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Order in metallic glasses and icosahedral crystals
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The relationship between short-range icosahedral order in metallic glasses and long-range order in
icosahedral crystals is explored. Metallic-glass structure factors are assumed to describe liquids in
metastable equilibrium just above the glass transition. A density-functional mean-field theory is
then used to search for nearby crystalline states with a lower free energy. We find that undercooled
liquids are metastable with respect to an icosahedral crystal, similar to the recently discovered
icosahedral phase of Al-Mn. Conventional bcc and fcc crystals have an even lower free energy. The
icosahedral phase is favored by the short-range icosahedral order present in the liquid. There- is,
however, an energetic cost associated with long-wavelength fluctuations forced in by the incommen-
surability of the icosahedral density waves. The theory predicts a rapid falloff of intensities in re-

ciprocal space at small wave vectors, and a specific decoration of Penrose rhombahedra with atoms
in real space. Our results are obtained via an exact mapping, in the density-functional framework, of
the theory of icosahedral crystals onto the theory of conventional crystals in six dimensions.

I. INTRODVCTION

The remarkable observation by Shechtman et al. ' of an
aluminum-based Al-Mn alloy with long-range translation-
al order and a perfect icosahedral point-group symmetry
has stimulated a large amount of theoretical and experi-
mental work. The experimental results appear to be re-
lated to some fascinating tesselations of space originally
discovered by Penrose and explored in a more physical
context by MacKay. " The three-dimensional Penrose til-
ing which agrees most closely with experiment has been
described by Kramer and Neri, and by Levine and
Steinhardt. Levine and Steinhardt pointed out that th|;se
tilings have 5-function Bragg peaks with an icosahedral
symmetry in reciprocal space. The Fourier transform of a
model which places atoms at the vertices of this Penrose
lattice was subsequently obtained via an elegant projection
technique by Elser, Duneau and Katz, and by Kalugin
et al. The exact self similarity of the-Penrose structures
in real space should probably not be taken literally for
Al-Mn; as pointed out by Elser, ' one can locally scramble
the Penrose tiles (violating the "matching rules" ) and still
preserve the locations and 5-function character of the
Bragg peaks.

Icosahedral crystals like Al-Mn appear to have both
long-range orientational order and long-range translation-
al order with an icosahedral symmetry. Short-range
icosahedral order is believed by many investigators to be a
feature of metallic glasses. " In this paper we explore the
connection between these two different manifestations of
icosahedral order.

The structural consequences of short-range icosahedral
order in monatomic undercooled liquids and binary metal-
lic glasses have recently been studied' using a Cxinzburg-
Landau theory with a uniformly frustrated order parame-
ter. ' An important ingredient of this theory is an unfrus-
trated icosahedral lattice on the surface S of a four-

dimensional sphere. ' ' The lattice can be decomposed
into 600 perfect tetrahedra, with particles at the vertices.
The theory predicts peaks in the structure factor at posi-
tions determined by the symmetries of this ideal, curved-
space icosahedral crystal. Figure 1 shows the structure
factor of a relaxed dense random-packing model of metal-
lic glasses due to Ichikawa. ' We have labeled the peaks
by the integers n = 12,20,24, . . . , which index reciprocal-
lattice vectors in the curved-space icosahedral crystal. '

The theory allows a good fit to structure factors of this
kind, and predicts that peak positions are related by
q 20 ~q 12 1.7 and q24 /q &2

-2.0. '

Figure 2 shows that the structure factors of vapor-
deposited amorphous cobalt, ' a computer-cooled
Lennard-Jones glass, ' the bimetallic glass Mg7pZn3p,
and the metal-metalloid glass '

Fe8p82p have striking simi-
larities with Fig. 1 and with each other. (For an earlier
compendium of metallic-glass structure factors which
makes the same point, see Ref. 11.) The n =12, 20, and
24 peaks present in all these structures factors are sugges-
tive of short-range icosahedral order. The peaks are
broadened relative to their sharp, curved-space counter-
parts, because the icosahedral order is interrupted by a
dense, tangled network of wedge disclination lines. ' Ad-
ditional broadening is expected in alloys, due to composi-
tional fluctuations (the n =24 peak often becomes a
shoulder), and in computer-generated glasses, due to the
very rapid cooling rates. Preliminary results on glassy
Al-Mn suggests that its structure factor is qualitatively
similar to those shown in Figs. 1 and 2.

The frustration which prevents a simple, dense-packed
lattice of perfect tetrahedra in three dimensions is often
accommodated by an excess of —72' disclinations. The
Frank-Kasper phases are periodic arrays of such dis-
clination lines, with rather large unit cells. Disclination
lines in a predominantly tetrahedral medium are not the
only means of coping with frustration, however. Face-
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FIG. 1. Structure factor of the relaxed dense random-packing
model of Ichikawa (Ref. 17). The peaks are labeled by integers

n = 12, 20, 24, . . . , which index reciprocal-lattice vectors
characteristic of icosahedral order in a curved-space lattice of
perfect tetrahedra. The dashed line is discussed in Sec. III C.
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FIG. 2. Structure factors of vapor-deposited amorphous co-
balt (Ref. 19), a computer-cooled Lennard-Jones glass (Ref. 20),
the bimetallic glass Mg7QZn30 (Ref. 21), and the metal-metalloid
glass Fe80820 (Ref. 22). The structure factors have been rescaled
to make their primary peaks coincide.

2.5

centered-cubic crystals, for example, are a 2:1 mixture of
tetrahedra and octahedra. If one puts atoms at the ver-
tices of a Penrose tiling, one again finds (nearly perfect)
octahedra at the centers of the larger rhombahedral build-
ing blocks. The parallel triangular faces of these octahe-
dra may play a role in allowing icosahedral order in a
Penrose pattern to propagate over infinite distances.

A connection between the short-range order in metallic
glasses and order in icosahedral crystals is suggested by
Fig. 3, which shows schematically the diffraction pattern
normal to the twofold symmetry axis for icosahedral crys-
tals. All of these Bragg peaks can be written as integer
linear combinations of 12 fundamental reciprocal-lattice

FIG. 3. Diffraction pattern for the vertex icosahedral crystal.
All spots are linear combinations of a basis set of wave vectors
pointing to the vertices of an icosahedron with magnitude qo.
{An alternative basis set, with magnitudes qo/~ is discussed in
Sec. III D.) The wave vectors shown lie in a plane perpendicular
to a twofold axis of the icosahedron. The largest spots represent
members of the basis set while the smaller spots mark the posi-
tions of peaks generated by linear combinations of 2, 3, and 4
members of the basis set. q&, q&, and q& are the magnitudes of
wave vectors in the second generation.

vectors of length qo pointing to the vertices of an
icosahedron. Four elements of this set which lie in the
twofold symmetry plane are indicated by the large dots.
Smaller dots mark the positions of peaks generated by
linear combinations of 2, 3, and 4 members of the basis
set. As indicated in Fig. 3, there are second-generation
peaks at radii which are 1.052, 1.701, and 2.0 times qo.
One might expect these peaks to be among the most in-
tense Bragg spots. The positions of these peaks are corre-
lated with the locations of the first three maxima in the
typical metallic-glass structure factors shown in Figs. 1

and 2. The pronounced first peak in the glasses is broad
enough to accommodate ordering at both the fundamental
wave vector qo and q~ ——1.052qo. The n =20 and n =24
peaks. are in registry with the remaining second-generation
peaks at qg =1.701qo and qg =2.0qo. These observations
make it plausible that an icosahedral crystal could, under
certain conditions, condense out of an undercooled liquid
with structural correlations similar to those in a metallic
glass.

A first-principles test of this hypothesis for Al-Mn is
not possible, for we do not yet know the precise locations
of the aluminum and manganese atoms in the icosahedral
crystal at a composition corresponding to, say, the
congruent melting point. Such a study would be similar
to the work of Hafner, which compares the energies of
metallic-glass alloys with the energies of Frank-Kasper
crystals as a function of composition at T=0. Hafner
takes into account microscopic details like electronegativi-
ty differences, valence-electron concentrations, and size
ratios. He finds that, for large size ratios, Frank-Kasper
phases form in alloys with minority concentrations of
large atoms, and that glasses are favored with minority
concentrations of smaller atoms. For other alloys, with
smaller size ratios, glasses form in the same composition
range as the corresponding Frank-Kasper phase.

An attractive alternative to a first-principles calculation,
is the density-functional mean-field theory of Ramakrish-
nan and Yussouff. This theory examines at a mean-field
level the energetic and entropic differences between the
uniform liquid and ordered crystals at a given tempera-
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ture. The entropy is assumed to be the entropy associated
with rearranging the cells of particles with dimensions on
the order of the translational correlation length. The
structural energy is estimated to quadratic order in a den-
sity expansion using the structure factor of the liquid.
Starting with, say, the liquid structure factor at the triple
point of argon or sodium, one can make accurate, quanti-
tative predictions about the volume, entropy, and peak in-
tensities in the coexisting crystalline phase.

Here, we use model amorphous-metal structure factors
as input into the density-functional theory. These are as-
sumed to be characteristic of undercooled liquids in meta-
stable equilibrium just above the glass-transition tempera-
ture Tz. For simplicity we restrict our attention to one-
component amorphous systems. It is not hard to general-
ize the density- functional approach to alloys; partial
structure factors are required as input (see Sec. IV).

The density-functional approach allows us to expand
the density p(r) in a set of trial reciprocal-lattice vectors,

p(r)/po ——1+gpGe' (1.1)
6

and search for states with a lower free energy than the iso-
tropic liquid. Here, po is the mean density, and the (poJ
may be viewed as dimensionless variational parameters.
In addition to reciprocal-lattice sets corresponding to bcc
and fcc crystals, we also use sets with an icosahedral sym-
metry. There are three simple reciprocal-lattice sets
which could describe icosahedral crystals, generated by
stars of reciprocal-lattice vectors pointing to the vertices,
edges, or faces of an, icosahedron. Although icosahedral
crystals based on the edge or face models are always un-
favorable, we find that liquids near T~ are metastable
with respect to a vertex-model icosahedral crystal. fcc
crystals have the lowest free energy, in accord with one' s
expectations for. a single-component hard-sphere model.
The free energy of bcc crystals is intermediate between
that of a fcc lattice and that of a vertex-model icosahedral
crystal. The density-functional approach allows us to
predict the Bragg-peak intensities in the metastable
icosahedral crystal.

The icosahedral vertex model is stabilized because the
most prominent Bragg peaks are in approximate registry
with the peaks in the liquid structure factor. There is,
however, a special energetic cost associated with
icosahedral crystals. Because the icosahedral density
waves are incommensurate, one can, in principle, generate
peaks everywhere in reciprocal space. There is, in particu-
lar, a penalty associated with the peaks which are generat-
ed close to the origin. TMs free-energy penalty is a long-
wavelength manifestation of the frustration associated
with icosahedral particle packings. The free energy of the
icosahedral crystal is determined by a balance between
this frustration and the short-range icosahedral order al-
ready present in undercooled liquids.

A number of authors have studied the stability of
icosahedral crystals using truncated, phenomenological
Landau expansions in the po's defined by Eq. (1.1).
Bak keeps a single shell of reciprocal-lattice vectors, and
appeals to fifth-order terms in the expansion to stabilize
an icosahedral crystal. Mermin and Troian, ' and Kalu-
gin et al. achieve stability by introducing two shells of

=Ioexp( —aG )exp( bG& ) . — (1.2)

The constants Io, a, and b are determined by the struc-
ture factor of the undercooled liquid. The first exponen-
tial term in Eq. (1.2) is the usual Debye-Wailer factor.
The quantity Gz in the last term is a vector perpendicular
to G in the six-dimensional (6D) space which, when add-
ed to 0, gives a reciprocal-lattice vector of the 6D crystal
(see Sec. III). The main effect of the last term in (1.2) is
to damp out strongly the intensities of "exotic" Bragg
peaks, such as those near the origin. Elser has obtained a
term like this by randomly scrambling the tiles of a Pen-
rose lattice. ' lt is easily shown that a form like Eq. (1.2)
also follows from the continuum elastic approaches of
Refs. 9, 30, and 35, with a and b expressed in terms of
elastic constants.

In Sec. II, we reformulate the density-functional theory

wave vectors and truncating at fourth order. An interest-
ing variant of these ideas has been suggested by Jaric,
who argues that' the ordering is driven by a bond orienta-
tional order parameter whose coupling to the translational
degrees of freedom causes the material to crystallize.

As emphasized by Baym et al. , truncated Landau
theories of crystallization have predictive value only when
one is dealing with weakly-first-order phase transitions.
The transition to icosahedral Al-Mn, however, is similar
in many respects to ordinary crystallization, which is
strongly first order. There are, moreover, unavoidable
ad hoc assumptions in the signs and magnitudes of ex-
pansion coefficients in the Landau approach. The
density-functional mean-field theory is equivalent to car-
rying out a Landau expansion to all orders with known
coefficients. It is straightforward to incorporate addition-
al shells in reciprocal space. We find that around 100
shells, not just one or two, are necessary to obtain accurate
free energies for the icosahedral crystal. Although there
are inherent limitations in any mean-field approximation,
we think the density-functional approach represents a sig-
nificant improvement over the phenomenological Landau
theories.

An important tool in the application of the density-
functional theory to icosahedral crystals is a theorem we
prove in Sec. III: The density-functional theory of an in-
commensurate icosahedral crystal is identical to the
density-functional theory of a periodic crystal in six di-
mensions with a point group isom orphic to the
icosahedral point group Y and a suitably chosen liquid
structure factor. Similar theorems have been used to sim-
plify Landau theories and to calculate Fourier transforms
of Penrose patterns. ' ' ' Our variational ansatz for
the free energy amounts to specifying a particular distri-
bution of density contours on a six-dimensional hypercub-
ical lattice. Bak has reformulated Landau theory in this
way. The calculations are also closely related to Penrose
tilings, in the sense that they lead to Penrose rhom-
bahedra, which are all decorated in approximately the
same fashion [see Fig. 7(b)]. We also show that the inten-
sity Io of a Bragg peak in an icosahedral crystal at finite
temperature is given, to an excellent approximation, by

Ic =Po~ I Po I
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of Ramakrishnan and Yussouff in a way which can be
easily generalized to icosahedral crystals. The calcula-
tions for undercooled liquids with short-range icosahedra1
order are described in Sec. III. The site-occupation proba-
bilities relative to a real-space Penrose lattice are discussed
in Sec. III0. The relevance of our results for icosahedral
order in alloys like Al-Mn is discussed in Sec. IV.

II. DENSITY-FUNCTIONAL
MEAN-FIELD THEORY

X [P(r, ) —Po][P("2)—Pp] . (2.1)

Here, T is the temperature and po is the density of the
uniform liquid. The first term comes from the entropy
associated with dividing up the particles into the various
cells. The second term is the first nonzero term in an ex-
pansion in powers of the density of the structural energy
associated with variations in the density. The quantity
c(r) is the direct pair correlation function. In order that
this free-energy functional give meaningful results for the
spectrum of density fluctuations in the liquid, the follow-

The density-functional theory of Ramakrishnan and
Yussouff has been applied to understand the freezing pa-
rameters of some simple systems in both two and three di-
mensions. ' The theory can be used to predict the
height of the principal peak of the structure factor of the
liquid when it is in equilibrium with the solid and also the
change in density upon freezing. Such predictions com-
pare favorably with experiments on fcc argon and bcc
sodium. The results of the theory are also in agreement
with computer experiments with hard spheres in three di-
mensions. The theory has recently been used in an at-
tempt to understand hard-sphere glass transitions. In
this section we will present a brief discussion of the free-
energy functional. For more complete derivations, see
Refs. 28 and 37. We then discuss the application of this
theory to freezing of conventional periodic crystals in
three dimensions. Our formulation of the theory will be
amenable to a simple "Gaussian" approximation, which
allows us to reproduce the results of the existing calcula-
tions very simply. While this Gaussian approximation is
not really necessary to minimize the free-energy function-
al for periodic crystals, it turns out to be essential for
making the theory of incommensurate icosahedral crystals
computationally tractable.

The physical idea behind the density-functional theory
is the fact that at the freezing transition the translational
correlation length is only a few atomic spacings. All phe-
nomena at distances greater than the translational correla-
tion length gr can be treated in a mean-field approxima-
tion. We can imagine dividing the liquid up into cells
with a dimension of the order of gr centered at the points
r with a coarse-grained local number density p(r). The
free energy associated with this density distribution is
given by

k~T
= fd r p(i)[in[p(r)/po] —1)

d r&d r2c(r~ —r2)3 3

ing relation must exist between the structure factor
S(q) = (

~ pz ) and the kernel of the second term:

S(q)= I
1 —cq

cz po
——fd r c(r)e (2.2)

The expression for the free energy as a functional of the
density can also be derived from the rigorous treatment of
the static properties of classical fluids given by P. C. Mar-
tin. ' We assume that a one-body external potential U(r)
acts on the liquid. Then the properties of the liquid with
interaction Hamiltonian H can be described by the free
energy W which is a functional of U(r),

W[ u J =ln Tr exp PH+—Pf U(r)p;, (r) dr (2.3)

where P=llk&T and p;,(r) is the microscopic particle
density. The physically relevant case of the grand canoni-
cal ensemble is generated when U(r) is set equal to the
chemical potential p. The density in the presence of the
potential is given by a functional derivative of W,

1 58'
5U r (2.4)

PF=Pf d r U(r)p(r) W. — (2.5)

It is easy to show that a quadratic expansion of the free
energy F in 5P(r)=p(r) —po about the ideal gas will
reduce to the free-energy functional Eq. (2.1). In this for-
mulation the relationship between c(r) and S(q) appears
as an exact identity.

An important ingredient of the density-functional
theory is the actual form assumed for the density in pa-
rameter space. If a full search of the parameter space
were performed, the exact ansatz for the density would be
irrelevant. Since we have to make truncations when per-
forming the computation, it is helpful to choose an effi-
cient ansatz. The results of Ramakrishnan and Yus-
souff can be reproduced by an ansatz of the form

p(r) 1
exp g Aocoe

po Z
L

(2.6)

The free energy can now be expressed as a function of the
parameters Z and A, G. For positive Z, p(r) is automati-
cally positive for all real A,o. The Fourier-transformed
pair correlation function co has been factored out for
convenience. The vectors [GJ belong to the reciprocal
lattice of some Bravais lattice. By assuming this form for
the density, we will by exploring the region of function
space in which the density has the symmetries of the
space group of the Bravais lattice. The ansatz (2.6) in-
volves no loss of generality other than the restriction to
densities which are invariant under the space group. The
(dimensionless) Fourier components of the density pG are
defined by

P 1+y iar(r)
po

(2.7)

We now perform a Legendre transformation and focus on
the quantity F, which can be shown to be a functional of
p~
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where the integral is restricted to a unit cell of volume v, .
We assume for simplicity that the system is incompressi-
ble, in which case the constant Z is given by

Z='fd. -py~ ~ . '
U, G

(2.9)

This should be a rather good approximation for the un-
dercooled metallic systems of interest here. We may now
insert the ansatz (2.6) into the free energy and search for a
minimum in the free energy as a function of the A,G's. At
the minimum, the derivative of the free energy with
respect to the A,G s must vanish. Taking this derivative,
we find that the condition for the minimization of the free
energy is simply pG ——A,G, which implies a self-consistent
equation for the A,G's,

which is consistent with Eq. (2.2) provided
r

1 ~ I

po= — d re ' 'exp QA, GcGe' ', (2.8)
Uc Z "c

Cx a
po ——exp 4a

(2.14)

This Debye-Wailer form for Fourier modes in the crystal
was obtained numerically by minimizing the free energy
with a large number of A,o's by Haymet and Ramakrish-
nan and Yussouff. Evaluation of the entropy term in
Eq. (2.1) is slightly more difficult. For large a, the over-
laps between the Gaussians can be neglected and we ob-
tain

(2.13)

where U, is the volume of the unit cell. Note that we re-
placed an infinite-parameter search for the minimum im-
plied by the ansatz (2.6) by a two-parameter search in the
variables a and a. A similar approximation appears in
Refs. 40 and 42.

Given the form (2.12) for the density, it is a straightfor-
ward matter to evaluate the free energy. From Eq. (2.8)
we have that

f d're 'G'ex-p gXocoe'G"
C Ql

(2.10)

rprln p(r)
po

3/2
CX

pov ln
a 7T 2

~ I

d'rexp QXGcoe'o'
C Ql

e' ' =1, for all G. (2.11)

These positions R are simply the sites of the direct lattice.
By expanding the argument of the exponential in Eq. (2.6)
in powers of the distance from the direct lattice points, we
approximate the density by a sum of Gaussians located at
the vertices of the direct lattice. This amounts to replac-
ing the ansatz (2.6) by

p(r)
po a

3/2
a (r —R)+exp —a

R a
(2.12)

where a is the side of the conventional cubic unit cell or
some other microscopic length scale for noncubic lattices.
If we assume that the liquid is incompressible, the con-
stant M is a function of a, given by

For simple periodic systems, it is straightforward to
minimize the free energy with a given, truncated set of
reciprocal-lattice vectors. For reasons discussed in Ref.
28, it is better to truncate in the A,G's than in the pG's. We
now discuss an even simplier variational ansatz, which as-
sumes that the real-space particle density can be written
as a sum of Gaussians localized at the points of the
direct-space lattice. The calculations become particular-
ly straightforward and accurate when the Gaussians have
negligible overlap, so that the particles are well localized
near the lattice sites of the periodic crystal. This approxi-
mation should be particularly good if the liquid and crys-
talline phases are separated by a sizable first-order phase
transition.

To motivate the Gaussian approximation, note that ac-
cording to Eq. (2.6), the density is peaked at the positions
for which the argument of the exponent is maximum.
This will clearly happen at coordinates R, such that

d r p(r)ln =poV —,
' +expp(r) Ga

po 2(x
(2.16)

Direct numerical calculations have shown that either the
large-a expression (2.15) or the small-a expression (2.16)
is a reasonable approximation over most of the range of a.
In practice, the minima of the free energy always occur at
a values so large that the expression (2.15) is an excellent
approximation. The problem of finding the crystallike
minimum in function space of the free-energy functional
(2.1) has been reduced to a two-parameter minimization of
the free-energy difference between the crystal and liquid
given by the expression

k TpV

3/2

a '7T

Ga——', ——,
' gcoexp-

2cx

(2.17)

It is found that this two-parameter minimization always
gives results that are within 0.2% of the more extensive
calculations of Ramakrishnan and Yussouff and Hay-
met. "

The theory also allows us to calculate the mean occupa-
tion number of a site of the direct lattice. Integrating the
density (2.12) around the site R, in the large-a approxi-
mation, we find for the mean occupation number of a site
atR, nR,

&R= d rp(r)=pov, ,3
"c

about R

(2.18)

(2.15)

where V is the volume of the system. For small a, the
density is almost uniform. In this case we can perform an
Ewald transformation and evaluate the integral in recipro-
cal space. To lowest order in the fluctuation from uni-
form we obtain
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which is just the ratio of the volume per site in the crystal
to the volume per particle in the liquid. This result is a
consequence of the incompressibility assumption made
earlier.

We close this section with some comments about the re-
liability of this approach. The density-functional method
appears to be a good first approximation for deciding
which structures are possible and isolating features of the
structure factor of the liquid which are important. The
theory, for instance, rules out the formation of a bcc lat-
tice in a liquid of hard spheres at high densities, but al-
lows its formation in the case of sodium. ' Its predic-
tions for the relative magnitudes of the order parameters
for a given crystal structure are probably accurate. The
theory is probably not reliable, however, for delicate ques-
tions like the energy difference between fcc and hcp crys-
tals. Despite such limitations, we have found the density-
functional approach to be surprisingly informative and
predictive.

III. RESULTS FOR METALLIC GLASSES

We now explore crystalline structures which have free
energies lower than those of one-component metallic
glasses just above Tg. Here we view the metallic glass as
a supercooled liquid with frozen-in short-range
icosahedral order. The structure factor of metallic glasses
is used to estimate the energetics of the short-range order
in various crystalline phases, including incommensurate
icosahedral crystals. Whether a given liquid actually
transforms into one of these ordered phases is, of course,
determined by kinetic constraints. The density-functional
formalism is used to explore only the static energetics.

Only qualitative results for Al-Mn glass are available at
present. As a model for the short-range order in the
glass we will use two structure factors: (1) the structure
factor of the relaxed Bennet model of Ichikawa' and (2)
the structure factor of vapor-deposited amorphous co-
balt. ' Although a-Co is not a glass in a conventional
sense, it is believed that the same structure would form if
one could cool sufficiently rapidly from the melt.
Amorphous cobalt is interesting because it has exception-
ally sharp peaks, indicative of strong short-range
icosahedral order.

A. Mapping into six dimensions

The vectors Cx are all integer linear combinations of a
basis set of six vectors g;. These vectors point to the ver-
tices of an icosahedron and can be numbered as shown in
Fig. 4. A remarkable property of these six vectors is that
the only way any integer linear combination of these six
vectors can sum to zero is if all the integers are zero, i.e.,
g,.n;g; =0, if and only if all n; =0.

Because this basis set is incommensurate, the integral
over the nonlinear "entropy" term in Eq. (2.1),

S —= fd r p(r)ln p(r)
k~T po

(3.2)

G=gn;g; (3.3)

maps onto

(3.4)

We also have the useful property that

g Cx=0 (3.5)

if and only if

y G(6) ()

I 06I
(3.6)

where

ICOSI

is any set of reciprocal-lattice vectors and

I
G' 'I is the image of this set in the six-dimensional

space. We have now established a one-to-one correspon-
dence between the vectors in the vertex model and the
reciprocal-lattice vectors of a simple hypercubic lattice in
six dimensions.

With any density distribution p(r), we associate a corre-
sponding density distribution in the six-dimensional
space,

converges very slowly, which makes accurate variational
calculations rather difficult. We avoid the problem of
many incommensurate periodicities in the integrand by
showing that (3.2) is equal to the integral over the unit cell
of a conventional periodic function defined in six dimen-
sions. To this end, we first map the six icosahedral basis
vectors g; onto six orthonormal vectors g,'

' in a six di-
mensional space. Clearly, this mapping can be extended
to all the vectors in the vertex model:

As we have pointed out in a previous paper, there are
three simple models for describing the density waves that
might occur in an icosahedral crystal: the vertex, the
edge, and the face models. We will present in detail the
calculational procedure for evaluating the free-energy
functional for the vertex model; the manipulations for the
edge and face models are similar.

The density in the vertex model for the icosahedral
crystal can be written as a sum of density waves as fol-
lows:

P
1 ~gp e I G'I'(r)

Po
(3.1)

FICx. 4. Numbering convention for vectors pointing to the
vertices of an icosahedron. The figure shows only the lower half
of an icosahedron whose vertex is indicated by the dot.
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(6) x" =I+yp e'G"'".
po G

(3.7)
p(6) x (6)

pp Vkg T U6 "6 po po

The coefficients pG are the same as those for the corre-
sponding vector G in three dimensions, and the x's are
six-dimensional vectors. Note that this density distribu-
tion is a conventional periodic density distribution in this
six-dimensional space, with no incommensurate length
scales. We now state a useful relation between integrals in
three and six dimensions, namely,

V
"'

p.
1 6 p x

U6 U6 po
(3.8)

y~ J w(6) ' ~ i
j

The integral in the three-dimensional space extends over
the macroscopic volume V, while the integral in the six-
dimensional space extends over a unit cell with volume U6.
X can be an arbitrary functional of p(r). The proof of
this result follows directly from (3.5) and (3.6): Insert the
Fourier decompositions (3.1) and (3.7), and expand both
sides of Eq. (3.8) in the pG's. Since the only nonzero
terms on both sides will be the ones in which the wave
vectors add up to zero, the two sides are equal order by
order in perturbation theory.

Another way of understanding this important result is
suggested by Fig. 5. Icosahedral "quasiperiodic" func-
tions in three dimensions can be considered as cuts
through a six-dimensional periodic function. In each
unit hypercube that the cut intersects, a different portion
of this periodic function is sampled. Since all the regions
of the cube will be sampled densely, integrals over the en-
tire cut hyperplane are equivalent to integrals over the
six-dimensional unit cube.

Upon applying the identity (3.8) to Eq. (3.2), we find
that the density functional for an icosahedral crystal is

1 2—IXcG~6i I pG«i I

G(6)
(3.9)

The second term in Eq. (2.1) has been promoted to six di-
mensions by going to Fourier space, replacing sums over
I Cxj by sums over I Cx' 'I, and setting

CG(6) =CG (3.10)

We have now shown that the mean-field theory for an
icosahedral crystal is equivalent to the mean-field theory
of a periodic crystal in six dimensions. The function c
which describes the liquid in six dimensions is a very
discontinuous function of the magnitude of the
reciprocal-lattice vectors in six dimensions. These discon-
tinuities, however, do not present a significant problem in
the evaluation of the free-energy functional.

B. Calculational procedure

%'e now analyze the density-functional theory of the
periodic crystal in six dimensions. The Bravais lattice of
this crystal is a simple hypercubic lattice. The point
group of this lattice is not the full hypercubic group in six
dimensions but a subgroup of this hypercubic group
which is isomorphic to the icosahedral point group. In
analogy with the procedure used for ordinary crystals, we
make the ansatz

p' '(x) 1
exp gcGJ GI6~e'

po
(3.11)

where the A,G„, are variational parameters. There is no
loss in generality in this ansatz other than the restriction
to densities with the translational symmetry of the hyper-
cubic lattice and the icosahedral point group. Just as in
Sec. II, we have found it a good approximation to replace
this density by a sum of Gaussians located at the vertices
of a hypercubic lattice in six dimensions,

1/2p"'(x) W detQ

po a

X +exp
R(6)

(x—R' ');Q; (x—R' ').
a

(3.12)

FIG. 5. Schematic illustrating how sampling a quasiperiodic
function along R~~ is equivalent to sampling a function in a
periodic function in A" ' in a unit cell. Integrating over the seg-
ment AB is equivalent to integrating along 2'B', segment BC is
equivalent to segment B"C', etc. The elongated ovals represent
contours of the density p' '(x) in &' ', as given by Eq. (3.12).
Notice that even though one axis' of the ovals extends across a
substantial fraction of the unit cell, the overlap between them is
very small.

where incompressibility implies that M=U6, the unit cell
volume, and a is the side of the hypercubic unit cell. We
have written the quadratic form in the argument of the
exponential in terms of a general 6X6 symmetric matrix
Q. This matrix cannot now be taken to be proportional to
the identity because the sum of the squares of the coordi-
nates is not the most general quadratic form invariant
under the icosahedral point group.

We now use some elementary group theory to decide
upon the most general form of the matrix Q. The six
coordinate directions form the basis states of a six-
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TABLE I. Characters for the irreducible representations of the icosahedral point group, together
with characters of the representation X generated by the six-dimensional basis vectors discussed in the
text. ~=(V 5+1)/2.

A

6
H

1

3
3
4

12C5

7

'T
—l

—1

0

12C5

—1

0

20C3

1

0
0
1

—1

1SC2

1
—1

—1

0
1

dimensional representation X of the icosahedral point
group. The action of the icosahedral point group upon
these basis states can be simply determined from the ac-
tion of the group upon the corresponding vectors in three
dimensions. The character table for X and for all the ir-
reducible representations of the icosahedral point group Y'

is shown in Table I. The number of independent quadra-
tic forms is equal to the number of times the identity rep-
resentations of F is contained in XX. From Table I we
determine that the identity representation occurs twice. It
can be checked that the two independent quadratic invari-
ants I~ and I2 are

I((X)=X ) +X3 +X 3 +X4+X g +X6
2 2 2 2 2 2 (3.13a)

I2(x) =2( x)x2+x(x3+x]x4+x)x5+x)x6+x2x3
—X2X4 —X2X5 +X2X6+X3X4—X3Xg

—X3X6+X4X5—X4X6+X5X6) .

It follows that the most general quadratic form in the x's
1s

1
Qij ij p ija a+p (3.18)

The ansatz (3.12) can now be used to evaluate (u, G(6),
l

with the help of the 6D generalizations of Eqs. (2.8) and
(2.9). The result is

2
(6) —& (6)

)Lt (,)
——exp — G Q G

Cr,. lJ J (3.19)

By some straightforward algebra we can show that this
expression is equivalent to

a —
I

G'"
I

'+
4 a a+pp (6)=exp

(3.20)

where we have defined

I)«"')+ I2(G

dimensional subspace spanned by (1—P)x. The inverse of
the matrix Q is easily determined to be

a'I ) (x)+P'I &(x) (3.14) (3.21)

for some constants a' and p'. The matrix Q,j can now be
expressed as

Qij =a +PPij (3.15)

where P,J is the projection matrix introduced by Elser

1

ij

1

1 11 1 1

v5 1 —1 —1 1

1 v5 1 —1 —1

—1 1 v5 1 —1

—1 —1 1 v5 1

1 —1 —1 1 v5

with the property

P =P. (3.17)

The matrix Q has two triply degenerate eigenvalues:
a+p with eigenvectors lying in the three-dimensional
subspace spanned by vectors of the form Px, and the
eigenvalue o, with the eigenvectors lying in the three-

~

G',"
~

'= —I,(G'")— I,(G'")

G~(' is the projection of the vector G' ' from the six-
dimensional space along the physical three-dimensional
space (see Fig. 5) and is equal to the wave vector G. G) '

is the projection of G' ' along the orthogonal complement
of the physical three-dimensional space.

Equation (3.20) allows us to evaluate the second term in
Eq. (3.9). To evaluate the entropy, we work in the large-a
and -p approximation, and neglect the overlap between
Gaussians. Using the fact that det(Q) =a (a+p), we ob-
tain

P(6)(X) P(6)(X)d6x ln
U6 "6 Po Po

(a+p) a
g6

(3.22)

The final expression for the free-energy difference there-
fore reduces to
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b, F(a, /3)
1

W a'(a+P)'= —3+ln 6 6

1 co exp2 l
~(6)

a
2

G(6) 2

a+/3

g(6) ~ (6)—~nr'Sr (3.24)

where

n; =even . (3.25)

With an ansatz similar to (3.11), we find that a good ap-
proximation for the density is given by (3.12), where the
points R now sit at the vertices of a bcc lattice in six di-
mensions. The remaining analysis for the edge model is
identical to that of the vertex model.

The Bragg spots in the face model turn out to be also
generated by projection from a simple hypercubic lattice
in six dimensions. The fundamental set of vectors point-
ing to the faces of an icosahedron are given by projections
of the vectors

Gi = (1,1, 1,0,0,0),
a

Gp = (1,0, 1, 1,0,0),

G3 —— (1,0,0, 1, 1,0),
a

Gg= (1,0,0,0, 1,1),
a

G5 —— ( 1, 1,0,0,0, 1),
a

G6 —— (0, 1, 1,0, —1,0),
a

(3.26)

G7= (0,0, 1, 1,0, —1),
a

(0, —1,0, 1, 1,0),
a

(0,0, —1,0, 1, 1),

Gio= (0, 1,0, —1,0, 1)
2K
a

Because of identities like

G6+ G8 G7 — (0,0,0,0,0, 1 )
2K
a

(3.27)

(3.23)

A similar analysis may be performed for edge and face
icosahedral crystals. The reciprocal-lattice vectors in six
dimensions that correspond to the Bragg spots in the edge
model are given by

integer linear combinations of these vectors generate a hy-
percubic lattice. The difference between the face and ver-
tex models now reduces simply to a difference in the
values of c ~6, assigned to these reciprocal-lattice vectors.
In particular, the principal peak in the structure factor
now corresponds to a different wave vector in the hyper-
cubic reciprocal lattice.

While most calculations were carred out in the approxi-
mation of Gaussians centered at the points of a Bravais
lattice, a few representative calculations were carried out
with the completely generaly ansatz (3.11). The integrals
required for the evaluation of the free-energy functional
were evaluated numerically over a six-dimensional cube.
The large number of dimensions made numerical conver-
gence of the integral a problem. The Korobov-Conroy
method" ' for evaluating integrals over periodic func-
tions in high-dimensional spaces was found to give the
best estimates in a reasonable amount of computational
time. The numerical results at the free-energy minimum
were within 10%%uo of the results obtained via the simple
Gaussian approximation. Some of this discrepancy, how-
ever, is due to a lack of convergence in the numerical in-
tegration.

C. Free energies and scattering intensities

We will now present the results of the minimization of
the free-energy functionals, using the structure factor of
the relaxed dense random-packing model of Ichikawa'
and the structure factor of amorphous cobolt' as input.
With these structure factors, the energies of the fcc crys-
tal, the bcc crystal and the vertex, edge, and face incom-
mensurate icosahedral crystals were calculated. Table II
shows the relative magnitudes and degeneracies of the
first- and second-generation shells of reciprocal-lattice
vectors in these models. The fcc and bcc crystals are gen-
erated from stars pointing to the faces and edges, respec-
tively, of a regular octahedron. The differences in relative
magnitude and degeneracy in Table II are, of course, the
source of the different free energies of the various models.

The energies of the fcc and bcc crystals were deter-
mined from the expression (2.17). The shells of Bragg
vectors are quite sparse at low wave vectors, so it is not
necessary to include too many shells before we reach a re-
gion of reciprocal space where the structure factor of the
liquid state is almost 1. At this point, adding additional
shells has no effect on the results. About 30 reciprocal
lattice vectors were required to obtain a good convergence
on the energy of the crystal and magnitude of the varia-
tional parameters a and a.

The energies of the icosahedral crystals were deter-
mined by mapping the problem onto the associated six-
dimensional periodic crystal and minimizing the expres-
sion (3.23). Equation (3.20) insures that we do not need to .

keep arbitrarily large six-dimensional reciprocal-lattice
vectors G. About 100 shells of wave vectors in the 6D
space were required to obtain convergence. In all calcula-
tions it was necessary to also minimize with respect to the
overall scale parameter a.

The results of the minimization are shown in Table III.
Energies are measured in units of k&T. For the relaxed
Ichikawa model, ' the vertex model, the bcc and fcc crys-
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Model

Vertex

Magnitude

1

1.05
1.70
2

Degeneracy

12
30
30
20

TABLE II. Magnitudes and degeneracies of fundamental and
second-generation shells in reciprocal space for various models.

Model a (A)

TABLE III. Free-energy differences in units of k~ T between
various ordered structures and the liquid. In (a) the structure
factor of the relaxed Ichikawa model was used. The principal

o

peak in the structure factor occurred at 3.24 A . Part (b) used
the structure factor of amorphous cobalt with the principal peak

o

in the structure factor at 3.20 A

Edge

Face

1

0.62
1.18
1.41
1.62
1.73
1.90
2

1

0.71
1.55
1.63
1.87
2

30
30
60
60
30
60
60
30

20
30
30
60
30
20

Vertex
bcc
fcc
Edge
Face

Vertex
bcc
fcc
Edge
Face

1.36
2.90
3.48
1.36

1.38
2.83
3.34

(a)
21.4

2090
3540

16.3

(b)
13.8

1443
2371

420

550

281

—1.26
—2.12
—4.84

1.32

—2.87
—4.86
—5.65

1

1.15
1.63
1.91
2

8
6

12
24

8

bcc 1

1.41
1.73
2

12
6

24
12

tais had stable minima, while the edge model developed a
local minimum with an energy higher than the liquid.
The situation for amorphous cobalt was similar. The ver-
tex model and the bcc and fcc crystals gave well-defined
minima, while the edge model had only a liquidlike
minimum. No ordered minimum was ever found for the
face model with these structure factors.

Despite the complexity of the calculations, several en-
lightening and simple features can be elucidated. The pa-
rameter a took on a value such that the reciprocal-lattice
stars of all stable crystalline phases were aligned with the
first peak in the structure factor. ' Contributions from this
peak tend to stabilize crystalline phases relative to the
liquid. Another important feature of the structure factor
is the large dip between the first two peaks. The details of
how well the shells in reciprocal space avoid this dip
determine the relative energies of the bcc and fcc crystals.
This is essentially the reason for the fcc crystal having a
lower energy than the bcc crystal. The energies of these
crystals are lower for the case of amorphous cobalt be-
cause the principle peak in the liquid structure factor is
much higher.

As we discussed in the Introduction, the lowest-order
shells in the icosahedral vertex model match up almost
perfectly with the peaks in the structure factor. This is
the reason for the existence of well-defined minima for

both the structure factors with density waves at wave vec-
tors prescribed by the vertex model. Based solely upon
this argument, however, one would expect that the energy
of the vertex model would be lower than that of the fcc
and bcc crystals. This is where the incommensurability of
the icosahedral density waves in three dimensions makes
an important difference. Unlike the conventional periodic
crystals, the icosahedral crystals have Bragg peaks at arbi-
trarily small wave vectors. The structure factor of the
liquid at these small wave vectors is extremely small and
therefore is unfavorable to crystallization [recall that
co ——I —S (Cx) in Eq. (3.9)]. It is the hindering influ-
ence of these low wave-vector peaks which raises the ener-

gy of the vertex model above that of the conventional
crystals. In the icosahedral edge and face models, these
low wave-vector peaks, together with the lack of registry
of the low-order Bragg peaks with the peaks in the struc-
ture factor, are enough to destroy the stability of these
phases relative to the liquid.

Knowing the strengths po of the density waves in the
icosahedral vertex model allows us to predict the Bragg
scattering pattern. The intensities of the Bragg peaks are
proportional to

~ pG ~

. In Fig. 6 we show the spot pat-
tern obtained using the structure factor of the relaxed
Ichikawa model input, in planes which are perpendicular
to the twofold, threefold and fivefold symmetry axes.

The spot patterns in reciprocal space are determined in
this theory by Eq. (3.20). Its validity depends solely upon
the density having a rapid falloff near the vertices of the
60 Bravais lattice. This in turn requires that the liquid be
separated from the icosahedral vertex model by a sizable
first-order phase transition. The structure factor then
only enters to determine the values of the constants a and
P. In practice we find that P»a, so the intensity of any
Bragg spot is dominated by the values of Gq and o., ex-
cept for very large 6

~~

' ——G.
The most important factor determining a is the rate of

falloff of the input structure factor at small wave vectors.
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(c)
FIG. 6. Spot pattern perpendicular to the (a) twofold, (b)

threefold, and (c) fivefold axes of an icosahedron. The areas of
the spots represent actual intensities as predicted by the struc-
ture factor of the relaxed Ichikawa dense random-packing
model (Fig. 1.).

fcc structures consists of sharply peaked Gaussians at the
vertices of the direct lattice. The mean occupation num-
ber of a site of the lattice can be computed from Eq.
(2.18). We use the values of a computed in the previous
section. A rough estimate of the value of po is contained
in Ref. 17 for the Ichikawa structure, and for cobalt we
use the room-temperature crystalline density. We obtain
values for the mean occupation number of a site which
are = 1 for the bcc structure and =0.9 for the fcc struc-
ture using both structure factors. The lower mean occu-
pation number of the fcc lattice is a consequence of its
high packing fraction and of the assumption of in-
compressibility.

The density p(r), as given in Eq. (3.1) for the vertex
icosahedral crystal, has a more complicated form. It is
simplest to think of this density as a three-dimensional
cut along R~~

' through a six-dimensional periodic density
p' '(x) lying in the space A( '. The six-dimensional densi-
ty consists of a lattice of elongated ellipsoids as shown in
Fig. 5. Only those ellipsoids close to the hyperplane have
a significant intersection with the three-dimensional
space W(( '. A convenient way to summarize these results
is to integrate the density across the ellipsoid along R~~

'..
this integral then yields the mean occupation number of a
site of the icosahedral crystal. Associated with the ellip-
soid at the site R' ' in A' ', we now have a site of the
icosahedral crystal. This site occurs at the point R~j

'

which is the projection of R' ' into 9F
~~

',

(~(6)) p g(6( (3.28)

From Eq. (3.12) the mean occupation number of this site
can be calculated. The mean occupation number of a site

Because the data for our input structure factors do not ex-
tend to very small wave vectors, we have used a simple
two-parameter quadratic extrapolation of the structure
factor to 0 at the longest wavelengths. Small changes in
the structure factor at large wavelengths can produce in-
teresting changes in the results. The original dense
random-packing data of Ichikawa, ' for example, -had the
small hump below the main peak indicated by the dashed
line in Fig. 1. Because we were concerned about finite-
size effects in Ichikawa's model, we replaced this hump
by the solid curve shown in Fig. l. If the hump is includ-
ed in the calculations, the Bragg intensities change and
the energy of the icosahedral vertex model is lowered to
—3.31, i.e., below the energy of a bcc crystal.

Treating the a and P as adjustable constants in Eq.
(3.20) may be a profitable way to parametrize experimen-
tal data. X-ray scattering measurements by Bancel
et al. on Al-Mn show a strong monotonic dependence
of intensities on the value of Gz. This in turn implies
that a «P, suggesting that the small-vector density fluc-
tuations are important in determining the stability of the
phase.

D. Real-space structures

In addition to predicting the intensities of the spots in
reciprocal space, the theory also yields useful information
in real space. The density p(r) for the crystalline bcc and

3/2

n(R(~ ) =poa — exp
R(6)

J.
(3.29)

where
~

RP'
~

is the distance of R' ' from R(~ ',

(3.30)

Figure 7(a) depicts the mean occupation numbers of the
sites R~~

' obtained from the amorphous-cobalt calculation
in a slab of thickness —,d oriented normal to a fivefold
icosahedral symmetry axis. Here, d is the position of first
peak in the radial distribution function of a-Co. It can be
viewed as an effective hard-sphere diameter. Each occu-
pied site is represented by a dot whose area is proportional
to the site occupation number. In contrast to ordinary
periodic crystals, there is considerable dispersion in the
site occupation numbers. Some occupation numbers are
larger than one, suggesting that these sites are occasional-
ly filled with split interstitials. Clusters of sites with
small occupation numbers presumably correspond to
atoms which hop among various vacancy sites. Note that
sites with significant occupation probability are rarely
closer than the effective hard-sphere diameter d. The re-
sults from the dense-random-packing calculation are simi-
lar, except that there is more dispersion in the site occupa-
tion numbers.

Also shown in Fig. 7 are vertices of the Penrose tiling
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positions remain invariant under a dilatation by a factor
of r, where v=1.618. . . is the golden mean. This r in-
variance becomes apparent when the diffraction pattern is
viewed in a plane normal to the twofold symmetry axis.
We have so far made the projection of the six-dimensional
reciprocal-lattice vector (2m/a)(1, 0,0,0,0,0) line up with
the first peak in the liquid structure factor. Because of
the ~ invariance, we could equally well project elementary
reciprocal-lattice vectors of the form (2m. /a')(1, 0,0,0,0,0),
where

a'=~ a (3.31)

~
,4 ~ ';-- .

'' ""
0' ~ ~

0, 0
~ y ', i

+

Q--- --- '--:;--~—~—---'... ~

I.: ~ g, ', .- '~ ', ~ . ',
4' 1 i+ ~

,0 0

~ Ql; ~
'r,'-------4---+. ---."~' ~

o 0

i
+ '. ',' ~

I
I''' . . ~

0

- . , +

0

(b)

FIG. 7. (a) Sites of the vertex icosahedral crystal and the
Penrose rhombohedra projected along planes perpendicular to a
fivefold symmetry axis. A slice of thickness d/2 is taken
through the real-space density. The distance d, indicated in the
lower right, is an effective hard-sphere radius. The areas of the
circles are proportional to the mean occupation probability of
the site. The circle in the lower left has an area equivalent to a
unit occupation probability. This figure was obtained from the
structure factor of amorphous cobalt. (b) The same distribution
of occupation numbers as in (a), but now shown relative to a
Penrose lattice expanded by a factor 'T .

obtained via Elser's projection technique from the 6D hy-
percubic lattice. Again, only those vertices lying in a slab
of thickness d/2 are shown. Many unoccupied vertices
are projected, so this particular Penrose lattice is not a
very useful way of describing the icosahedral crystal.

It is clear that a decomposition of space into larger Pen-
rose rhombohedra is required. A remarkable property of
the diffraction pattern shown in Fig. 6 is that all the spot

could be interpreted as the spacing of an expanded, six-
dimensional hypercubic lattice. The first peak in the
structure factor now corresponds to the projection of
(2n /a')(2, 1, 1, 1, 1, 1). This transformation can be extend-
ed to all wave vectors of the icosahedral crystal. If we
denote a general 6D reciprocal-lattice vector by
(2n/a)(n~, . . . , n6) —= (2~/a)n, the identification between
old and new reciprocal-lattice vectors is

277 277n~, [V20Pn —(V 5 —2)n],
a a' (3.32)

where P is the matrix displayed in Eq. (3.16).
.After repeating the density-functional calculation with

this new basis, we can obtain an expanded Penrose lattice
by projecting the 6D hypercubic lattice with spacing a'.
The projected particle density must, of course, be the
same. It can be verified that the only changes the calcula-
tions are to replace are the variationa1 parameters n and
P, by a' and P', where

a'=a/r',
a'+ p' =(a+p)r

(3.33a)

(3.33b)

Although these transformations leave the density in the
physical three-dimensional space A't~

' invariant, the den-
sity in the six-dimensional space is changed. The lattice
constant a has increased by a factor of r . The centers of
the ellipsoids are now spaced farther apart. The ellipsoids
are now longer in the Rz ' direction by a factor of ~ and
narrower in the RI~

' direction by a factor of r, these
lengths being measured as fractions of the new lattice con-
stant.

Figure 7(b) shows the same slab of particles as in Fig.
7(a), except that the site occupation numbers are now
shown relative to the expanded Penrose lattice. The ver-
tices of the expanded Penrose lattice are now shown if
they are within r d/2 of the center of the slab. The ele-
mentary large and small rhombahedra which make up the
Penrose pattern project into a variety of four- and three-
sided figures. A particularly striking feature of Fig. 7(b)
is that figures with the same shape are decorated by atoms
in approximately the same way. This suggests that all
large and all small Penrose rhombohedra carry similar
distributions of atoms.

To check this hypothesis, we have examined the site oc-
cupation numbers greater than 0.05 on the large and small
Penrose rhombohedra. All the vertices of the rhombohe-
dra have an occupation number near 1. One can describe
other points of the rhombohedra as follows: The triplet
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aeI+be +ce„, (3.34)

where eI, e, and e„are three of the six icosahedral direc-

of numbers (a, b, c) (0&a,b, c, &1) corresponds to the
point

tions. The large rhombohedron corresponds to a triplet of
unit vectors such as I e&,e2, e3 ) in Fig. 4, while the small
rhombohedron corresponds to a triplet such as I e2, e3,e„j.
The following additional sites of the large rhombohedron
have a significant occupation probability, which is typi-
cally 0.5 or less:

(r—l, r —1,0), (~—l, r —1, 1), (2—r, 2 —~,0), (2—r, 2 —r, l), (4—2r, 2 —~, 2 —~),
(4 2r,—5 —3~,5 —3r), (4 2r, 4—2~, 4—2r),—(2r—3,w —l, r 1),—(2r 3, 3r—4, 3~—4),—

(2r —3,2r —3,2~—3 ) +permutations . (3.35)

(r —1,2 —r, 0), (7 —1,2 —r, 1)+permutations . (3.36)

The more prominent sites on the faces are shown in Fig.
8(b).

IV. DISCUSSION

We have shown, using a density-functional mean-field
theory, that one-component undercooled liquids are meta-
stable with respect to a vertex-model icosahedral crystal,

/
/

/
/ ~

/

(b)

FIG. 8. (a) Typical prolate (larger) rhombohedron decorated
with sites of high occupation number. The areas of the circles
are proportional to the mean occupation number at the sites.
Only the sites on the three faces of the rhombohedron nearest
the viewer are shown. (b) The same as (a) for the oblate (small-
er) rhombohedron.

Only a fraction of these sites (-20%) have a significant
occupation, probability in any given rhombohedron. The
sites on the faces of the rhombohedra are, however, al-
most always present and are shown in Fig. 8(a). The sites
of the small rhombohedron (other than vertices) which
have a significant occupation are I

similar to icosahedral Al-Mn. The calculations assume
that the structure of an undercooled liquid is similar to re-
laxed dense-random packing. We have also used the
closely related structure factor of vapor-deposited amor-
phous cobalt as input, because it appears to exhibit an ex-
ceptional degree of short-range icosahedral order. The
stability of the icosahedral crystal is related to the short-
range icosahedral order already present in an undercooled
liquid.

As discussed in Sec. IIID, the density-functional for-
malism allows us to visualize how the atoms of an
icosahedral crystal are distributed in real space. If we use
the particle spacing in amorphous cobalt as an effective
hard-sphere diameter, the edges of the expanded Penrose
rhombahedra shown in Fig. 7(b) turn out to be about 4.1

A. This is rather close to the edge length of 4.6 A which
appears to be appropriate to icosahedral Al-Mn. In
their discussion of microscopic models for icosahedral
Al-Mn, Elser and Henley place manganese atoms at the
vertices of the Penrose rhombahedra, and put aluminum
atoms at various positions on the faces and edges. We
too find two different classes of sites, those with occupa-
tion numbers of order unity (on the vertices), and those
with smaller occupation numbers (primarily on the faces).
About 30%%uo of the atoms sit at vertex sites, suggesting
that these are indeed the relevant sites for the minority
atoms (manganese) in Al-Mn alloys. Icosahedral Al-Mn
forms in a composition range of about 10 to 25% man-
ganese. The fraction of atoms sitting at the vertices in
our calculation. would be lowered from 30%%uo to this range
by a small change in the parameter a. The many small
occupation numbers we find away from the vertices of the
Penrose lattice suggest that, if we associate aluminum
atoms with these sites, they are disordered, like the mobile
phase in a superionic conductor.

To check these conclusions, one must repeat these cal-
culations for two-component alloys. As we have seen in
Sec. IIIC, the addition of a "prepeak" in the structure
factor such as that shown by the dashed line in Fig. 1

lowers the free energy relative to conventional periodic
crystals. It is interesting to note that prepeaks do in fact
occur in two-component metallic glasses with a high de-

gree of chemical short-range order.
The extension of the Ramakrishnan-Yussouff formal-

ism to two-component liquids is straightforward: if pz(r)
and p, (r) are the coarse-grained number densities of the
two components, the free-energy functional is
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F [PA PB] 3 PA(r) 3 pa(r)= fd r pA(r)ln —1 + fd r pA(r)ln —1
kBT Pa, o PB,O

,' f—d'r&fdrz[ CAA(r| —rz)5PA(r, )5pA(r2)+2CAg(r| —r2)5PA(r()5pg(rp) +Cog(ri r2—)5PB(rl)5PB(r2)1 (4.1)

where p„o and p~ o are the densities in the uniform liquid
and

5pA(r) =pA(r) pA, o

5pa(r) =pB(r) pB,Q

(4.2a)

(4.2b)

The first term comes from the entropy of an ideal binary
mixture. The partial direct correlation functions in the
remaining terms require knowledge of the partial struc-
ture factors in the liquid. These are related to the total x-
ray scattering intensity I (q) in the liquid by

I(q)=Z, SAA(q)+2Z, ZsSAg(q)+ZbSgg(q), (4.3)

where Z, and Zb determine how strongly x rays scatter
from the different species.

Ideally, one would like to use partial structure factors
extracted from careful experiments on glassy Al-Mn as in-
put into the calculations. If these were unavailable, an at-
tractive alternative would be to use a computer-generated,
relaxed two-component dense random-packing model,
with sphere diameters in a ratio appropriate to aluminum
and manganese. Excellent fits to the structure factors of
metallic glasses can be obtained by this method. '

Notes added in proof. (1) After this paper was submit-
ted for publication, we were informed of density-
functional calculations by Haymet and co-workers, who
use structure factors appropriate to liquids near the melt-
ing. point as input. No icosahedral phase was found,
presumably because liquids riear the melting point possess
only a modest amount of short-range icosahedral order.

(2) Recently, Poon et al. have reported the discovery
of an amorphous metallic glass alloy with approximate
comPosition PdsoU2oSi2o which transforms into an
icosahedral crystal upon annealing. This experiment lends
support to the close connection between order in metallic
glasses and icosahedral crystals enunciated in this paper.
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