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Machine simulations and effective-medium theories are used to examine the influence of trans-
verse (i.e., noncentral) forces on the elastic percolation transition in two dimensions. %'e consider
models in which the transverse forces arise from 4,

'1) contact interactions between pairs of macro-
scopic particles and (2} bond-bending forces involving three-site interactions. In the first class of
models, effective-medium theory is shown to describe with surprising accuracy the dependence of
the bulk and shear moduli on the bond occupation parameter p. In all cases we find that, as p is de-
creased, the ratio of the bulk to the shear modulus approaches a value that is independent of the
system s initial parameters, but which does depend on the microscopic details of the model. Finally,
we consider the description of depleted elastic systems from a continuum viewpoint. Two distinct
effective-medium theories are shown to predict behavior consistent with that obtained in our micro-
scopic analysis. Here, however, the ratio of the bulk to shear modulus at threshold varies over a
continuous range of values.

I. INTRODUCTION

We present here the results of calculations based on
both microscopic' and macroscopic' ' models of de-
pleted elastic media, Our microscopic results are obtained
by applying computer-simulation techniques and the
effective-medium approximation (EMA) to a two-
dimensional network. Our macroscopic work is based on
generalizations of the EMA to the description of voids in
continuous elastic media. As a whole our results offer
strong evidence for the existence of fixed-point behavior
in the vector-percolation problem. For any choice of the
initial parameters specifying a give model, as the system is
depleted, the ratio of the bulk modulus (K) to the shear
modulus (p) flows to a value that is independent of the
parameters that characterize the undepleted system.
While it was proposed that K/p would approach a
unioersal value at the depletion transition, our finding
that this value depends on the microscopic structure of
the model is consistent with recent results of Bergman.

Several authors have devoted their attention to the
description of tenuous elastic media. ' ' 2 A particu-
larly interesting example is a lattice of interacting parti-
cles in which a fraction, p, of the bonds have been re-
moved at random. As p decreases, the system's elastic
moduli decrease and eventually vanish to a critical value,
p,*. If the interparticle forces are purely central, it is
known that the value of p,

* is significantly higher than
the corresponding value, p,"",for the electrical conduc-
tivity threshold. In most materials of physical interest,
however, there are both central and noncentral forces '

and it is important to understand the behavior of depleted
elastic systems under more general conditions. '

An outline of this paper is as follows. In Sec. IIA we
introduce two microscopic models that will be studied in
detail, by both effective-medium theory and computer
simulation. The first model is a two-dimensional version

of the granular system discussed by Schwartz et al.
Here the interacting "particles" are disks whose motion
has both rotational and translational components. The
second model is based on the standard Kirkwood bond-
bending interaction. ' A brief summary of our numerical
methods is given in Sec. II 8. In Sec. IIC a sequence of
techniques is employed to study the disk model. We begin
by reviewing simple constraint-counting arguments '
that can be used to estimate the value of p,*. We then
consider effective-medium theories that allow us to com-
pute the properties of the system over the entire range of
p values. Both static and dynamic arguments are
shown to lead to the same effective-medium equations.
Interestingly, we find that the value of p,

* implied by the
effective-medium equations and that obtained from the
constraint-counting arguments are identical in all cases.
(While this finding is consistent with the work of other
authors, ' ' to our knowledge the reason for this agree-
ment is not properly understood. ) In the last part of Sec.
II C, the results of effective-medium theory are compared
with those obtained by numerical simulation. Three
features of this comparison deserve comment. First, in all
cases, the value of p,

* obtained numerically agrees quite
well with its effective-medium counterpart. Second, we
find that the overall behavior of K(p) and p, (p) as given
by the simulations is in very good agreement with the
effective-medium calculations. Third, both the numerical
and effective-medium calculations indicate that the ratio
K/p approaches a fixed point as p~p,'. As expected,
however, the limiting value of K/p is not given with any
accuracy by effective-medium theory. (Physically,
behavior at the transition point is dominated by long-
range correlations which are inherently beyond the scope
of effective-medium theory. ) In Sec. IID the results of
numerical simulations on the bond-bending model are dis-
cussed. For this system p,'=p,"" and we again find that
K/p approaches a fixed point as p~p,*. However, in
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this case there is no satisfactory generalization of the
effective-medium equations developed in Sec. IIC. In
Sec. III we consider the effective-medium description of
depleted elastic systems from a continuum viewpoint. '

(No simulations have been done in this case. ) Here the de-
pletion is obtained by the creation of elliptical voids. Two
effective-medium theories are discussed, both of which
lead to fixed-point behavior at their respective transition
points. ' However, the limiting value of K/p depends on
the aspect ratio of the voids and varies over a continuous
range of allowed values.

II. MICROSCOPIC MODELS

A. General considerations

When transverse (i.e., noncentral) forces are included in
microscopic calculations, care must be taken to guarantee

that the model is rotationally invariant. ' ' (This re-
quirement rules out the point mass nearest-neighbor
model originally proposed by Born and Huang. ) We
consider here two dynamical models. In both cases, the
underlying lattice is taken to be a two-dimensional tri-
angular network [with basis vectors: a~ ——ae„and
a2 ——a(e„+&3e„)/2]. This network has the attractive
feature that the long-wavelength sound speeds are isotro
pic (i.e., only two elastic constants are required to describe
the system). The first model is a two-dimensional version
of the model developed in Ref. 23. Here disks, with mass
M, moment of inertia I, and radius R =a/2, are placed at
each lattice site. The Hamiltonian is

2

H= —,g M 5u; +I 58;
1 d d

dt ' dt

2

+ —,
'

Q gj IDg[(5u; 5uJ ) ———,
' (58;+58J )e, XRJ ]z

+(Dii Dj )[(5u—; —5uj).R"] +D'(58; —58 ) I, (2.1)

'2

~= —, gM 5u; + gg;J[(5u; —5u;) R;,.]'
l p+j

Dg+ g g;Jgk[(5u; —5u~)XR;J.
(jik &

A,—(5u; —5uk) XR;k] (2.2)

Here (jik) indicates that the sum is over all triplets in
which the bonds j i and i —k form an—angle whose ver-
tex is centered at site i.

It should be emphasized that both of the above models
are rotationally invariant. In the first model the particles
have internal degrees of freedom but interact by nearest-
neighbor (i.e., contact) forces. By contrast, in the second

where R;J =—R; —RJ are lattice vectors, e, is a unit vector
in the z direction (i.e., normal to the plane of the disks),
and g,j is a random variable with probability p of being
unity and probability 1 —p of being zero. Translational
and rotational degrees of freedom associated with the ith
site are represented by 5u; and 56;, respectively; the quan-
tities D~~ and Dz monitor forces associated with the rela-
ti ve displacement of adjacent contact points. (The
strength of the transverse interaction is monitored by the
dimensionless parameter d:Dj /D~~. ) The p—arameter D'
represents a torque that opposes the counter-rotation of
adjacent grains in which there is no relative displacement
of their contact points. This last coupling constant was
not employed in Ref. 23, but terms of this kind are to be
expected in more general situations.

In Eq. (2.1) the transverse forces are associated with the
finite spatial extent of the individual particles (i.e., the
disks). In a second model of interest the particles are
point masses and the transverse forces are due to bond
bending. 21,22

model, a change of bond angle involves the coupling of
both second and third neighbors. If the rotational degrees
of freedom are neglected in Eq. (2.1), we obtain the fa-
miliar Born model

H= —gM 5u.1

dtl

+ —,
' gg;, IDj [(5u; —5u, ) XR;J]2

g+J

+(D~~ Dg)[(5u; —5u~). —R;J] I . (2.3)

It is well known that this Hamiltonian is not rotationally
invariant. Nevertheless, we will see that several impor-
tant features of the percolation transition can be under-
stood in terms of the Born model which has the advantage
of being considerably simpler from a computational
standpoint. (This model is also of interest in connection
with the description of gels. )

B. Machine simulations

5u;(t„+, ) =5u;(t„)+yF, (t„), (2.4)

The computer simulations presented here employ stan-
dard relaxation methods. Calculations have been carried
out on 30&30 and 40X40 two-dimensional triangular lat-
tices. (Results presented in this paper are based on the
30&30 system; the larger lattice was used to check the re-
liability of these calculations. ) In each simulation (i.e.,
for each value of p) the boundary sites of the lattice are
given fixed displacements corresponding to either pure
compression or pure shear (see Fig. 1). (Note that there is
no net torque associated with the shear displacements ).
The sites inside the boundary are then allowed to respond
according to the equations of motion:
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(a)

FIG. 1. Boundary displacements for determining (a) bulk and
(b) shear moduli by numerical simulation are represented
schematically. Note that the shear displacements do no involve
any net torque.

where t„ is the nth time step, F;(t„) is the force on the
ith particle at time t„as calculated from the Hamiltonian
and the boundary condition, and y is a factor chosen to
optimize the overall relaxation process. The iteration of
Eq. (2.4) is terminated when the maximum force on each
of the interior particles is smaller than a preset value e.
(A typical value in the present calculations is e=0.01.)

The net forces on the boundary sites are then used to com-
pute the elastic constants (E or p). Having determined
the displacements for a given value of p, these 5u; are
used to set the initial conditions for the next p, which is
obtained by randomly eliminating a specified number of
bonds. This procedure is repeated until the elastic con-
stants of the system approach zero. The entire process is
executed 20 times (i.e., with 20 bond-removal sequences)
to obtain the statistically averaged results presented in this
article.

C. Nearest-neighbor (contact) forces

2N —,(2NZ )p —
Zp

2X
'

2
(2.5)

TABLE I. Illustration of the fact that Zp, is nearly indepen-
dent of a lattice in two dimensions.

Constraint counting

To begin, we consider just the Born model defined by
Eq. (2.3). Although we will soon specialize to the case of
a triangular lattice, it is instructive to make the present
arguments somewhat more generally. Suppose that a
fraction, 1 —p, of the bonds are cut. The simplest way to
estimate where the transition will take place is to use an
argument based on the counting of zero-frequency
modes. For a system of N particles in two spatial dimen-
sions, we have 2N vibrational degrees of freedom. There
are two constraints (i.e., two kinds of motion that cost en-
ergy) associated with each bond. The number of zero-
frequency modes is equal to the difference between the
number of degrees of freedom and the number of con-
straints. The fraction of these modes is then

FIG. 2. Schematic illustration of the zero-frequency modes
in (a) the central-force model and (b) the disk model with D' =0.

where Z is the number of neighbors. The transition sets
in at f=0, i.e, , when the lattice becomes rigid against all
deformations. Thus

)fc

p (2.6)

3N —,
' (2NZ )p Zpf= =1— (D'=0) .
3N 3

(2.7)

The transition occurs at p'=3/Z and the corresponding
value of (Z ) is Z' =3. Note that in this case the transi-
tion has shifted to a point exactly halfway between the
central-force value, p' =4/Z, and the Born-model result,
p =2/Z. Physically this shift is associated with zero
frequency (i.e., floppy) modes which involve chainlike sec-
tions of the percolating cluster. These modes involve no
energy cost because, in the case D'=0, counter-rotation
does not lead to any deformation of the contacts (see Fig.
2). Indeed, in Ref. 23 it is shown that in the case of one-
dimensional systems (which form the tenuous links in the

[Here p* is to be understood as the constraint counting
(or effective-medium) estimate for the true threshold p,*.]
We emphasize that Eq. (2.5) is valid only for p (p*,
clearly, negative values of f are meaningless. This result
is identical to the constraint-counting estimate of the
geometrical percolation threshold p,

"" (see Table I). Al-
ternatively, the transition can be viewed in terms of the
mean coordination number (Z) —=pZ. At the transition,
(Z)~Z'=2 (in two dimensions). (Note that Z' is in
dependent of Z. )

The preceding arguments can, of course, be used in the
limit Dj ~0 (i.e., central forces). In this case there is only
one constraint per bond and we find p

*=4/Z and
Z'=4. As expected, the inclusion of transverse forces
shifts the threshold to significantly lower values. '

Consider next, the two-dimensional disk model. Here
we have three degrees of freedom per site. If the parame-
ter D' is set equal to zero, there are again two constraints
associated with each bond, and the analog of Eq. (2.5) is

Lattice

Honeycomb
Square
Triangular

z Q

(Effective-medium theory)
Zpc

(Exact)

2.0838
2

1.9581
d=2
d=3

TABLE II. Representative values of Z*

Disk model
(D'=0)

Central
forces

Disk model
(D'~O)
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percolating cluster ) there are a macroscopic number of
zero-frequency modes.

In the general case (D'&0), the number of constraints
acting at each contact increases from 2 to 3 and the frac-
tion of zero-frequency modes is

3N —', (NZp—) Zp
3N 2

(2.&)

The transition occurs at p
*=2/Z or, equivalently,

Z*=2. In the present case, as in the Born model, p*
reduces to the corresponding estimate for the bond-
percolation threshold p,

"". This is reasonable because,
with D'&0, there are no displacements of two particles in
contact that do not involve a cost in energy, and the tran-
sition takes place at the geometrical percolation limit.

The results of the preceding discussion can be expressed
in terms of Z*, a quantity we have seen is independent of
the lattice. In the case of ordinary bond percolation,
Kirkpatrick has noted that Zp, is almost a dimensional
invariant. This point is illustrated in Table I. We see that
the near universality of Z* extends to the disk and
central-'o -e models for depleted elastic networks. The
values oi Z obtained in the various models are summa-
rized in Table II.

For the triangular lattice studied in the remainder of
this paper, the values p* given by the constraints argu-
ment are —,

' (central-force model), —,
' (disk model with

D'=0), and —, (Born model and disk model with D'&0).
We will see that these are exactly the values predicted by
the effective-medium theories to be discussed in the fol-
lowing section. The central-force result —', is very close to
the value in the numerical simulations. (Early calcula-
tions gave the value p, =0.58, ' but more recent estimates
are much closer to —,'. ' ' ) The result —,

' is quite close to
the value 0.3473 that is expected for bond percolation on a
triangular lattice. We note that the numerical simulations
for the disk model with D'=0 show that p* = —,

' is a very

good estimate for the triangular lattice.
To conclude this discussion, we note that for the bond-

bending model the values of p, and p,
"" are expected to

coincide. The model Hamiltonian (2.2) is locally rigid
(i.e., all distortions of the depleted network involve a cost
in energy).

2. Effective-medium theory and simulations

a. Static approach. In this section we develop
effective-medium theories for the various models just dis-
cussed, by extending arguments first derived by Kirkpa-
trick for depleted electrical networks. For simplicity,
this approach will be illustrated for the Born model; re-
sults for the disk models will simply be summarized. The
central approximation is to assume that a depleted net-
work can be thought of as an effective uniform network
with bond-strength parameters AI

I

and 5&. These so
called effective-medium bond strengths are determined by
requiring that the fluctuations produced by replacing a
selected effective bond by its actual value average to zero.
In the present case this condition must be satisfied for
external stresses corresponding to both compression and
shear (recall Fig. 1).

Consider first the boundary condition associated with
uniform compression. If every bond is described by b,

ll

and hz, then it is clear that every bond is compressed by
the same amount 6u, f~. Now imagine that bond I—2 is
replaced by one with strength DII. It is evident that an
extra compression 5u will result. To compute 5u, we ar-
gue that restoration of the uniform strain situation would
require the application of the force

f—5u ff(Ail Dll ) (2.9)

across (and in the direction of) the bond 1—2. Alterna-
tively, by virtue of superposition principle, in the absence
of any external pressure, the displacement associated with
the force f is simply 5u. We then have

f=5"(Dll —~ll+Dil '—=5" Dll —~II+err — —
II

QII
(2.10)

e«DII =~ll all is the ratio of f to 5u when the sys-
tem is ordered, i.e., when the bond 1—2 has the same
strength as the rest of the bonds. Since aII is a property
of the ordered system characterized by hll and b, ~, it can
be calculated exactly. The result is

a
II
= g Tr[hll(k). b, '(k)],2

XZ (2.11)

where

a(k) = y [1— p( k.5)][~II55+~,(I —55)]

—=Ail(k)+kg(k), (2.12)

is the k-space dynamical matrix for our effective uniform
medium, and 5 is a nearest-neighbor vector. Once all is
known, we have

(
II
—Dll) —6II+DIIa

(2.13)

The next step is to average over the two possibilities

DII=DII (p«babihty p) and DII=0 (p«babihty 1 —p).
Requiring (5u ) ~0, we have

a
II (2.14a)

The entire procedure described above can be applied to the
case of an external shear-boundary condition to give the
second effective-medium equation:

QJ p —QJ

Dg 1 —ag
(2.14b)

where

a~ = g Tr[b,z(k) b, '(k)] .
1VZ

(2.15)

Equations (2.11), (2.14), and (2.15) form a closed system
of equations that determine b,

ll
and b,q. It is interesting to

observe that

ail+a& —= g QTr[b(k) b, '(k)]= —. (2.16)= 2
SZ ~ ~ Z
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Now, at the depletion threshold p,', both All and 6& ap-
proach zero, and it follows from Eqs. (2.14) that

a)) =p,*=a~. This result together with (2.16) yields

(ii) D'&0. In this case there are three self-consistency
equations. The structure of the first two is again the same
as that of Eqs. (2.14). The third condition is

p =2/Z . (2.17)
p —a'

D' 1 —a' (2.22)

and

i((, s(k) = —g (1 e'"—s)b~R(e, X5)
5

i((,e (k) = —g (1 e'"' )b,qR(e—, X5)~,
5

(2.18b)

(2.18c)

which is identical to the result (2.6) obtained by the con-
straint counting argument. (A more detailed version of
this argument is given in Ref. 15 for the case of central
forces; their results are a|——0=hj and p' =4/Z. )

The above analysis can easily be generalized to the
two-dimensional disk models. Here the effective lattice is
specified by three parameters 6)), b,q, and b.', whose
values are determined by the self-consistency conditions.
Since we have one more degree of freedom in this case,
the effective dynamical matrix b, (k) is a 3&&3 matrix in-
dexed by x, y, and 6I:

b~p(k) = g (1—e'" )[b.))55+bq(3. —55)], (2.18a)
5

The quantities a
l l, az, and a' are defined as

2
a)) = g Tr[b, (k

~
i(()), bj =0, b'=0)

XZ

'(k
I A)), b&, b,')],

2
a~ = QTr[h(k

~

b, ))=0, Aq, b.'=0)
cVZ

~-'(k
~ ~„,~, ,~ )],

a'= g Tr[4(k
I ~ll =0, 6, =0, 5')2

XZ
'(k b, )),b,|,b. )] .

In thss case

a))+aj +a'= QTr[A(kXZ

(2.23a)

(2.23b)

(2.23c)

bee(k)= g [6&R (1+e' ' )+b, '(1 —e'"' )],
5

(2.18d) 6

'(k
~

b, )), A~, b, '=0)] (2.19a)

az —— QTr[b(k
~
i(I))=0, b~, b.'=0)2

XZ

'(k
~

b, )), b, ~, b, '=0)] . (2.19b)

It is then easy to see that

2
a)) +a j. —— g Tr[h(k

XZ

~ '(k
l ~)) ~i ~'=0) l =—,(2.20)

6

where the Tr symbol indicates a 3)&3 trace operation.
This then leads to

where 8 =a/2 is the disk radius, and e and f3 denote an
arbitrary Cartesian index (x or y). Arguments similar to
those presented above lead to the following results:

(i) D'=0 The stru. cture of the final equations is the
same as that of Eqs. (2.14). The quantities a)) and a~ are
defined as

a))= QTr[b(kl ~)) ~i=0 ~'=0)2
XZ

(2.24)

and we find

p*=a)) =a; =(a')'= —.
Z

' (2.25)

T"'=[T')) R;JRJ+T( '(I R;,Rij)1—

and bond missing,

(2.26a)

T' '=[T)) 'R,JR;~+ T'j '(1 R,JR,i)]— .

(2.26b)

This is the same as the Born-model geometrical percola-
tion limit which again agrees with the constraint estimate.

b. Dynamic approach. The above equations can also be
derived from a multiple-scattering viewpoint. In this case
we picture a wave propagating through an effective medi-
um and incident upon a selected bond (say i j) Thi—s.
bond can either be present (probability p) or absent (prob-
ability 1 —p) and the effective medium is determined by
requiring that the average scattering vanish. To illustrate
the form of these arguments, we consider the Born model.
The scattering operators that describe the distinguished
bond are of the following forms: bond present,

r

p =all =ag =—Z' (2.21) where

which again agrees with the estimate of the constraint ar-
gument.

Il«] ~ll «]
~ll &»—

1+(D)) (g) —6)) (())(G)) (J ) Go)
(2.27a)
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and BORN MODEL

(2.27b)

Here the quantities Go and Gll (q ~
are defined in terms of

the resolvent matrix

LA
h

O

C)
LA

o

.90

ik.R„
G(R„~ co )=—g

co —b.(k)
(2.28)

where A(k) is the matrix defined in Eq. (2.12). In the
R„=O case, this matrix is isotropic, i.e.,

G(R„~ co )~Go(co )IL .

If R„ is one of the nearest-neighbor vectors, we have

G(Rn
I
~ )=Gli(a) R„R„+G~(co )(I—R„R„). (2.29)

As we are interested primarily in long-wavelength
behavior, we will be concerned with the limit co ~0.
Thus the quantities entering Eq. (2.27) are defined as
Go=Go(co ~0), Gii =—Gii(cu 0), and Gi =—Gz(co ~0).
The equations defining h~~ and b,z are then

pT~~(i)+( p)T~~(l) =0.
These equations are easily rewritten as

Dli(~~ ~ll (

2~~~ (l)(G~~ (l) Go) =&~~ (l)
ll (i)—

(2.30)

(2.31)

which are clearly identical to the results (2.14) obtained by
the static arguments presented above. [The last equality
in (2.31) can be verified by combining Eqs. (2.28) with
(2.11) and (2.15).j It is clear. that the above analysis can
easily be extended to the disk models and, with relatively
little effort, one finds that Eqs. (2.19)—(2.25) can be de-
rived by the dynamic approach.

c. Numerical results. In Figs. 3—5 calculations based
on effective-medium theory and numerical simulation are
compared for the Born model. It is clear that in this case
the agreement between the two methods is very good. %'e
see that a threshold is reached very close to the mean-field
prediction p*= —,', and that the ratio IC/@~ 1 as p~p*.

1

O. g
0 J 0 z5 0 50 0 75 i X

P

FIG. 4. Effective medium (solid curves) and computer simu-
lation (open circles) are compared for the shear modulus of the
Born model.

It can easily be shown that the effective-medium equa-
tions (2.14) lead to isotropic behavior at the depletion tran-
sition (i.e., IC~p as p~p,*). This isotropy means that
the x and y problems decouple and we have two scalar
problems. Because the Born model is not rotationally in-
variant, some care must be taken in deriving X and p
from h~~ and b,z. In particular, one must ensure (as in
Fig. 1) that the applied strains have no rotational com-
ponent. The correct relations are then

vgE= 6)), p= (b)~+bq) . (2.32)

Note that in Figs. 3 and 4 the results obtained by simula-
tion are systematically below those obtained by effective-
medium theory in the range p,

*
&p &0.5. Nevertheless,

the level of agreement in the flow diagram (Fig. 5) is ex-
cellent.

In Figs. 6—8 corresponding results are shown for the
disk model in the special case D'=0. Here the agreement
is somewhat less satisfactory. It is clear that the behavior

3.0-

BORN MODEL

Ln
h

D

g
O

BORN MODEL

2.5-

1.5-

1.0-

0 o o CI P. ]0

h h h CL Qe50

o o o Q 0.90

r
Q g

~
p 25 0.50 0 75 I.

P
Q.g

FIG. 3. Effective medium (solid curves) and computer simu-
lation (open circles) are compared for the bulk modulus of the
Born model. Here d =—Dj /all indicates the relative strength of
the transverse coupling.

0.5
0.25 0.50 0.75

P

FIG. 5. Effective medium (solid curves) and computer simu-
lation (open circles) are compared for the ratio of the bulk to
shear modulus of the Born model. The vertical bars represent
statistical errors associated with the number of independent
realizations simulated.
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DISK MODEL: D = 0 5.0- D I SK MODE L: D = 0

ln

o
4

o
0 3 0-

0 0 0 o

h ts o

0 0 0 o

if)
P4

o

oo
o

0 5 100

P

FIG. 6. EEffective medium (solid curves) and computer simu-
ation open circles) are compared for the bulk mod 1 f th

disk model. Here d =D& /D~I indicates the relative
strength of the transverse coupling.

of K and p as a function of p is represented in a reason-
able way by the effective-medium equations. In addition,
these equations predict that the ratio K/p should ap-
proach a fixed point at the transition. We see, however,
t at the value of this ratio is not given properl b
effective-m've-medium theory. In this connection we note that
the present results do not appear to be consistent 'th th

2ergman-Kantor conjecture X/p —+2/d (d is the spatial
dimension). In Figs. 9—11 we see that a similar situation
obtains in the case of nonvanishing D'. Here the simula-
tions indicate that K/p, approaches a value that is con-
sistent with the Bergman-Kantor value (2.0). (In the
present case, the uncertainty in our simulation results re-

ects systematic errors associated with finite-size effects
rather than statistical errors, whose magnitude is indicated
by the vertical bars. ) Note that in both cases the value of
the transition obtained in the disk model is in excellent
agreement with the constraint-counting results.

D. Bond-bending (second-neighbor) models

In Fi s. 12—14
1

'g . — we show the results of numerical simu-
ations on the bond-bending model. The te rans&idion takes

p ace at p=p, "" as expected, and the limiting value of

0.0
1

P

FIG. 8. Effective medium (solid curves) and computer simu-
ation (open circles) are compared for the ratio of the bulk to

shear modulus of the D'=0 disk model. The vertical bars
represent statistical errors associated with the number of in-
dependent realizations simulated.

0.750.25 0.50

III. CONTINUUM MODELS

Effective-medium theories for the continuum case are

10—13
set up in the same spirit as those for the dior e discrete
case. e consider the case of elliptical holes cut ran-
domly in an isotropic two-dimensional elastic continuum.
Them '

major and minor semiaxes of the e1lipses are a and b.
By convention, we take b (a. ) The centers and axes of

the ellipses are randomly positioned in the plane and of

K/p is agam consistent with the Bergman-K t 1n- an or vaue
i e it is possible to derive effective-medium equa-

above, they yield neither the proper slope as p~1 nor
do they give the expected value for the transitio

'
tansi ion point

i.e., p = —, ). Finally, we note that because bond-bendin
forces couple three particles (and six degrees of freedom),
there is no clearcut way to generalize the dynamic i.e.,
scattering) derivations of effective-medium theory
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FIG. 7. Effective medium (solid curves) and computer simu-
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FIG. 9. Effective medium (solid curves) and computer simu-

D'=0. 5 disk m
ation (open circles) are compared for the bulk m d 1 f

is model. Here d =D~ /D~I indicates the relative
strength of the transverse coupling.
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FIG. 10. Effective medium (solid curves) and computer simu-
lation (open circles) are compared for the shear modulus of the
D'=0. 5 disk model.
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FIG. 12. Computer-simulation results are shown for bulk
modulus in the bond-bending model. Here d =D& /D~~ indicates
the relative strength of the transverse coup ing.

course, the ellipses can overlap one another. The reason
for choosing ellipses (rather than say rectangles) is that
the problem of a single elliptical inclusion can be solved
exactly. The effective-medium theory then uses this exact
result for one inclusion to derive'approximate results or
many inclusions.

T d' tinct self-consistent effective-medium approxi-
tions have been discussed in the literature. n t e

l-first, the host and the inclusions are treated symmetnca-
ly. We refer to this as SCA-S. In the second (referred to
as SCA-A) the host and the inclusions are treated
asymmetrically. In this respect the continuum situation is

. II.rather different from the lattice cases discussed in Sec.
There, both the cut and uncut bonds have the same
"shape, " so that it is natural to average symmetrical y
over the scattering operators that describe the two possi-
bilities. By contrast, in the case of elliptical holes in a
continuum, the host and the inclusions are manifestly di-
ferent and, indeed, the SCA-A is generally to be preferred
to the SCA-S.

Disordered two-dimensional elastic systems are charac-

terized by the elastic constants K,rr and jj,,ff, These quan-
tities are functions of the volume fraction of the holes,
1 —p, and their aspect ratio, b /a. Effective-medium
theories do not treat overlap effects between different el-
lipses explicitly. If there are n ellipses per unit area, then
the volume fraction p occupied by the background materi-
al is

—(nabab }p =e (3.1)

Q= z g(Tijij 2 Tiijj )
E,J

(3.2)

For small n p —1 —nabab as expected, but the corrections
are very important for larger values of n. For circles at
percolation,
For high-aspect-ratio (i.e., needlelike) ellipses, the correc-
tions for overlap are less important (than for circles) and

p, ~1 as b/a —+0. It is the volume fraction p given in
(3.1) that enters the effective-medium theories,

We now briefly recall the salient formulas for the con-
tinuum EMA. ' The key invariant quantities needed
when an isotropic average is done over all directions in
two dimensions are
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o o o d = 0.90
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Here TJkI is the tensor which relates homogeneous strains
outside the inclusion to those inside. In general, P and Q
depend on shape of the inclusion and the moduli of bot
the inclusion and the host. The general expressions can be
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FIG. 11. Effective medium (solid curves) and computer simu-
lation (open circles) are compared for the ratio of the bulk to
shear modulus of the D'=0. 5 disk model. The vertical bars
represent statistica1 errors associated with the number of in-
dependent realizations simulated.
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FIG. 13. Computer-simulation results are shown for the
shear modulus in the bond-bending model.
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FIG. 15. K and p are shown as a function of p for the two

continuum effective-medium theories.

and

found in Ref. 13. Two cases of interest, namely circles
and needles, are given in Table III.

Consider first the symmetric effective-medium theory,
which treats the host and the inclusions symmetrically. It
leads to equations of the form'

g C'P ff(K ff. K; ) =0, g C;Q,'ff() eff ); ) =0 (3.3)

jeff
EC)

1 —a/p jeff
1 —cx p)

1 —/3/p
1 —P

(3.4)

where

( 1 P(1) /P(2) )
—1 p ( 1 Q(~1) /Q(2~) )

—1 (3.5)

It can be shown that the SCA-S gives the following ex-
pression for the percolation threshold:

pe 2I 1+[2(a+b)2/(a2+b2)]1/2j —1 (3.6)

Next consider the asymmetric self-consistent approxi-
mation. The SCA-A leads to the general equations'

1 E, —K;1+g (1 p, )P,",', — , (3.7a)
eff E,ff

where the sum on i runs over the two constituents. In the
case of interest here, the second constituent (i.e., the ran-
domly oriented elliptical holes) has K; =0 and p; =0, and
Eqs. (3.3) reduce to

(3.7b)

jeff P —e
K) 1 —n

)(jeff p —p
P) 1 —P

(3.8)

where a= 1 —1/P, ff and P= 1 —1/Q, ff. In this approach
the expression for the threshold is

p*=[l+ab/(a +b )] (3.9)

Illustrative calculations based on SCA-S and SCA-A
are presented in Figs. 15 and 16. In Fig. 15 we plot K,ff
and p,ff obtained from Eqs. (3.3) and (3.7), respectively.
In Fig. 16 results are shown for p" based on Eqs. (3.6)
and (3.9). Both approaches lead to the result

(3.10)

where o' is the value of the Poisson ratio at percolation,

I(."+p K*/p, *+1
(3.11)

g)
O

Here we have taken material 1 as a host. Again assuming
that the inclusions have K2 ——0 and p2 ——0, we find

TABLE III. Limiting forms of P and Q [defined in Eq (3 2)]
for circle- and needle-shaped inclusions. K (K~) and p (p~}
refer to the host (inclusion), respectively.

Circle

Needle K+p)
EC) +pi

2(K+@,)p
Kp+(K+2p)p)

+1 +1+p p
2 El+P& P&

I

0.75025 0.50 100~t Ratio

FIG. 16. p* is shown as a function of the aspect ratio of the
ellipse for the two continuum mean-field theories.
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FIG. 17. The ratio E*/p* at the transition point p* is

shown as a function of the aspect ratio of the ellipse for the two
continuum mean-field theories.
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FIG. 18. E/p is shown as a function of p for the two contin-
uum mean-field theories.

~L re*=i+
+T

2
(3.13)

It is curious that both approaches lead to (3.10) even
though the p' (and hence o.*) are rather different (see Fig.
15). For circles both effective-medium theories are identi-
cal, but then they differ for general ellipses as shown in
Fig. 16. In Fig. 17 we show the values of K"/p" at the
fixed point as a function of the aspect ratio of the ellipti-
cal inclusions. For a fixed aspect ratio, flow to the fixed
point is illustrated in Fig. 18. It follows from Eqs. (3.6),
(3.9), and (3.10) that at the fixed points we have

2
1/2K' 2la+b) (3.14a)

p* a +b
(SCA-S)

Here K* (p*) are the values of the bulk (shear) modulus
at the transition point. (Both K* and p* approach zero
as p —&p; their ratio, however, remains finite. ) The value
of p

* and hence those of o * and K */p* depend on the
geometries but not on the initial value of K/p. Thus the
continuum model has a fixed point within effective-
medium theory and one expects that numerical simula-
tions will eventually yield corresponding behavior. The
ratio of the longitudinal to transverse sound velocities is
given by

VL =1+— (3.12)
p

At the transition point this becomes

IV. CONCLUSIONS

The elastic depletion transition has been studied for a
variety of models with transverse forces. In the case of
systems with nearest-neighbor forces we find that the
agreement between computer simulations and effective-
medium theory is quite good over the entire (p ) range of
interest. In these systems effective-medium theory and
constraint-counting arguments yield the same results for
p and this estimate agrees with the p,

* obtained by simu-
lation to within about l%%uo. The results obtained here are
consistent with those presented in Refs. 15 (triangular lat-
tice, nearest-neighbor central forces) and 19 (square lat-
tice, first- and second-neighbor central forces). The only
differences between these systems are in the deviations be-
tween the effective-medium theory and the numerical re-
sults in the region above p,*. These deviations are least
pronounced in the central-force case and are more sub-
stantial for the models discussed in this paper. In addi-
tion, we note that the effective-medium flow diagrams are
quantitatively accurate only in the case of the point-mass
models. We have no physical argument that would
predict this state of affairs. Nevertheless, we believe that
the present work provides further evidence that fixed
points and flow diagrams are useful in discussing the elas-
tic depletion transition.
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