
experiment of Teisseron et al. cannot detect small dis-
tortions of the spin density at the impurity sites if such
distortions depend on the SDW phase, and hence it cannot
confirm the present theory.

IV. MAGNETIC IMPURITIES

In this section, we consider the interaction of a SDW
with magnetic impurities in the presence of an external
and constant magnetic field H. If the magnetic field H is
small (compared with the SDW energy gap), its only ef-
fect on the SDW condensate is an energy shift between
the spin-up and spin-down electron bands. Consequently,
the electron Green's functions defined in Eq. (5) have now
the form

(a,p)» s(p~ —p&) i'(ax~ —~x2 iy(a —p)m/4
—s(l'/2)he t& —t2) ~ (a,p)IG&' &x&x2 t& —t2j= e e e e ' ~ ' ~x~ —x2 t] —t2j,

HM ———Jg [gr(Rj )a rsgs(RI)]. Sj, (19)

where h, =g,p~H, g, is an effective electron g factor, pz
is the Bohr magneton, and H is in the z direction.

Quite generally, the interaction between conduction
electrons and magnetic impurities is represented by the
Hamiltonian

where g; is an effective impurity g factor. In calculating
the thermal average over the impurity spins, the external
magnetic field as well as the local magnetic field generat-
ed by the SDW must be considered. Assuming an undis-
torted SDW, the thermal average over the impurity spins
is determined by the Hamiltonian

where J is the strength of the interaction, and Sj is the
spin operator of the jth impurity. For the sake of brevity,
the impurity spins are assumed to be —,. As in the preced-
ing section, only the backscattering part of HM is kept,
1.e.,

H M
———Jg [gr g (RJ. )crrybs L (Rj ) 4- H. c.] SJ . (20)

Hjmp —g hjSj
J

where

hi =hE+h&, i ~

AE =g&pgH ~

(22b)

(22c)

The magnetic field H interacts with the impurity spins
through the Hamiltonian hq, = —(4J

~

6
~
/g)sin(P —2k~Rj) . (22d)

Himp —+giPaHSJ,
J

(21) For an undistorted SDW, the thermal average of the in-
teraction energy is
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UM' ——(4J
~

6
~
/g) g sin((() —2kFR, )(SJ')

=(2J
I
~

I
/g) g»n(0 —2kFR )tanh g; p~H

4J/b[
J j Bsin(p —2kFR /2k& T

j
(23)

The summation over the impurity distribution gives

pe '=C„e " (n &1 and C„real),
j

(24)

where, for a random distribution, the C„'s are proportion-
al to (N mz)'~, N z being the total number of magnetic
impurities in the SDW domain. We notice that, in gen-
eral, P„&P~ for n&m Th. us, Eq. (23) can be rewritten
in the general form

M (0 T H) UM, O(T H)

+ g D„(T,H)sin[n(P —P„')],
n (p1)

(25)

and
2

UM ((t), T(T„H=0)=(1)

g 2kB T,

(26)

Xcos[2(p —pz)] . (27)

where UM'o-N ~ and D„-C„-(N z)' . In the fol-
lowing, the constant term UM'o will be neglected because
it does not contribute to the SDW dynamics.

If there is no external magnetic field, the odd harmon-
ics of Eq. (25) vanish. Therefore, the interaction energy
has a periodicity equal to half the SDW wavelength, and
the fundamental frequency v of the narrow-band noise is
again given by Eq. (17) with A, =m. /2kF, as in the case of
nonmagnetic impurities.

In the limits T=O and T=T„where T, is the transi-
tion temperature, the interaction energy has the simple
forms

UM (((), T-O, H =0)=(i) 8J ~g~ " C2~

g~ n=] 4n —1

X cos[2n ((t —P2„)]

UM'(Q, T,H) = (2J
~

5
~
C2/g)

ggPBH
X tanh sin(p —(t ) ) .

2
(28)

Unfortunately, a meaningful prediction about the relative
amplitudes of the narrow-band noise in a strong magnetic
field cannot be inade because, as we shall see later, the dis-
tortion of the electron density at the impurity sites might
give a contribution comparable to that of Eq. (28). We
simply notice that, at T & T„~ UM'

~

~
~

b,
(

in a strong
magnetic field, while

~

UM'
~

CC
~

b
~

in absence of an
external magnetic field.

Let us now consider the first correction to the interac-
tion energy due to the distortion of the SDW around the
impurities. This correction corresponds to the
Josephson-type mechanism proposed by B ames and
Zawadowski'3 for CDW's. Following the same approxi-
mations of the preceding section, we obtain

These two limiting cases show that, as the temperature is
decreased, the contribution of the higher harmonics of the
pinning potential increases. It follows that in the
narrow-band noise the ratio of the amplitudes between the
higher harmonics and the fundamental one increases as
the temperature is lowered.

When the external magnetic field is turned on, the term
n =1 in Eq. (25) gives a nonzero contribution. Therefore,
the interaction energy has the same periodicity of the
SDW, and the fundamental frequency v of the narrow-
band noise is now given by Eq. (17) with A, =n/kF .For.
relatively small values of the magnetic field, the ampli-
tude of the first harmonic of the narrow-band noise
should be smaller than the amplitude of the second har-
monic. In the opposite limit of a strong magnetic field,
i.e., H »4J

~

b
~ /g;p~g, UM can be written as

4J
UM' —— ggcos[2$ —2kF(Rq+Rt) —(y+5)m/2] f dtImIG' ' '(Rt Rj, t)G' ' '(R ——Rt, —t)

J,t r, s

X ( [cars.S,(0)][crsr St(t)] ) exp[ —(i/2)h, (y —5)t] I .

(29)

This expression contains single-impurity (j=1) as well as pair contributions. Since the impurity concentration is general-
ly low in the cases of experimental importance, we neglect correlations between the spins of two different impurities.

Following the same method of the preceding section, Eq. (29) becomes
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U(M~'s —— 4—J2 g cos(2$ 4—k~R/) J dco'dco"nF(co')n~(co")B(co')B(co")
J

P P P
2 co'+co" ' co'+co"+(hj —h, )

' co'+co"—(h~ —h, )

(30a)

where

P, I yj/(y——i+1/yi )=1 P, —

yj =exp( —hj/2kii T),
(30c)

(30d)

and n~(co) is the Fermi factor.
If there is no external magnetic field, and if J«g, Eq.

(26) can be approximated up to J by the following ex-
pression:

UM s(4, T, H =0)=
2 tanh(2)

8A UF 3

B(co)= »2sgn(co)e( (co (
—

~

6
~
),

2mfiup (coz —
/
Q

/

i) i~2

(30b)

I

noise when a strong magnetic field is present.
To the best of our knowledge, the analysis '3 of the ef-

fects of Fe impurities in Cr represents the only experimen-
tal study of magnetic impurities embedded in a SDW ma-
trix. Fe in Cr has a localized moment of about 2pz above
the critical temperature, ' but the moment seems to be
reduced slightly below it. Susceptibility measurements
suggest that the localized moments are coupled very
weakly with the SDW of Cr and the corresponding in-
teraction energy E; is of the order of 1 K. Choosing
J=O. lg and

~

5
~

=10 K in Eq. (26), we obtain E; & 10
K at low temperatures, i.e., a value at least one order of
magnitude larger. We cannot explain this discrepancy,
but we simply point out that the SDW state in Cr has a
three-dimensional character, and the conduction electrons
not in the condensate might play an important role.

Xcos[2(p —pz)]+O(J ) . (31)

Assuming u~ = 10 cm sec ', g = 3 X 10 eV cm, and
J=0. lg, UM as given in Eqs. (26) and (27) is comparable
in magnitude to UM's. The large uncertainty of the pa-
rameters makes it unclear which term dominates, but the
general features discussed above for the case of no mag-
netic field are still valid.

In the limit of a strong magnetic field, i.e.,
H »4J

~

b
~
/g;prig, UM's strongly depends on the

difference g; —g, between the impurity and electron g fac-
tors. Only in the special case g; =g, is UM's independent
of the magnetic field, with the same form given in Eq.
(31). This result is analogous to the corresponding expres-
sion for the CDW case. At zero temperature, UM's can
be expanded in powers of p&H/

~

5
~

to obtain

UMs(P, T=O, H)=
~ ~ cos[2(P —Pg)]

J ib, iCi
8A U+

(g —g, )pa IH I

'2
1 (g —g )IjaH
2 2ib,

i

(32)

where g is a constant of the order of unity. The magnetic
field enhances UM s if g, &g;, but depresses it if g; &g, .
This behavior can be shown to occur also at finite tem-
peratures. Because of the large uncertainty of the param-
eters, we cannot safely determine the ratio between the
fundamental and the second harmonic in the narrow-band

V. CONCLUSIONS

We have shown that magnetic as well as nonmagnetic
impurities can pin a SD%'. Nonmagnetic pinning is pro-
duced only by distortions of the electron density near the
impurity sites and has a periodicy equal to half the wave-
length of the SDW. In general, nonmagnetic pinning is
small in comparison with the CD%' case. In the approxi-
mation of unperturbed SDW oscillations, magnetic im-
purities can pin the SDW condensate because the orienta-
tion of the impurity spins is affected by the local magnet-
ic field generated by the SDW. Consequently, the pinning
energy is periodic in space with periodicity equal to half
tht wavelength of the SDW, as in the case with nonmag-
netic impurities. When a sufficiently large magnetic field
is applied, the pinning energy has the same periodicity of
the SDW, and, hence, the fundamental frequency of the
narrow-band noise is one-half the value expected in the
zero-magnetic-field limit. The threshold electric field
must also exhibit a dependence on the magnetic field. At
present, there are no experimental data regarding magnet-
ic impurity pinning of SDW's and new experiments are
needed to test the present theory. Finally, we must em-
phasize that, in.the perturbation series, teri&is of higher or-
der in the exchange coupling may be relevant and further
study is in progress.
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