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Explicit expressions are derived for the free energy, the specific heat, and the magnetic suscepti-
bility of a spherical model of spins on a d-dimensional hypercubical lattice, of size
I-l &CI-2)& . . &&I-d, under antiperiodic boundary conditions. The relevant scaling functions that
govern the critical behavior of the system are obtained and, with the use of the asymptotic proper-
ties of these functions, various predictions of the Privman-Fisher hypothesis [Phys. Rev. B 30, 322
(1984)] on the hyperuniversality of finite systems are verified. Approach towards standard critical
behavior, both for T& T, (oo) and T~ T, (oo), is examined. In the former case, the approach gen-

erally takes place through a power law; only in some special situations does one obtain an exponen-
tial law instead. In the latter case, the approach is generally exponential, except for the susceptibili-

ty of the system which (somewhat surprisingly) displays a finite-size effect dominantly determined

by the surface-to-volume ratio of the lattice.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I) we derived
explicit expressions for various thermodynamic functions
of a field-free spherical model of spins on a hypercubical
lattice, of size L ~ XL2 X ' ' . XLd, under periodic boun-

dary conditions. The expressions thus obtained were
found to be in full conformity with the hypothesis recent-

ly put forward by Privman and Fisher, according to
which the "singular" part of the free-energy density of a
finite system (of volume L XL X . XL =L", d being
less than the upper critical dimension, d &, of the system),
near the bulk critical point T =T, ( Oc ), may be expressed
in the form

~(s)f~s~(t h L)= -L "Y(C tL ~v C hL ~ ")
7 0 ~ T 1 & 2

B

where t and h are the (reduced) temperature and field
variables,

t = [T —T, ( oo )]/T, ( Oo ), h =p, ttH /ktt T, (2)

x&(=C&tL' ') and x2(=C2hL ") are the appropriate
scaled variables, v and 6 being the familiar bulk indices,
while C1 and C2 are certain nonuni venal, system-
dependent scale factors. The function Y(xt,x2) is then a
universal function, common to all systems in the same
universality class as the given system. Of course, the pre-
cise nature of this function would vary significantly as we
move from one geometry to another; the same would be
true if we alter the set of boundary conditions to which
the system is subjected. This variation may, in turn, af-
fect the mathematical character of the finite-size effects
expected in the system and, hence, the manner in which

the various thermodynamic quantities pertaining to the
system approach their standard bulk behavior as I.—+ co.
To elucidate these questions for a spherical model system
subjected to antiperiodic boundary conditions, rather than
periodic ones, constitutes the main purpose of this paper.

Of pivotal importance in expression (1) are the scale
factors, C1 and C2, which can be determined from a
study of the corresponding bulk system. ' As shown in I,
the scale factors appropriate to the spherical model are

—(d —2) C ~—1/2 —(d +2)/2,a 2 c Cl

where K, [=J/ktt T, ( ca )] stands for the interaction pa-
rameter of the system, a denotes the lattice constant,
while d is restricted by the inequality 2 & d &4. The for-
mal structure of the Privman-Fisher hypothesis for a fin
ite spherical model is thereby laid.

To test the foregoing hypothesis and its varied conse-
quences, as summarized in Sec. II, for the finite-sized
spherical model in d dimensions; we derive explicit ex-
pressions for the relevant thermodynamic functions of the
field-free system, x2 ——0, of spins on a hypercubical lattice
(of size L

~ XL2 X ' ' XLd ) under antiperiodic boundary
conditions; see Sec. III. While the scale factors C& and
C2, and certain asymptotic forms of the scaling function
Y(x„x2) and some of its derivatives, could be determined
from the appropriate bulk results, our analysis of the fin-
ite system enables us to derive complete mathematical
form of these functions valid for all values of xt. In view
of the fact that these functions are characteristic of the
geometry of the lattice (which may, for convenience, be
designated as L" X Oc, where d*+d'=d), finite-size
effects in various thermodynamic properties of the system
are also geometry dependent. Although most of the re-
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suits derived here pertain to 2 & d & 4, special cases arising
from the most relevant dimension d=3, viz. , a cube
(d* =3), a cylinder (d" =2) and a film (d' =1) are given
special consideration. In all cases, the analytical results
obtained here are found to be in complete agreement with
the ones following from the Privman-Fisher hypothesis;
see Sec. IV.

We have also examined at length the approach of the
various physical properties of the system towards stan-
dard bulk behavior as L~co. For T &T,(oo), the ap-
proach turns out to be formally the same as in the case of
periodic boundary conditions, in that it generally takes
place through a power law; only in the special case d'=2
(of which a film in three dimensions is a good example)
does one obtain an exponential law instead. One distin-
guishing feature of the present boundary conditions is the
appearance of an L term in the free-energy density of
the system; this entails a helicity modulus Y( T) which,
for models with 0( n) symmetry ( n ~ ao ), can be related
to the order parameter, ~0( T), of the corresponding bulk
system. For T )T, ( &n ), on the other hand, the approach
is generally exponential in nature, except for the surpris-
ing behavior of the susceptibility of the system which
shows a finite-size effect dominantly determined by the
surface-to-volume ratio of the lattice; see Sec. V. The
source of this unexpected effect is identified in Sec. VI.

II. FORMULATION OF THE PROBLEM

In accordance with (1), the singular part of the specific
heat per unit volume of the system is given by

c"(t,h;L)=C)L 'Y(, )(C)tL' ', CqhL ')

and that of the magnetic susceptibility by

X"(t,h;L)=C L)' Y (C, tL' C hL ')

(4)

(5)

This requires that the scaling function

Y(x, )~Y+x) (x(~+ oo ),
with the universal coefficient

(8)

Y+ E+ /C(——
This leads to the expected behavior of the specific heat of
the system, viz.

c"(t;L)= F+(2—a)(1 —a)t —(t )0, L~ oo ) . (10)

For t & 0 and L —+ oo, there are two possibilities of interest
here:

where. Y~ ~ ~
and F~2~ are appropriate derivatives of the

original function Y(x(,x2), while use has been made of
the relationships

dv=2 —a, b, =/3+y, a+213+y=2 .

In the following we shall confine ourselves to the field-
free situation (h =0); in view of this, the variable x2 may
not be displayed explicitly in the subsequent expressions.

Starting with the free-energy density f"(t;L), as given
by Eq. (1) with h =0, we may write

f"(t;L)=F+t' (t )0, L~a) ) .

(ii) Y(x()~Y* (ln
l
x)

l
+const) (x) —+ —ao),

so that

(12)

f"(t;L)=Y* lnC)+ln t
l
+—lnL+const L1

(12')

In each case, the coefficient Y or Y' is universal. The
repercussion of this on the specific heat of the system is
that, for e+d or 2,

c"(t'L) t
l

' +"'L ' (t &0, L ) . (13)

The special case e~d corresponds to possibility (12), for
which c"(t;L) is still given by (13), i.e.,

c"(t;L)~ lt 'L " (t-&0, L~~). (13')

For e=d the leading term in f"(t;L) would be indepen-
dent of t, while for @=2 it would be proportional to t; in
either case, this term would not contribute toward
c"(t;L). In passing we observe that the extreme case
e~ oo would entail a function that vanishes exponentially
fast with L.

Regarding the (zero-field) susceptibility of the system,
the leading behavior for t~0 and L~ oo would be the
standard one, viz.

X,"(t;L)=C+t r (t )0, L~ ~ ),
which requires that

Y(q)(x()—+G+x) r (x)~+ oo ),
with the universal coefficient

(14)

6+ ——C+Cr)/C2 . (16)

For t&0 and L~oo, we may assume that Xo'(t;L)
diverges as L~ The functio. n Y(q)(x() must then behave

Y'(2)(x))—+G lx) I

"~ ' (x(~ ~)
with the result that

x"'(t;L)=G c ~-&c',
l

(18)

with 6 being universal. Note that the extreme case
g~ ao would now entail a function that diverges exponen-
tially fast with L. This completes the set of predictions,
based on the Privman-Fisher hypothesis, which we pro-
pose to test at length in the sections ahead.

III. THERMODYNAMICS OF THE
SPHERICAL MODEL ON A FINITE LATTICE

We consider a system of N spins, s;, located at sites
r;( =n;a) of a hypercubical lattice [of size N) a

(i) Y(x))~Y lx) l

' (x)~—~) ~

so that

f"(t L)= Y C"" "l t l"" 'L
the index e is as yet undetermined but may be geometry
dependent. Secondly,
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N N
A = —Jg s;s/ —p~ttH g s; +A, g s( (19)

XNqa X ' ' XN~a ( =Na")] interacting through the
Hamiltonian

(24)

from which the initial (zero-field) susceptibility follows as
2 2

(P H)
Pert

2X A, —pq
NN

where the various symbols have their usual meanings.
The spherical field A, , which is conjugate to the quantity
—g,. s;, is introduced so as to satisfy the constraint

N

g (s,') =W'=N . (20)

In zero field, Eq. (21) reduces to

1F(P, A, )= —Q ln /3 A, —2J g cos
2N

( n. ! j=1

2m(nj+ —,
'

)

Xj

Under antiperiodic boundary conditions, the free energy
per spin is given by. while the constraint (20) assumes the form

(25)

F(P,H, A, ) = g ln[P(A, —Pq)]—1 pcttH I eq I

(21)

=12K= —g ——2 g cos
& In. )

2'(nj. + —,
'

)

XJ.

(26)
where p= 1/k&T, q is a collective symbol for the set of
numbers In;j =1,2, . . . , dI, while the eigenvalues pq
and the distribution coefficients eq are given by

pq =2J g cos[2rt(nj + —,
'

) /NJ ],
j

eq
——Q e'~NJ ' csc[vr(nj+ —,

'
)/NJ] 2m.(nJ +r)

where E =PJ.
For the evaluation of the summations appearing in Eqs.

(25) and (26), we adopt the procedure developed in I, with
the (important) difference that in the present case we use
the identity
N. —1

exp x cos

[nJ ——0, 1, . . . , (NJ —1)], (22) n =0J

~(P,H) = p.ttH
2X A, —pq

(23)

with P [=P(ni, Ni)] real. The magnetization per spin is
then given by

=Nl g cos(2rtrqj )It/ q (x) (27)
J J

q = —ooJ

with r= —,', rather than with v=0; as before, I,(x) denotes
a modified Bessel function. We thus obtain

F(PP)=F (PP) Q( —1—) ' ' f . e ~" g [e "I(x)]x 'dx, , (28)

where Ftt(p, p) denotes the bulk free energy per spin,

F~(p p) + f '

I e
—x/2 e

—px/2[e —xI0(x)]dlx —1

2 2

the variable P being given by the usual expression

P=(A, /J) —2d .

The equilibrium value of P is determined by the constraint equation which now reads

2' =8' (P)+ —,
' g ( —1) . ' ' f e ~" g [e "Iz/(x)]dx, ,

j=1

(29)

(30)

(31)

where

Wg(p)= —,
' f e ~"/ [e "Io(x)]"dx . (32)

As for the evaluation of the integrals appearing in Eqs.
(28) and (31), we make use of the asymptotic expansion'

It will be noted that the primed summations in Eqs. (28)
and (31) imply that terms with q=D are excluded. The
foregoing expressions are quite general in respect of the
actual values of the numbers NJ. For concreteness, how-
ever, we may specify the geometry of the system to be
L )& oo, where d =1, 2, or 3 while d'=d —d .

x —v /2x
I (x)=

2s'x
1+ +1 9—32v

2!(Sx)

225 —928v + 128v

3!(Sx)
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[which is Eq. (56) of I]:and the integral

"dx =2(P/~)" 'K„(2&ctP), (33)
0

where K (z) denotes the other modified Bessel function.
At the same time we employ standard expansions ' of the
bulk terms (29) and (32) for 2 & d & 4 and P « 1. We thus
obtain, to the desired order in a /L,

24', yaF(P,P) =Fe(P,O)+

d

1~ 4—d
2

d —2
2

and

1 ya

p d/2

d —2

1 2 —d
2

(34)

2
(40)

d/2 2
(s)(p.L) 3277 K

a"

To the same order in a/L, the singular part of the re-
duced specific heat per unit Volume turns out to be

1 ya
8 d/2

d 2
2

(ya /L)

+2% d
d —4

(41)

(35)

where K,[=—, Wd(0)] is the value of K at the bulk criti-
cal temperature T, ( ao ), y is the thermogeometric parame
ter ' appropriate to the given system,

We shall now verify some of the predictions made in Sec.
II.

IV. VERIFICATION OF THE SCALING
PREDICTIONS

y = —,
' (L/a)P'/',

while

(36) Introducing the scale factor C), as given by Eq. (3),
into the constraint equation (35), we obtain

I d —2

E,

(37)
yd —2

sH" —2' d
2

Equation (34) gives us free energy at constant A, (or P);
the one at constant W can be obtained from it through
the Legendre transformation

2

A (P,W) =F(P,P) =F(P,P—) —2Jd —4J
N I.

(42)
I

The expression on the left-hand side of (42) is a generali-
zation of the scaled variable x) of the Privman-Fisher
hypothesis (1), with t replaced by

(38)
t=(K, K)/K, =[T—T, (oo—)]/T . (43)

Combining Eqs. (34), (35), and (38), we obtain

A (P,P') =Fg (P,0) 2Jd+-
p d/z

1 1 2 —dx
2 2

Note that the variable t reduces to t as T~T, (00 ); in its
present form, however, t will enable us to extend the va-
lidity of the hypothesis down to 0 K. Expression (40) for
the free-energy density of the system is now seen to be
manifestly in conformity with the Privman-Fisher hy-
pothesis, with scaling function F(x) ) given by the
parametric equations

—2
2

d
2

(39)

Y(y) = d —2
2

The singular part of the reduced free energy per unit
Uolume is then given by

(44)
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x~(y) =
&&

I8~""
8 —2

2

(45)

among which y is supposed to be eliminated. At the same
time, expression (41) for the specific heat is in conformity
with the corresponding generalization of the scaling for-
mula (4), with

d/2 4—d

Y(&)(y)=— (46)
I ((4—d)/2))+2M((d —4/2 d*;y))

see Eq. (6) of Ref. 8.
We shall now examine the limiting behavior of the scal-

ing functions Y and Y~&~ in different regimes of t and L,
and for different geometries of the lattice.

(a) t&0, L —+oo. In this regime, x&~+ oo, with the
result that y diverges while the functions Ã(y) vanish ex-
ponentially. Equations (44) and (45) then give

d d —2

Y
I"((4—d) /2)Yxi—

(4—d)/(d —2)
321T' 8~X1

I ((4—d)/2)
i
I ((2—d)/2)

i

(48)

/( )
SmX1

which confirms to requirement (8), with a = (d —4) /
(d —2) and Y+ is universal. The function Y~&~ in turn
behaves as

pp ——2J g cos =2Jd 4Jd —* sin
2I

g&Q2Jd —Jd
L 2 (49)

so that
'22

1 L 1 L A, —2Jd 2~—d* . (50)
4

The asymptotic behavior of the functions Ã(y) in this re-
gime can be ascertained through analytic continuation,
from positive to negative values of y, with the result that

Substituting (48) into (4), we get conformity with require-
ment (10). The situation in this regime is, therefore, qual-
itatively the same as in the case of periodic boundary
conditions —insofar as the field-free quantities f" andc" are concerned; as will be seen in Sec. V, the quantity
X" behaves quite differently under the two sets of boun-
dary conditions.

(b) t&0, L~oo. Here x~~ —co, while y tends to
the limiting value —d*~ /4; this arises from the fact that
while the spherical field A, tends, as usual, to the lowest
eigenvalue pp of the system, the latter under antiperiodic
boundary conditions is given by the expression, see Eq.
(22),

—(d */2 —n)

3'
4

+const, n =
2

2d —1 d /21
2

y "~(n
~

d*;y)~ ~ 2/+ —1 j+/p
1 /+de

~
4

2
(51a)

(51b)

C(n ~d*), n&
2

(51c)

where C is a constant whose precise value depends on the
parameters n and d*. Equation (45) then gives

functions Y(y) and x&(y) are given predominantly by
terms involving A [(d —2)/2)

~

d';y]; consequently, for
d'&2,

2/(2 —d')

(52a)
I ((2—d')/2)

2 ~ rr" (x/~
1T

(2
4

const&(exp( —2 m ~x~
~

), d'=2 . (52b)

Y(xq)=d*m /xg
/

=d'~ CgL" —1
C

whence, using Eqs. (1) and (3),

(53)

For d'~2, we encounter a crossover to the new critical
point, T = T, (L), a study of which would require a some-
what closer examination of the functions A (y) for
n & d*/2; we hope to return to this aspect of the problem
in a subsequent investigation.

Going back to Eqs. (44) and (45), we now find that the

f"(t;L)=d rr
g d —2L 2

(54)

Equation (54) represents the most dominant finite-size ef-

fect in the free energy of the system in this regime. The L
dependence of this effect is characteristic of the boundary
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K —K,Y(T)=2k~T „=„1—a" a Tc oo
(55)

which in the present 'case can be related to the order pa-
rameter, ~0(T), of the corresponding bulk system. In
passing we note that each of the d* directions, in which

conditions employed here; a corresponding calculation
under periodic boundary conditions' leads instead to a
term of order L ', with @=2(d —d')/(2 —d') which is at
least equal to d and hence greater than 2. One can readily
show that expression (54) entails the helicity modulus '

the system is finite and subject to antiperiodic boundary
conditions, contributes equally to expression (54) for
f"'(t;L). More generally, we would have here the sum

, LJ instead of the factor d*L; this would,
nevertheless, correspond to the same expression for r(T)
as given in Eq. (55).

It is not difficult to see that the leading term (54) in
f"(t;L) does not contribute to the specific-heat function
c"(t;L). To study that function one has to go beyond the
level of approximation registered in (54). It is simpler,
however, to turn to the scaling function (46) which now
reduces to

2/(2 —d')

8Y(()(x) )= .
(2—d') 23 d* d'n—

L

—const&& exp( —2 m.
~
x(5 —d

i —(4 —d')/(& —d')
x1 ( p d (2

), d'=2 .

(56a)

(56b)

Substituting these results into (4), we find that prediction
(13) is confirmed for d'&2, with

whence one obtains

2 -4~[x,
)Y(()(x) )=—8m e (62)

4—d' d —4
2 —d d —2

d —d
2 —d

(57) It follows that the function c"(t;L) in this case vanishes
as L 'exp( 4m.C,L

i

—t
~

).
Passage of the given system towards bulk behavior is,
therefore, governed by a power law whose exponent is
determined jointly by d and O'. For the special case
d'='2, the function c"(t;L) would vanish exponentially
as L" exp( 2 "m.C)L—

~

t
~

). In these respects, the
behavior of the system under antiperiodic boundary con-
ditions is qualitatively the same as under periodic boun-
dary conditions; quantitatively, however, the two cases are
marked by a difference in amplitudes for their respective
scaling functions.

Before closing this section we would like to point out
that in the case of a film in three dimensions ( d =3,
d *= 1), which belongs to the special category d' =2, the
final results can be obtained in a closed form and the ex-
ponential behavior seen more explicitly. We have in this
case

1/2
A ( —,

'
i
1;y)= — ln(l+e «),

y

1/2
M( ——,

'
~

1;y)=—2

V. MAGNETIC SUSCEPTIBILITY

2
Pen

d*
2Ja

j=l

+ csc [~(nj+ —, )/N j

' /+4 g sin [~(nj+ —,
'

)/N~]

(63)

We shall now analyze the initial susceptibility of the
system, as given by Eqs. (22) and (24). For simplicity of
treatment, we apply antiperiodic boundary conditions iri
the directions in which LJ s are finite and periodic boun-
dary conditions in the directions in which LJ s tend to in-
finity; this should not affect the nature of the final results
of our calculation, for the choice of boundary conditions
in the latter directions cannot be of any material conse-
quence. The formal expression for +0, per unit volume,
now becomes

with the result that

Y(, )(y) = —32my cothy,

while

(59)
(64)

Comparing (63) with the corresponding expression under
periodic boundary conditions, namely,

( p) Peff

2Ja P(P)

Y(x))=cosh '( —,e ') . (60)

As x1~—oo, y —+in/2, in accordance with the limiting
relationship

we have every reason to expect some significant differ-
ences between the two cases.

Using the representation

)x
y + 4 2

(61)
e /dx-m 2

z' O
2

the sum in (63) can be written as

(65)
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n(nj+ —,
'

)

X~d )
———,

' g Q csc
(g) J —1 J

d*

J exp —,'P—x—2x g sin [n.(nJ+ —,
'

)/NJ. ] dx
j=1

Qo 1
e &"" Sx x,

0
.i =1

(66)

where

N —1

SJ(x)= g csc
nj=0

n(nj+ —,
'

) —2x sin~tQn&+1/2)/N ]e J (67)

Writing identity (27) in the form
P

~(n +-')J 2
exp —2x sin

n =0
=NJ g ( —'1) J[e I~ q (x)]

q. = —ooJ

and carrying out integration over x, we get

SJ(x)=Nz' 2NJ g— ( —1) I e ~I~q (t)dt
q-= —ooJ

where use has been made of the fact that '
(68)

SJ(0)=NJ .

It then follows that

(69)

j=1
X(~g) = e

—fx/2 l $ J e
—I t t x ~

j=1 J q) = —oo

(70)

The evaluation of X~)) is straightforward; see the Ap-
pendix. We obtain, for P « 1,

~4 tanhy
(71)

4y

where y(= —2'N)p'/ ) is the same thermogeometric pa-
rameter as defined in Eq. (36). The susceptibility Xo for
geometry L'& op" ' thus turns out to be

2
P ff tanhy

(72)SJa"+ y

This leads to the reduced susceptibility

L tanhy1—
8La +y

Xo' (P'L) =( ) XpkgT

Puff

which conforms to the scaling formula (5), with

(73)

g —1/2& —(d +2)/2 Y (
'

)
y tanhy

(74)
8y

Note that the nonuniversal scale factor Cz appearing here
is a generalization of the scale factor Cz of Eq. (3), to
which it reduces as T~T, ( oo ); see also Eq. (7) of Ref. 8.

To examine the limiting behavior of the function
Y~z)(x&) in the two regimes of interest, we first observe
that, for t & 0 and L —+ oo,

1
Y&2)(x))= 2

—
3 [1—O(e «)]

I
r((2 —d)/2)l

8 8+/~x)

(75)

' —1

1 2 m
Y~z)(x))= —— y +

4

lx, l

' ' d&3
(76a)

exp[4m
l
x ) l ], d = 3 .

(76b)

Expression (76a) confirms the power-law prediction (17),
with

l
r((2 —d)/2)

l

8 8~~r2x

rvhere the ellipsis represents exponentially small terms.
The main term in (75) is consistent with requirement (15),
with y=2/(d —2) and G+ universal; obviously, it will
comply with the standard bulk behavior of Xo as displayed
in Eq. (14). It is surprising, however, that the leading
correction term in this case is algebraic, rather than the
conventionally expected exponential, in character; one can
readily see that this term entails a finite-size effect in Xo
w'hich varies as L 't '~+"'—apparently a "surface ef-
fect." For t & 0 and L ~ oo, on the other hand,
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1

d —2
2 2+ 2

d &3 . (77)

Only for d =3, which belongs to the special category
d'=2, is the approach of the system towards standard

I

bulk behavior exponential.
Going back to the general geometry, we consider the

sum X ( 3 ) from which X(2) can also be obtained by a suit-
able operation letting X3—+ ao. Carrying out the product
over j in (70), we obtain

X1%2N3
2 2 2

~(3)= 2
e ~ 1 —2 P1 x +P2 x +P3 x +4 P1 x P2 x +P1 x P3 x +P2 x P3 x

—8P) (x)P2(x)P3(x) I dx, (78)

where

PJ(x) = 1 2x

J 77
+ ~ ~ t (80)

PJ(x)= g ( —1) ' f e 'I~
q (t)dt .

J q= —ooJ

Our experience with the case d*= 1 now tells us that, for
1 ~0 and I.J —+ op, algebraic corrections to gp would arise
only from the term with qJ =0 in (79), while terms with

qj&0 would give rise to exponential corrections. Concen-
trating on the former, we obtain

' 1/2

1 3 12 6
[Y(2)(y))„, ,=, 1 ——+,— + . , (84)

Sy y my my

[+(2)(y}] * = 1 ——+ +1 2 4
d 2 8y2 y ~y2

(85)

[&(~)(y)].. .=, 1 ——+1 1
(86)

subject only to errors exponential in y.
To study the problem in the other regime, viz. for t &0

and I.~ oo, we go back to expression (79) for PJ(x), in-
troduce the asymptotic approximation

whence, for P «1,

f e ~"~ PJ(x)dx=

f e ~ ~ P~(x)Pk(x)dx= 2p J
NJ Nkm. p

and

f e ~"i P)(x)P2(x)P3(x)dx=
N) N2N3qrp

(81a)

(8 lb)

(8lc)

t —v /2t
I (t)= 2mt' (87}

q = —aoJ

—%2 2/2t
( —1)'

X. exp[ 2''t (n, +——,
'

) /NJ'], (88)
J n. = —ooJ

which is sufficient to derive leading behavior of the vari-
ous functions involved, and apply the Poisson identity"

Substituting these results into (78) and introducing indivi-
dual parameters with the result that

y, = 2N, Q' ', j=1,2, 3,1/2

we obtain

(82) P/(x )=
oo

2m
X

J

exp[ 2' x(n +——, ) /N ]
(89)

(nJ+ —,
'

)

XXX
X(3)= 1— 1 1 1

y2

+— + +4 1 1 1

y1y2 yly3 y2y3

6 1 + ~ ~ ~

~ y1y2y3
(83)

where the ellipsis represents exponentially small terms. In
view of the fact that yj's in this regime are proportional
to IJ's, we are clearly face to face with finite-size effects
explicitly recognizable as "surface effects, " "edge effects, "
and "corner effects. " From (83},we readily obtain scaling
functions for the susceptibility of a cube, a cylinder and a
film

This readily yields, see Eq. (68),

pf 2 oo

SJ(x)=
n. = —aoJ

exp[ —2m x (n~ + —, ) /NJ ]
(90)

(n, + —,
' )'

oo 4m (n)+ —,
'

)
&(()= 2 r (")+ 2 } ~+ 2

nl ———oo X1

tanh( —,
' N, (()'~')

1— (91)

in agreement with (71) and hence with the same conse-
quences as outlined above. (2) For d' =2,

Equation (66) now leads to the following results: (1) For
d*=1,
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2 2N(N2 1 2 1

r(p) — g y (n$+ p ) (np+ 7 ) y+
m'

72( p
= —00

4m.(n) + —, ) 4m (n~+ —,
'

)

Xi
+ N2

(92)

(93)

t

As p approaches its limiting value —(~ /&, +~ /X~ ), the dominant behavior of this function is determined by terms
with n

& 2 ——0 and —1, with the result that, for N& ——N2,

2
—1

+(&)~ 4 & +2 ~ 2/(4 —d)

m4

(3) For d*=3,

8] p 3=—00

4~ (n&+ —, ) 4m (nz+ —, ) 4m. (n3+ —, )
(n)+ —,') '(n~+ —,') '(n3+ —, )

' P+, +, +
N2 N3

(94)

whence, for N& ——N2 ——N3,

64 2 3m
Y&2~~ 6 3 +

7T' 4
(95)

Combining Eqs. (76a), (93), and (95), we conclude that, for
general d, the scaling function for Xo' in the regime
under consideration is of the asymptotic form

Y(2)—
8d* —1 2

—1

y +d cc ~x
~

'+" (96)

This confirms our prediction (17), with exponent g given
by

2 2
2 —d d —2~ + =2

2 —d
(97)

which is exactly the same as obtained in the case of
periodic boundary conditions; see Eq. (89) of I. A com-
parison of Eq. (97) with (57) reveals another important
fact, namely, that for the system under study, exponents g
and e are identically equal.

VI. CONCLUDING REMARKS

We have evaluated analytically the zero-field free ener-

gy, the specific heat and the magnetic susceptibility of a.
spherical model of spins on a finite lattice in d dimensions
under antiperiodic boundary conditions. Specializing to
the geometry L" &( oo", where d*+d'=d, we have veri-
fied several predictions of the Privman-Fisher hypothesis
on the hyperuniversality of finite systems, Relevant scal-
ing functions have been derived and a detailed examina-
tion of the asymptotic behavior of these functions has
been carried out in two regimes: for (a) T ~ T, (oo ) and
L~ oo, and for (b) T & T, ( oo ) and L ~ oo. In the former
regime, we find that finite-size corrections to standard
bulk results are, in general, exponential in nature. In the
case of susceptibility, however, we obtain the unexpected
result that finite-size effects are algebraic instead and can
be recognized explicitly as surface effects, edge effects,

and corner effects. The origin of these effects can be
traced back to the distribution coefficients e~ which ap-
pear explicitly in the expression for susceptibility; see Eqs.
(22) and (24). This does not, however, tell us why the re-
sulting effects should have the kind of character found
here, which is generally regarded as foreign to both
periodic and antiperiodic boundary conditions. ' ' Cus-
tomarily, the kind of effects displayed in Eqs. (83)—(86)
are expected only in the case of free boundary conditions
(that correspond to the case r = 1 in the Barber-Fisher no-
tation ). In view of the present findings, we tend to think
that finite-size effects in the latter case may turn out to be
even more involved than one is normally accustomed to; a
detailed study of the finite-sized spherical model under
free boundary conditions is currently under way.

There is no new surprise in the second regime —just
that the findings reported in I are further corroborated by
the present study. Once again we find that, as L ~ ao, the
given system approaches standard bulk behavior generally
through a power law, with a well-defined exponent, which
seems to be the rule rather than exception. The only ex-
ception within the premises of our calculation is provided
by the case d'=2, of which a film in three dimensions
(d=3, d*=1) is a well-known example, in that it is
marked by an exponential approach instead. At this point
it seems important to add that, for the system under
study, the results obtained in this regime apply all the way
down to 0 K. To achieve this, we simply had to introduce
an appropriate generalization of the parameters t and C2
of the Privman-Fisher hypothesis; see Eqs. (43) and (74) in
relation to Eqs. (2) and (3). A detailed account of this
generalization, and the consequences thereof, are being re-
ported separately.
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APPENDIX

To evaluate X111, as defined in Eq. (70), we interchange the order of integration over t and x, with the result that
2

X(1)—— 1 — g ( —1) ' I e "+&/ "IN q, (t)dt
& q)

———~
(Al)

We now use the integral co=(1+—,
' tb)+ —,

' [P(4+/)]' ' (A4)

co —1

[y(4+y)]1/2 Ni
(A3)

where

p +
(

2 p2)1/2[&+(~2 p2)1/2]v
e 'I„(/Bt)dt =

(ct &P, v& —1),
to obtain

2

X(])= 1—1 4 qi —Niqi ~

( —1) co
& [0(4+4)]'"„=

(A2)

Equation (A3) gives X111 exactly.
For P«1, we have co=1+v(b, whence co '=-e21',

where y =
2 Xt p' . Equation (A3) then assumes the

scaled form

tanhy
(&)

4y
(A5)

as quoted in the text. It is important to observe that, for
y »1, X(]) reduces to the asymptotic expression

1
X(&) 1— (A6)

4y

which follows directly from (A2) by retaining the term
with q] ——0 only.

*On sabbatical leave from the University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1.

S. Singh and R. K. Pathria, Phys. Rev. B 31, 4483 (1985), here-
after referred to as I.

V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).
G. S. Joyce, in Phase Transitions and Critical Phenomena, edit-

ed by C. Domb and M. S. Green (Academic, London, 1972),
Vol. 2, pp. 375—442; see also P. R. Gerber, J. Phys. A 8, 67
(1975), who gave an implicit expression for Cj that agrees
with ours up to universal factors.

4M. N. Barber and M. E. Fisher, Ann. Phys. (N.Y.) 77, 1 (1973).
5M. E. Fisher, D. Jasnow, and M. N. Barber, Phys. Rev. A 8,

1111(1973).
6I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series

and Products (Academic, New York, 1980).
7R. K. Pathria, Can. J. Phys. 61, 228 (1983).
S. Singh and R. K. Pathria, Phys. Rev. Lett. 55, 347 (1985).
Compare the corresponding result in Ref. 4, especially Eq.

(10.28) which is slightly in error; see, in this connection, V.
Privman and M. E. Fisher, Phys. Rev. B 32, 447 (1985).

' T. J. Bromwich, An Introduction to the Theory of Infinite
Series (Macmillan, New York, 1955), p. 211.
A. N. Chaba and R. K. Pathria, J. Math. Phys. 16, 1457
(1975); C. S. Zasada and R. K. Pathria, Phys. Rev. A 15,
2439 (1977).
R. K. Pathria, Phys. Lett. 35A, 351 (1971); Phys. Rev. A 5,
1451 (1972).

M. E. Fisher, J. Vac. Sci. Technol. 10, 665 (1973).


