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The growth kinetics of the time-dependent Ginzburg-Landau model is studied in the large- N lim-
it. Quenches from an initial equilibrium state at infinite temperature to a temperature correspond-
ing to an unstable state beneath the coexistence curve are studied for both a conserved order parame-
ter (COP) and for a nonconserved order parameter (NCOP). In both cases the system grows the or-
der corresponding to the final equilibrium state by growing domains of the new phases. These
domains are reflected through the existence of a peak in the structure factors which is evolving to-
ward a Bragg peak as time increases. We find that these peaks satisfy a scaling relation similar to
that for the related cases with a scalar order parameter. The characteristic lengths in these scaling
laws satisfy a power-law behavior, L (£) ~1%, where a =+ for a NCOP and a = + for a COP. Rid-

ing on top of the developing long-range order are the Nambu-Goldstone modes which, we show,
build smoothly into the g ~2 behavior in the transverse correlation functions. The time evolution of
the system after an isothermal field reversal is also studied. The increase in the time characterizing
the reversal of the magnetization is found to be approximately inversely proportional to the magni-
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tude of the field reversal. No limit of stability is found.

I. INTRODUCTION

Spontaneous symmetry breaking associated with order-
ing in systems with a continuous symmetry leads to a
number of interesting effects including the existence of
Nambu-Goldstone (NG) modes.! The word “spontane-
ous” used alone is, in a certain sense, very misleading.
This ordering and the associated NG modes do not just
appear as a function of time. They must be grown. We
discuss here? this growth process in the case of the time-
dependent Ginzburg-Landau (TDGL) model® in the
large-N limit,* where N is the number of components of
the order parameter. In this limit, the problem of the
growth of order after a sudden temperature quench or a
rapid magnetic- field flip can be reduced to an integro-
differential equation for a single variable which can be
solved numerically to arbitrary accuracy. Thus we can
essentially solve the problem exactly. This allows us to
investigate the growth kinetics for this model in detail
and, as we shall see, follow the build up of NG modes as a
function of time after a quench.

There have been significant advances” in recent years in
our understanding of the growth kinetics of systems sud-
denly constrained to be in an unstable state. The most im-
portant advances have included the identification® of scal-
ing behavior in a wide variety of systems and the deter-
mination of the growth law as a function of time for the
typical domain size L(t), which is the dominant length
that produces the scaling behavior. It is now well under-
stood that there are various classes of systems which share
similar behaviors. These classes are distinguished first by
whether one has a conserved order parameter (COP) or a
nonconserved order parameter (NCOP). Then, for exam-
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ple, it is believed that systems with a NCOP and two de-
generate ground states (spin- Ising model or a binary al-
loy, for example)will have a curvature driven growth law,
as proposed by Lifshitz,” and Cahn and Allen® (LCA), of
L(t)~t", n=+. This has been extensively confirmed
both experimentally’ and theoretically.!® There are also
certain “scaling functions” which are shared among
members of this set of systems. See Refs. 11 and 12 for a
discussion of the degree to which one has “universality”
in this case.

For systems with a NCOP but with a ground state of a
higher degeneracy, things are not quite as clear. In the
case of the g-state clock model,!> it appears that the
growth law is still given by the LCA result. However, in
the case of the g-state Potts model it appears'* that » is a
function of ¢ and, indicating some possible problems in a
power-law analysis, apparently a function of temperature
for low temperatures.

The case of a COP is less well understood. In cases
where it is sensible to assume that growth proceeds
through the formation of droplets, mobilities are such
that one has local equilibrium at an interface, and hydro-
dynamic interactions are not important, the theory!® of
Lifshitz and Slyozov is applicable, and one obtains a
L ~t'3 growth-law and scaling behavior. There are,
however, interesting situations where the assumptions
given above are not valid. Mazenko, Valls, and Zhangl(’
have recently shown that the growth kinetics of the spin-
exchange kinetic Ising model, in the absence of an exter-
nal field, are dominated by the activated nature of dif-
fusion across an interface at low temperatures. This leads
then to an L ~ Inz growth law at long times. It is also im-
portant to note in this case that the morphology'’ of the
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growth was not dropletlike but.percolative.

If one includes hydrodynamic interactions, as would be
present in a fluid, these ultimately should control the
growth kinetics (in the absence of gravity) giving'® L ~t.
Clearly, there is a great deal more to understand in the
case of a COP since only the case of two degenerate
ground states has been extensively studied.

Notice that all of the work mentioned above is for a
scalar order parameter; N =1 in the language of critical
phenomena. The growth kinetics of systems with con-
tinuous symmetry (N > 1) has been virtually unexplored.
This is due partly to the historical fact that most work in
this area has been on systems of metallurgical interest or
on fluids. In both cases the order parameters are typically
scalars. There are a variety of situations in condensed-
matter physics where the order parameter corresponds to
N >1 and where we might expect the growth kinetics to
differ significantly from those of systems with discrete
symmetries. The simplest examples are the growth kinet-
ics of He* (N=2) quenched below the A transition or an
isotropic antiferromagnet (N =3) like RbMnF; quenched
to below the Néel temperature. The N-vector model in
the large- N limit is the logical place to start an analysis of
the growth kinetics of systems with a continuous symme-
try. The model gives a realistic description of a system
undergoing a second-order phase transition, and one can

. define a kinetics with the main features, dissipation and
equilibration, which have played a prominent role in the
study of the growth kinetics in N =1 systems. A key new
ingredient in the analysis is the role of Nambu-Goldstone
modes in the growth process. This model allows us to
deal with this phenomenon in a straightforward and
believable fashion. One deficiency of this model is that it
does not have any “defects,” such as vortices, which we
know can play a role!® in X-¥ and Heisenberg models.

II. THE MODEL

A. Statics

We consider a system, in D spatial dimensions,
described by the Landau-Ginzburg-Wilson free-energy
functional

Fl¢]l=% [ dPx[(V$)+ré’+u($??/2N —2H-$] ,
@.1)

where ¢(x) is an N-component order parameter

¢(x)=(Pi(x),...,dx(x)). (2.2)
As is customary in the theory of critical phenomena,
F[¢] must be regarded as a reduced free energy, with the
temperature absorbed into the coupling constants. Furth-
ermore, we keep u fixed and positive and we study the
behavior of the system under variations of » and H. In
equilibrium, averages correspond to functional integrals
over ¢ weighted by e ~¥. Taking the external field direct-
ed along the 1 axis,

H,=HS,, ; (2.3)
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the average order parameter is of the form
<¢,‘(X)):M8,',1 . (2.4)

Introducing the new fluctuating variable 8¢; =¢; — (¢; ),
the longitudinal and transverse correlation functions are
defined by

Cjj(x—x")=(561(x)8¢,(x")) 2.5)

and

C,(x—x')=(8¢;(x)8¢;(x")), i~1. (2.6)

In the large- N limit,?° the equilibrium behavior of the sys-
tem is completely described by M,C| and C,. These
quantities obey the set of equations

[r+u(S+m2)m=h, 2.7

cl(q)=——-—qZ;Ki , (2.8)
o

Cilg)=——, 2.9)

where m =M /V'N and h=H /V'N. The static structure
factors C,(q) and C|(q) are the Fourier transforms of
C,(x—x’) and Cj(x—x’), and the inverse correlation
lengths K| ,K | are given by

K}=r+u[S+m?], (2.10)
K\ =r+u[S+3m?], 2.11)
with
d®q
= Ci(q). 2.12

From the equation of state (2.7) we have for A =0 the
solutions

m=0, r>r,, (2.13a)
(re—r)
m2=—cu—, r<r, (2.13b)
where r, = —uS, is the critical point value of r and
dPq 1
S, = - . (2.14)
< f (277.)D q2

Above the critical point there is no distinction between
longitudinal and transverse modes:

1

q2 + KZ 4
with K2=r+uS. On the other hand, below the critical
point, from Egs. (2.13b), (2.7), (2.10), and (2.11), there is
spontaneous symmetry breaking and the transverse corre-
lation length vanishes for all r <r., indicating the ex-
istence of Nambu-Goldstone modes in the transverse
directions. Correspondingly the structure factors for
r <r. are given by

C\(g)=C.(q)= (2.15)

1
Cyg)= , 2.16
D= e —n (2.16)



32 INSTABILITY, SPINODAL DECOMPOSITION, AND . . .

Cilg)=—5, @.17)
q :
and from the latter equation we have
S=S,, forallr<r, . (2.18)

Finally, we recall the results of the free theory, obtained
from the previous results by setting u =0. In the absence
of an external field, the structure factor is given by

1
a’+r
The critical point is at 7o, =0, and the equilibrium state is
not defined for r < rg.

B. Dynamics

The dynamics of the model is governed by the time-
dependent Ginzburg-Landau model

ad(x,z) . OF
= r8¢ +n(x,t) , |

where T is the kinetic coefficient and 1(x,¢) is a Gaussian
white noise satisfying '

(n(x,1))=0,
(M%) (x',2) ) =21 (%)8;;8(x— X')8(¢ —1') .

(2.20)

(2.21a)
(2.21b)

We study the dynamics with conservation of the order pa-
rameter,

Nx)=-Iv?, (2.22)
and without conservation of the order parameter,

r'x)=I. (2.23)
Introducing the time-dependent magnetization

(¢:(x,1)) =M(1)8;, (2.24)
and the fluctuating fields

8¢;(x,t)=¢;(x,1)—{P;(x,1)) , (2.25)

the equation of motion (2.20), in the large-N limit,!
yields the set of equations

om

?=I‘(x)(§,-m +h), (2.26)

3(54;)

%—:F(x)(vzﬁ-é‘i)fi(ﬁi—i—m(x,t) , (2.27)
where

&= —(r4+uS+m?+2m?28;,) (2.28)
and

S=(8¢Xx,1)), i~l. (2.29)

The quantities of interest, besides the magnetization
m(t), are the quasistatic correlation functions

Cilx—x,t)={(8¢;(x,1)8¢;(x',1)) . (2.30)

Using (2.27) and Fourier transforming, we obtain the
equation of motion for the corresponding structure factors
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aCi(q,t) ’ 2
—5, = —2T(@)(¢*~£)C/(q,1) +2T(q) , (2.31)
where

I'(q)=I (NCOP), (2.32a)

I'(g)=Tg¢? (COP), (2.32b)
and S(), defined by Eq. (2.29), is given by

D
st= [ 249 c (g, . (2.33)

2m?P

The set of equations (2.26), (2.28), (2.31), and (2.33) define
the dynamics. In order to have dimensionless equations,
let us measure lengths in units of A~!, where A is a
momentum cutoff, and time is in units of 2I'A? for a
NCOP and 2I'A* for a COP. We then have the set of
equations :

a—a':—l-=—._}—(§lm+h) (NCOP) , (2.34)
dm _o (cop),
ot
aC,-(q,t) ' 2
____a_t___=_(q —£)Ci(q,t)+1 (NCOP) , (2.35)
9Ci(q,t)
—a:’—:—qz(qz—é,-)C,-(q,t)+q2 (cop), (2.36)
with

Ci=—(r+S+m?2+2m?%;)), (2.37)

which is obtained after choosing the coupling constant u
such that u AP ~#=1 and

1
. D—1
S=Kp [ dgg”~'Ci(q,),
Kp=2"27=272/T(D /2) .

(2.38)
(2.39)

In the following we shall be interested in the nonequili-
brium processes arising when the system, initially
prepared in an equilibrium state, undergoes an instability
through a sudden change of the thermodynamic parame-
ters. The most general process of this kind is given by
(ryshy)—(rp,hp), where (rp,h;) characterize the initial
equilibrium state (f <?y), and (7p,hr) are the new values
(at #=tg) characterizing the bath that drives the system to
final equilibrium state at “temperature” rz and in a field
hp. In this paper the following particular cases will be
analyzed: (i) quench in zero field for the NCOP

(rr,h=0)—(rp <r;,hp=0),

(ii) quench for a COP with a constant magnetization
(r,h1=£0)—(rp <rp,hp=0) ,

and (iii) isothermal field reversal
(r; <re,hy=0")—(rp=r;,hp <0) .

The numerical calculations will be carried out for D=3,
where 7, = —S, = —1/27*=—0.051.
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III. NCOP: TEMPERATURE QUENCH
IN ZERO FIELD

In this section we consider the time development of the
instability when the system, initially prepared in the state
(ry,hy=0), evolves toward the new equilibrium state
characterized by (rg <r;,hp=0). We choose r;j=+
and we will consider both rp>r, and rr <7,. The very
large value of #; produces a very narrow one-well poten-
tial which constrains the order parameter to remain near
the origin with no fluctuations (see Fig. 1). Consequently,
we have

C(q,t0)=0 ,
S(10)=0 .

(3.1a)
(3.1b)

A. Noninteracting theory

Before proceeding with the full analysis of the dynam-
ics associated with Egs. (2.34)—(2.37), it is worth discuss-
ing the noninteracting theory (x =0), since it gives some
insight into the importance of nonlinearities in the prob-
lem. In this limit each mode evolves independently from
the others through the equation '

E)Co(q,t) .
a

which has the solution (for r; > 0)

—(q2+rp)Colq,t)+1, } (3.2)

2
WHPColqyr) — Cola, )

(3.3)

Colq,t)=Cy(q,rr)+e

where Cy(q,r) is given by (2.19). For rr >0, one has ex-
ponential relaxation to the equilibrium state Cy(q,7r).
For rp <0, however, all modes with g <g.= | rp|!/? are
intrinsically unstable and the system will not equilibrate.
The distinction between the two cases is illustrated in Fig.
2 through the time development of

3
Solt)= f d’g Colq,?) .

(2m)?
90 L L A
r=l03
60 :
r=1
40H .
V(X)
201 -1
r:—IO_
[

O__ —
_20_ —
-40+ —

| | L | n I

-4 -2 0 2 4

FIG. 1. Potential V(x)=rx2+x* for various values of 7.
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FIG. 2. Time evolution of Sy(¢) in the noninteracting theory
for quenches above and below ry.=0.

B. Interacting theory: rgp>r.

The interacting theory can be solved numerically using
a standard forward step time integration and a numerical
integration over a 100-point mesh in g to obtain S(z).
Above the critical point (77 > r,), the time evolution in the
interacting case is not expected to be qualitatively dif-
ferent from the noninteracting case. The behavior of S(¢)
(Fig. 3) displays the same saturation pattern observed in
the noninteracting case for »>0. In this case, since
r.=—1/27% <0, there is also no instability for r, <7 <0,
as shown in Fig. 3 for rp= —0.025.

The structure factor C(q,?) shown in Fig. 4 displays a
uniform growth from the initial value (3.1) to the final
equilibrium Lorentzian form (2.15). The same behavior is
observed for a quench to the critical point #z=r,, which
for completeness is shown in Fig.-5. One finds that at the
peak height a ¢=0 grows linearly with time and the

width narrows with a ¢ ~1/2 behavior.
T T T
NCOP
O === = e = e e

_ 05

g ~0.025

=

& 0.5 —
I I |

0 4 8 2 6
t

FIG. 3. Time evolution of S(¢) for NCOP in the interacting
theory for a quench above the critical point (rp=0.5 and
rp=—0.025).
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2.0 ,
o NCOP

0.4 1

FIG. 4. Time evolution of the structure factor for NCOP
above the critical point (r;=0.5). The equilibrium structure
factor given by Eq. (2.15) (dashed curve) is reached for ¢ ~ 10.

C. Interacting theory: rp<r.

As was discussed in Sec. II, in the equilibrium state
with rp <r, the symmetry is broken and the system
develops a spontaneous magnetization, (2.13b) with u =1,

mz——:rc—rp , (3.4)

and the static structure factor behaves differently in the
longitudinal and transverse directions as indicated in Egs.
(2.16)—(2.17). Therefore, the time evolution after a
quench with 7z <7, is expected to exhibit a rich-and com-
plicated behavior. The system starts out in an initial sym-
metric equilibrium state and has to comply with the re-
quirements of a final equilibrium state, which requires

NCOP

]
1
1 100 =—0051

I
}
|
\
|
I}

0.8

10 C(q,t)

0.4

0 0.5 .0
q

FIG. 5. Time evolution of the structure factor for NCOP and
a quench at the critical point (rp=r,=—0.051). The dashed
curve represents the asymptotic critical structure factor
C(q,)=1/q%
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symmetry breaking, through dynamical equations which
do not contain a symmetry-breaking mechanism. There-
fore, for all finite times there is no spontaneous magneti-
zation [m(¢)=0] and there is no distinction between long-
itudinal and transverse modes. The equation of motion is
given by

aC](q,t) _

Y (3.5)

—(g*—£)Ci(q,0)+1,
with
E=—(rp+S) .

For very early times we expect, given the initial condition
(3.1), that {~ —rp and the dynamics will proceed as in
the noninteracting case. Namely, that each mode will
evolve independently from' the others, the modes with
g <q.=|rp|!/? being unstable. We find, in particular
for rr= —10, that the growth of the peak at q=0 is accu-
rately given by (3.3) for times up to t=0.9. For larger
times, however, the noninteracting theory rapidly breaks
down and nonlinear interactions become increasingly im-
portant. It is precisely these nonlinear interactions which
tame the instability and eventually equilibrate the system.
This is due to the feedback of the fluctuations on the am-
plification factor, given by the presence of S in Eq. (3.6).
As the instability proceeds, the fluctuations grow and
reduce the value of §, i.e., of the characteristic wave vec-
tor g.=C&'/2. Since the expected equilibrium state is given
by Eqgs. (2.16), (2.17), and (2.18), and it must correspond
to the vanishing of the time derivative in the left-hand
side of Eq. (3.5), we expect that equilibrium is reached as
§ vanishes and S(¢) grows toward the saturation value
S(w)=|rr|. This is clearly illustrated in Fig. 6, which
gives the behavior of S(#)/S( ) for different values of rp
well below the critical point. One can clearly recognize
two different time regimes: the fast transient previously
discussed at the early stage of the instability, which brings
S(t) very close to the saturation value S(e )= |7z |, and
the ensuing slow transient for subsequent times. It is with
this latter time evolution that we will be mainly concerned
in this paper. The mechanism governing the instability in
the slow transient is quite different from the one operat-

(3.6)

0.5

I
|

S(t)/S (o)

1
0 3 8 2
T

FIG. 6. Time evolution of S(¢) for NCOP and various
quenches below the critical point (rp=—1, rp=—35, rp=—10).
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ing at the early stage and, in fact, we expect it to be dom-
inated by the interaction among the modes. '

Notice that although ¢ is small and S(¢) ~S( ), this is
still a situation far from equilibrium, since Eq. (2.18) re-
quires in the equilibrium state S=S.,=—-r, <<S(o0)
= |rp|. In other words, during the early stage the sys-
tem has managed to reduce the amplification factor by
developing anomalously large fluctuations. The dynamics
of the later stages must then satisfy the twofold require-
ment of keeping the amplification factor small (£ vanishes
as t~!) and reducing the value of S(e) to S.. This is
done by shifting the fluctuations from the high-g modes
to the low-g modes through the mode interaction, as is il-
lustrated in Fig. 7, which depicts the time evolution of the
structure factor. In the early stage, C(q,t) grows from
zero almost uniformly for all values of g shown (Fig. 7
corresponds to |rr| =10 and therefore g, > 1, initially).
‘Subsequently, after S(z) has reached a value close to
S( o0 ), the dynamics of the structure factor evolves via the
relaxation of the higher-g modes to the asymptotic equili-
brium value ~1/g? (dashed curve in Fig. 7) and by the
continuing growth of the low-g modes. Eventually, when
& is very close to 0 and S(¢) to S( 0 ), only the g =0 mode
keeps on growing without limit, while C(q,?) approaches
the Nambu-Goldstone contribution C,(q)=1/¢g> for
g+#0.

!

Hs00 NCOP

108 r=-10

I

T T

10°

w
o
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p oyl
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L IllllH]

T T T
(aloinnd

—_
llLl]

T T
-
11

Z

Tnnl

T T
/
/

\

1 | I 1 1
0.2 04 06 08 10

q

(@]

FIG. 7. Time evolution of the structure factor for NCOP and
a quench below the critical point (rr= —10). The dashed curve
represents the equilibrium Nambu-Goldstone contribution
CNG(q)= ]/qz.
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This kind of behavior means that the system attempts
to reduce the anomalous high value of fluctuations [as
represented by S(#)~S(o0)] by ordering. The ordering
corresponds to the growth of domains of the desired final
equilibrium state. However, since there is no dynamical
mechanism for symmetry breaking in the equations of
motion, all possible orientations of the ordering will be
represented among the domains, and m(¢) remains zero
on averaging over the entire system. The development
and inexorable growth of these domains is reflected in the
form of the structure factor. The solution of the equation
of motion (3.5), with the initial conditions (3.1) is given by

t
~ [Lasta*-0)], (3.7)
which can also be rewritten as
t
2
— [ ds(q —g)}
+ [lares |~ [lasg*-0], (3.8)

where 7 is an instant-of-time intermediate between t, and
t. If 7is chosen in the late stage of the relaxation then, as
it has been remarked above, { is small and there is a range
of wave vectors g2>>>¢, such that £ can be neglected in
the right-hand side of Eq. (3.8), yielding

C(q,1)=C(q,F)e 7"t 4 [1—e—7°=D] /g2 . (3.9)

t
C(q,t)= f'o dt' exp

C(q,t)=C(q,T)exp

Furthermore, if (z —7) is sufficiently large, the first term
can be neglected with respect to the second one. This
holds true as long as g>> . On the other hand, for g2 <&
(which gives a narrow interval around the origin when 7 is
chosen very large) the opposite occurs, namely, both terms
in. the right-hand side of Eq. (3.8) describe exponential
growth but the first one is overwhelmingly bigger since it
contains the cumulative effect of the instability at the ear-
lier times. Hence, in the late stage the structure factor to
a good approximation can be written in the form

C(q,t)=D(q,t)+Cnc(q,t) , (3.10)
where
Cnola,t)=[1—e~7"]/¢?, (3.11)
D(g,=DgNesp [~ [ asta>~¢1], (3.12)
and
D(q,t), g°<¢&
C(q,t)~ {CNG(q,tL IS (3.13)

The contribution (3.11) describes the growth of the
Nambu-Goldstone modes and yields asymptotically the
1/q2 behavior. The term D(q,?) instead describes the
growth of the central Bragg peak associated with the
development of order. Furthermore, this latter contribu-

tion can be put in scaling form,
D(q,t)=ALt)F(qL(?)), (3.14)

with F(0)=1, implying that at this stage of the evolution
all the relevant time dependence appears through one fun-
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damental length L(z), which gives the linear dimension of
the domains. The form (3.14) of D(q,t) is immediately
obtained from Eq. (3.12) after defining F(x) through

D(q,t)=D(q=0,t)F(q,t) .
This gives
F(q,t)=F(q,F)e~7°¢~D

with the solution F (q,t):—e_qzt, which can be rewritten
as

F(x)=e~%", (3.15)
with x =qL(¢) and
L(t)=(t/a)'"?. (3.16)

Defining L ~!(¢) as the width at half-height of the peak,
we have a=1In2 and L(t)=1.20t'2. Even though
m(t)=0 at all times, the quantity 4 in Eq. (3.14) evolves
to the value 4 =m} given by Eq. (3.4), where my is the
value of the spontaneous magnetization associated with
the final equilibrium state.

The above predictions for the structure factor are sub-
stantiated by the numerical computation. In fact, Egs.
(3.10), (3.11), and (3.14) give an accurate representation of
the numerical data for the structure factor in the late
stage. After the subtraction of the Nambu-Goldstone
contribution (3.11), the Gaussian (3.15) with a = In2 gives
an excellent fit of the data for the shape function x <4,
and it is found to be independent of time and of the value
of ry (Fig. 8). From the data for the inverse of the width
of the Bragg peak, we find L(z)=1.32t%*" for long times,
in agreement with Eq. (3.16). We remark that the
behavior of L(¢) is in agreement with the Lifshitz—
Cahn-Allen curvature-driven growth law developed for
scalar order parameters. This suggests that in the NCOP
case the growth law is independent of the number N of
the order-parameter components. The q=0 component

of the structure factor satisfies, for long times,
C(0,t)=t+423.7t%%, (3.17)

where the t*/? term corresponds to the setting up of

1.0

0.8 cop

0.6

F(x)

0.4

0.2

FIG. 8. Shape functions for NCOP and COP.
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domains of the new phases, and the linear term corre-
sponds to the development of Nambu-Goldstone modes
within these domains. Finally, notice that the form (3.10)
of the structure factor applies to all i components of the
order parameter. Namely, the Bragg peak develops along
all directions as domains pointing in all directions are
formed, and globally the symmetry is not broken.?
Therefore, the Nambu-Goldstone modes must be present
for all values of i, since a given value of i is transverse
with respect to all the remaining ones.

IV. COP: TEMPERATURE QUENCH WITH
CONSTANT MAGNETIZATION

A. Noninteracting case

The noninteracting solution (¥ =0) for a COP corre-
sponds to the Cahn-Hilliard®*—Cook?* theory with a
structure factor given by (3.3) but with (g2+rp)t multi-
plied by g? in the exponential. For 7y >0, we obtain ex-
ponential relaxation to equilibrium at rp, except for the
point =0, which is pinned at the - initial value
Cy(0,r;)=1/r; by the conservation law. For rp <0, we
again have unstable, exponentially growing modes for
wave numbers g < (| 7z | )!/2. Because of the conservation
law, there is a single wave number gy =(|rg|/2)!/?
which grows faster than the others. Therefore, C(q,?) is
characterized by a peak located at g=g,;, which grows
exponentially as

| P | 2t/4

Clqu,t)=2(e —1)/ || .

B. Interacting case

The preparation of the system in the interacting case is
a bit more subtle. We assume that in the initial state
(r7,h;0) there is a finite magnetization m;0. Then we
imagine suddenly dropping 7 to a value 7z below the coex-
istence curve and adjusting the field so that the average
magnetization is fixed at the value m;. On and below the
coexistence curve the field vanishes, so that the final
equilibrium state is characterized by (rg,Ar=0). Since in
this problem the symmetry is broken from the onset, we
must distinguish between longitudinal and transverse
modes. We must solve Eq. (2.36) for the transverse direc-
tion

oC,(q,t)

—l&L=—q2(q2—§l)C1(q,t)+q2 , 4.1)
where

§l=—(rp+s+m2) . (4.2)

The behavior of C|(q,t) then is obtained from the equa-
tion analogous to (4.1) replacing §, with §;;=§, —2m 2,

In the initial state with r; =+ oo, we have, as in Eqgs.
(3.1) and (3.2), C;(q)=S;=0. The first thing we note in
this case is that we can map the problem for the trans-
verse modes with a finite magnetization into one with
zero magnetization if we replace 7y +m?=ry and treat rp
as an effective “temperature.” Clearly the main qualita-
tive effect of m? is to define the coexistence curve.
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Therefore, the system is unstable for rp <7,. Numerical
solution of (4.1), (4.2), and (2.33) proceeds just as in the
NCOP case. The behavior of S(¢) (Fig. 9) exhibits two
time regimes as in the NCOP case, although the transition
between the two is smoother and the initial transient is
slower, as a consequence of the conservation constraint.
Looking at the structure factor there is an early time re-
gion where the noninteracting theory applies, but this is
very narrow.. As shown in Fig. 10, the structure is charac-
terized by a peak at a finite wave number g,;, but this
wave number is time dependent (unlike in the noninteract-
ing theory) and moving toward small values with in-

creased time. The noninteracting prediction that the peak
. . [re|2t/4
helght 1ncreases as e must break down at very ear-

ly times since for t=20, C(gy,t)~10° for |rp| =0. The
correct physical picture is that the system again attempts
to build a Bragg peak at the zero wave number reflecting
the developing order. The conservation law, however,
pins the q=0 component at its value, and the best the sys-
tem can do is build a peak at the finite wave number
which moves monotonically toward the origin. This is
just the usual process of spinodal decomposition. The
new aspect of our problem here is that the system is also
attempting to build up Nambu-Goldstone modes which
“ride” on the order.

The structure factor in the late stage can be analyzed in
the same way as in the NCOP case. We write the solution
of Eq. (4.1) in the form analogous to (3.8),

—qu;ds(qz—Q)]

~¢* [laslg~¢n . @3

Since we find numerically that for large times, &, ~¢ 172,

for 7 sufficiently large we may write, as in Eq. (3.10),

C,(q,t)=C,(q,T)exp

t
+q° f7 dt' exp

C,(q,t)=D(q,t)+Cns(q,t) , (4.4)
with

Crng(@,t)=(1—e=9") /> (4.5)
and

D(q,1)=D(q,F) exp —qu;ds(qz—g)] . @46
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FIG. 9. Time evolution of S(¢) for COP and various
quenches below the critical point with zero magnetization
(re=—1, rp=—5, rp=—10).
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FIG. 10. Time evolution of the structure factor for COP and
a quench below the critical point (rp= —10) and zero magneti-
zation.

The peak height and position of the Nambu-Goldstone
contribution are given by Pyng=2.01z!"2 and
gng =0.6: 174 After subtracting the Nambu-Goldstone
contribution, the data for the peak term D(q,t) are well
fitted by the scaling form

D(q,t)=AL3t)F(qL(t)), .7

with the position of the Bragg peak given by
gm(t)=L X ¢)=1.7t 1% and the peak height given by
Py (t)=104.0¢t"%, where the coefficients are for
rp=—10. Again we find (v =1)

A=rp—m?>—S,=mp—m?, (4.8)

and the shape function shown in Fig. 8 is independent of
time and of the value of rr. For x > 2 the shape function
is well approximated by the form? (a+bx*)~!, where
a=—1.3x10* and b=6.1Xx10>. The evolution of
Ci(q,t) in this case is straightforward since
é‘“=§l—2m2, and for large times | &, | =2m?, &) is nega-
tive and the driving force qz(q2—§”) for C)|(q,?) is posi-
tive and it will relax exponentially to its final equilibrium
value.

In summary, we arrive at the following picture: if 7z is
below the coexistence curve and hp=0, the equation of
state rg .S, +m#=0 gives, in equilibrium, m2>m? On
the other hand, as a consequence of the order-parameter
conservation, m(t)=m;. This can be reconciled with the
equilibrium requirement by developing order in the per-
pendicular directions. Then we see that there is a contri-
bution m} to the total magnetization squared from the
longitudinal component and a contribution m2—m} from
the “Bragg peaks” in the transverse directions [Eq. (4.8)],
yielding the correct equilibrium sum mp.

V. ISOTHERMAL FIELD REVERSAL

In this section we consider a different type of instabili-
ty, in the case of an NCOP, characterized by the relaxa-
tion toward a new equilibrium state through the mecha-
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nism of nucleation. We point out that we use nucleation
in a generalized sense here because we expect a qualitative
difference between the N =1 case, where one has sharp in-
terfaces between phases, and N > 1 where one has “gradu-
al” Bloch walls separating domains. We assume that the
system is prepared in an initial equilibrium state lying on
the coexistence curve, namely, r; <., with a nonvanish-
ing magnetization

my=(r,—rp)"? (5.1

pointing in the positive 1 direction. We may think that
this state is realized in the presence of a positive and in-
finitesimally small external field h; =0%. At some time
to the field is suddenly reversed to a negative final value
hr <0. The time evolution toward the new equilibrium is
governed by Eqgs. (2.34) and (2.35) for the magnetization
and the transverse structure factor, namely, we must solve
(2.34), (2.35), (2.37), and (2.38) with i being a perpendicu-
lar component for m(t) and C,(q,?).

The longitudinal structure factor C)|(q,t) then is ob-
tained by replacing §, with

Sy=—(r1+S+3m? .

The resulting equations have been studied numerically
and the behavior of the magnetization, shown in Fig. 11
for r; = — 10, exhibits the typical behavior expected when
the new phase is formed through a nucleation process.
We notice that there is no limit of stability as has been
found in certain approximate treatments®®!” of the N=1
case.
Introducing the relaxation function
m(t)—mp

o(t)=—",

my—mpg -

(5.2)

where my is the final equilibrium magnetization satisfy-
ing the equation of state (2.7), and defining the lifetime
of the initial metastable state by

o(r)=+, (5.3)
we obtain 7 as a function of hp for rz= — 10, as shown in
Fig. 12. Our best fit to the data is given by

25.66 | hp | 197, while a fit to 7~ | hp | ~! fits well for
| hp| <1, but less well for higher values of |hf|.
Of particular interest is the behavior of the transverse

m(t)

I
160 200

1
0 40 80 120

FIG. 11. Time evolution of the magnetization (NCOP) in an
isothermal field reversal for various values of Ay and r; = —10.
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FIG. 12. Dependence of 7 [see Eq. (5.3)] on |hp| for
rr=—10. X are the result of our numerical solution for m(t).

The solid curve is the fit to 7=25.66 | Ax | ~"-%7 and the open cir-
cles are for 7=27.00 | Ap | 1.

structure factor during the time evolution. Initially
£, =0, and in the transverse directions there is only the
contribution of the Nambu-Goldstone modes
C,(g,t;)=1/g> The effect of the negative external field
hp in the right-hand side of Eq. (2.34) is to reduce the
size of the magnetization, which in turn produces a posi-
tive value of §, and therefore a growth of the fluctuations
in - the transverse directions. These reach a maximum
when the magnetization along the longitudinal direction
goes through zero and then decrease gradually as the mag-
netization grows negative (Fig. 13). The time develop-
ment of the structure factor is illustrated in Fig. 14 for
hp=—1.0 and r=—10. The continuous lines show the
growth of the structure factor above the 1/¢? behavior as
the magnetization decreases from the initial value to the
zero value (compare with Fig. 13). In this regime the sys-
tem is compensating for the loss of order in the longitudi-
nal direction by building up fluctuations in the transverse

T T T
=10
fL = mit) st — g
2r 4
m [ 18s
o 14
_2_ _2
-4 i
T 1 |
0 10 20 30 40

+

FIG. 13. Time evolution of the magnetization m(¢) and of
the transverse fluctuations S(z) in the isothermal field reversal.
r=-—10and hr=—1.0.
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FIG. 14. Time evolution of the transverse structure factor
C,(q,t) in the isothermal field reversal for r=—10 and
h F=— 1.0.

directions. However, as the magnetization is flipped, or-
dering develops in the negative longitudinal direction, and
correspondingly the transverse fluctuations are expected
to decrease. This is clearly shown by the dashed curves in
Fig. 14, which illustrate the relaxation of C,(g,t) to the
asymptotic Lorentzian form C,(g, w0 )=1/(g2+hp /mp).

VI. CONCLUSIONS

Our study has led to a clear picture of the growth of or-
der in systems with a continuous symmetry. In the cases
of both a COP and a NCOP, we see that the system does
it best to build Bragg peaks which characterize the
development of order. These contributions satisfy scaling
laws similar to those found for scalar order parameters.
The growth laws associated with the characteristic length
[L(t)=gy '(¢) for a NCOP and L(t)=g;;'(¢) for a COP]
show a power-law behavior L(t)~t% with a=+ for a
NCOP and a=+ for a COP. The a=+ result for a
NCOP agrees with the N =1 result found by Lifshitz, and
Cahn and Allen, and suggests that this result may hold
for all N for a NCOP. This is not a completely trivial re-
sult since the Lifshitz—Cahn-Allen result is built on the
assumption of a sharp interface which is not valid for
N> 1. The result a=+ for a COP may well depend on
the large number of degenerate ground states in the
model. The standard assumption for the N=1 case is
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that the growth kinetics are given by the Lifshitz and
Slyozov theory, which gives a =§. This theory assumes
one has droplets of a minority phase which grow or
shrink, depending on their size, via single-particle dif-
fusion. A key assumption is that one has a sharp inter-
face and local equilibrium across that interface. We ex-
pect our N vector model to be a highly interconnected
structure with Bloch walls separating domains and the de-
viation from the + value should be no surprise. Recently,
Mazenko, Valls, and Zhang!® have found that the growth
law for the spin-exchange Kawasaki kinetic Ising model
in the absence of a field is of the form L(z)~ Inz, which
again differs from the Lifshitz-Slyozov theory. In this
model one finds a percolative morphology with sharp in-
terfaces. The important new ingredient not in the
Lifshitz-Slyozov theory or the TDGL model is that dif-
fusion across an interface is activated, and any assump-
tion of local equilibrium at an interface is not justified. In
the case of the TDGL model for large N, one expects the
nature of the Bloch walls to be such that diffusion is not
hindered.

Riding on top of the ordered regions are the Nambu-
Goldstone modes which develop over a time scale which
must necessarily be slower than that needed to establish
domain structures. Thus, the weight in the NG modes
grows as ¢1/2 (COP) or ¢t (NCOP), while the weight in the
Bragg peak grows as ¢/ (COP) and ¢3/2 (NCOP).

In the problem of an isothermal field flip for a NCOP,
we find no limit of stability. The magnetization flips
after a finite time after the field reversal for all fields
flips. The time 7, however, goes as A —1.07 which can lead
to long quiescent periods before the magnetization flips
for small A.

We have chosen to treat the physically relevant case of
three spatial dimensions. One could treat the case d =2,
but the large- N limit is of less physical interest because of
the Mermin-Wagner theorem?® and the role of N-
dependent defects in destroying long-range order.

Our calculations here give some insight into calcula-
tional schemes?”?’ which were developed to treat the
TDGL model for N=1. Efforts to go beyond the nonin-
teracting theory typically involved nonsystematic factori-
zation schemes which led to equations very similar to
(2.31), but where £(¢) was determined in some approxi-
mate fashion. As discussed in Refs. 27 and 29, the solu-
tions to these equations tend to long-time solutions where
£(t)—0. Thus one develops an unphysical g ~2 behavior
for the N =1 case. One is led to the conclusion that these
approximation methods are picking up part of the
Nambu-Goldstone mode we found in our analysis here.
The conclusion is that the “mean-field theories” with an
equation of motion similar to (2.32) are only appropriate
to systems with N > 1 which do not have sharp interfaces.
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