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Instability, spinodal decomposition, and nucleation in a system with continuous symmetry
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The growth kinetics of the time-dependent Ginzburg-Landau model is studied in the large-N lim-
it. Quenches from an initial equilibrium state at infinite temperature to a temperature correspond-
ing to an unstable state beneath the coexistence curve are studied for both a conserved order parame-
ter {COP) and for a nonconserved order parameter (NCOP). In both cases the system grows the or-
der corresponding to the final equilibrium state by growing domains of the new phases. These
domains are reflected through the existence of a peak in the structure factors which is evolving to-
ward a Bragg peak as time increases. We find that these peaks satisfy a scaling relation similar to
that for the related cases with a scalar order parameter. The characteristic lengths in these scaling
laws satisfy a power-law behavior, L(t)-t', where a= 2 for a NCOP and a= 4 for a COP. Rid-

ing on top of the developing long-range order are the Nambu-Goldstone modes which, we show,
build smoothly into the q behavior in the transverse correlation functions. The time evolution of
the system after an isothermal field reversal is also studied. The increase in the time characterizing
the reversal of the magnetization is found to be approximately inversely proportional to the magni-
tude of the field reversal. No limit of stability is found.

I. INTRODUCTION

Spontaneous symmetry breaking associated with order-
ing in systems with a continuous symmetry leads to a
number of interesting effects including the existence of
Nambu-Goldstone (NG) modes. ' The word "spontane-
ous" used alone is, in a certain sense, very misleading.
This ordering and the associated NG modes do not just
appear as a function of time. They must be grown. We
discuss here this growth process in the case of the time-
dependent Ginzburg-Landau (TDGL) model in the
large-N limit, where N is the number of components of
the order parameter. In this limit, the problem of the
growth of order after a sudden temperature quench or a
rapid magnetic field flip can be reduced to an integro-
differential equation for a single variable which can be
solved numerically to arbitrary accuracy. Thus we can
essentially solve the problem exactly. This allows us to
investigate the growth kinetics for this model in detail
and, as we shall see, follow the build up of NG modes as a
function of time after a quench.

There have been significant advances in recent years in
our understanding of the growth kinetics of systems sud-
denly constrained to be in an unstable state. The most im-
portant advances have included the identification of scal-
ing behavior in a wide variety of systems and the deter-
mination of the growth law as a function of time for the
typical domain size L(t), which is the dominant length
that produces the scaling behavior. It is now well under-
stood that there are various classes of systems which share
similar behaviors. These classes are distinguished first by
whether one has a conserved order parameter (COP) or a
nonconserved order parameter (NCOP). Then, for exam-

pie, it is believed that systems with a NCOP and two de-
generate ground states (spin- —, Ising model or a binary al-

loy, for example)will have a curvature driven growth law,
as proposed by Lifshitz, and Cahn and Allen (LCA), of
L(t)-t", n= —,. This has been extensively confirmed
both experimentally and theoretically. ' There are also
certain "scaling functions" which are shared among
members of this set of systems. See Refs. 11 and 12 for a
discussion of the degree to which one has "universality"
in this case.

For systems with a NCOP but with a ground state of a
higher degeneracy, things are not quite as clear. In the
case of the q-state clock model, ' it appears that the
growth law is still given by the LCA result. However, in
the case of the q-state Potts model it appears' that n is a
function of q and, indicating some possible problems in a
power-law analysis, apparently a function of temperature
for low temperatures.

The case of a COP is less well understood. In cases
where it is sensible to assume that growth proceeds
through the formation of droplets, mobilities are such
that one has local equilibrium at an interface, and hydro-
dynamic interactions are not important, the theory' of
Lifshitz and Slyozov is applicable, and one obtains a
L-t' growth-law and scaling behavior. There are,
however, interesting situations where the assumptions
given above are not valid. Mazenko, Valls, and Zhang'
have recently shown that the growth kinetics of the spin-
exchange kinetic Ising model, in the absence of an exter-
nal field, are dominated by the activated nature of dif-
fusion across an interface at low temperatures. This leads
then to an L —lnt growth law at long times. It is also im-
portant to note in this case that the morphology' of the
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growth was not dropletlike but percolative.
If one includes hydrodynamic interactions, as would be

present in a fluid, these ultimately should control the
growth kinetics (in the absence of gravity) giving' L -t
Clearly, there is a great deal more to understand in the
case of a COP since only the case of two degenerate
ground states has been extensively studied.

Notice that all of the work mentioned above is for a
scalar order parameter; %=1 in the language of critical
phenomena. The growth kinetics of systems with con-
tinuous symmetry (N & 1) has been virtually unexplored.
This is due partly to the historical fact that most work in
this area has been on systems of metallurgical interest or
on fluids. In both cases the order parameters are typically
scalars. There are a variety of situations in condensed-
matter physics where the order parameter corresponds to
X~ 1 and where we might expect the growth kinetics to
differ significantly from those of systems with discrete
symmetries. The simplest examples are the growth kinet-
ics of He (N =2) quenched below the A, transition or an
isotropic antiferromagnet (N=3) like RbMnF3 quenched
to below the Neel temperature. The X-vector model iri
the large-N limit is the logical place to start an analysis of
the growth kinetics of systems with a continuous symme-
try. The model gives a realistic description of a system
undergoing a second-order phase transition, and one can

, define a kinetics with the main features, dissipation and
equilibration, which have played a prominent role in the
study of the growth kinetics in N = 1 systems. A key new
ingredient in the analysis is the role of Nambu-Goldstone
modes in the growth process. This model allows us to
deal with this phenomenon in a straightforward and
believable fashion. One deficiency of this model is that it
does not have any "defects, " such as vortices, which we
know can play a role' in X-Y and Heisenberg models.

II. THE MODEL

the average order parameter is of the form

(y, (x)) =M5, , (2.4)

Introducing the new fluctuating variable 5P; =jh; —(P; ),
the longitudinal and transverse correlation functions are
defined. by

and

CII(x —x') = (5$)(x)5$)(x') ) (2 5)

C~(x —x') =(5y;(x)5y;(x')), i&1 . (2.6)

In the large-N limit, the equilibrium behavior of the sys-
tem is completely described by M, C~~ and Cq. These
quantities obey the set of equations

[r+u(S+m )]m =h,
1

Ci(q) =
q +Eg

1
C

I
I(q ) z 2

q +K~~

(2.7)

(2.8)

(2.9)

ICII =r+ u [S+3m ]
I

with

(2.11)

(2.12)

From the equation of state (2.7) we have for h =0 the
solutions

where m =M/v N and h =H/V N. The static structure
factors Cz(q) and CII(q) are the Fourier transforms of
CJ (x—x') and CII(x —x'), and the inverse correlation
lengths E&,E

~ ~

are given by

ICf =r+u[S+m ], (2.10)

A. Statics

We consider a system, in D spatial dimensions,
described by the Landau-Ginzburg-Wilson free-energy
functional

F[P]=—, J d x[(VQ) +rP +u(P ) /2N 2H P]—
(2.1)

m=0, r ~r, ,

(r, r)—
r «c

where r, = —uS, is the critical point value of r and

daq

(2~) q

(2.13a)

(2.13b)

(2.14)

where P(x) is an N-component order parameter

Q(x)=(P((x), . . . , P~(x)) . (2.2)

8;=H5; ], (2.3)

As is customary in the theory of critical phenomena,
E[P] must be regarded as a reduced free energy, with the
temperature absorbed into the coupling constants. Furth-
ermore, we keep u fixed and positive and we study the
behavior of the system under variations of r and H. In
equilibrium, averages correspond to functional integrals
over P weighted by e . Taking the external field direct-
ed along the 1 axis,

1

q +2(r, r)—(2.16)

Above the critical point there is no distinction between
longitudinal and transverse modes:

CII(q ) =Cg (q) = 1

q +K
(2.15)

with K =r+uS. On the other hand, belo~ the critical
point, from Eqs. (2.13b), (2.7), (2.10), and (2.11), there is
spontaneous symmetry breaking and the transverse corre-
lation length vanishes for all r ~r„ indicating the ex-
istence of Nambu-Goldstone modes in the transverse
directions. Correspondingly the structure factors for
r & r, are given by
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1
Cj (q)=

g

and from the latter equation we have

(2.17) BC;(q, t) = —21 (q)(q —g;)C;(q, t)+21 (q),

where

(2.31)

S=S„ for all r & r, . (2.18)

Co(q) = 1

q +r
(2.19)

Finally, we recall the results of the free theory, obtained
from the previous results by setting u =0. In the absence
of an external field, the structure factor is given by

I (q) = I (NCOP),

I (q) = I q (COP),

and S(t), defined by Eq (2..29), is given by

S(t)= J C, (q, t) .
(2~)

(2.32a)

(2.32b)

(2.33)

The critical point is at ro, ——0, and the equilibrium state is
not defined for r & ro, .

B. Dynamics

The dynamics of the model is governed by the time-
dependent Ginzburg-Landau model

The set of equations (2.26), (2.28), (2.31), and (2.33) define
the dynamics. In order to have dimensionless equations,
let us measure lengths in units of A ', where A is a
momentum cutoff, and time is in units of 2I A for a
NCOP and 2I A for a COP. We then have the set of
equations

BP(x,t) 5F= —I +ri(x, t),
Bt

(2.20)
= —,(ggm+h ) (NCOP), (2.34)

(q(x, t)) =0,
(g;(x, t)qj(x', t') ) =2I (x)5i5(x—x')5(t t') . —

(2.2 la)

(2.21b)

We study the dynamics with conservation of the order pa-
rameter,

where I is the kinetic coefficient and g(x, t) is a Gaussian
white noise satisfying

=0 (COP),
Bt

BC;(q, t)
at

BC;(q, t)
Bt

= —(q —g;)C, (q, t)+1 (NCOP),

with

q'(q' g; )C;—(q, t)+q—' (COP),

(2.35)

(2.36)

1(x)= —rV', (2.22) (r+S—+m +2m 5;,), (2.37)

and without conservation of the order parameter,

r(x)=r. (2.23)
which is obtained after choosing the coupling constant u
such that uAD-4=1 and

Introducing the time-dependent magnetization

(P;(x,t)) =M(t)5;,
and the fluctuating fields

(2.24)

1

S=ED f dqq 'Cz(q t),
XD 2' vr ~ /——I (D/2) .

(2.38)

(2.39)

5yj (x, t) =y;(x, t) —(y;(x, t) ), (2.25)

at
=I (x)(g;m+h ),

B(5$; )' =r(x)(V'+g, )5y, +q, (x,t),

(2.26)

(2.27)

where

the equation of motion (2.20), in the large-X limit, '

yields the set of equations

In the following we shall be interested in the nonequili-
brium processes arising when the system, initially
prepared in an equilibrium state, undergoes an instability
through a sudden change of the thermodynamic parame-
ters. The most general process of this kind is given by
(rt, ht)~(rF, hF), where (rt, ht) characterize the initial
equilibrium state (t & to), and (rt;, hz) are the new values
(at t = to) characterizing the bath that drives the system to
final equilibrium state at "temperature" rF and in a field
hF. In this paper the following particular cases will be
analyzed: (i) quench in zero field for the NCOP

and

g;= —(r+uS+m +2m 5; ~) (2.28)
(rt ht=0)~(ry «t, hz 0), ——

S= (5P;(x, t) ), i&1 . (2.29)

The quantities of interest, besides the magnetization
m (t ), are the quasistatic correlation functions

(ii) quench for a COP with a constant magnetization

(rt, ht&0)~(rF &rt, hp ——0),
and (iii) isothermal field reversal

C;(x—x', t) = (5P;(x, t)5$;(x', t) ) . (2.30) ( rt «e &ht =0+ )~(rr = rt &h~ & 0) .

Using (2.27) and Fourier transforming, we obtain the
equation of motion for the corresponding structure factors

The numerical calculations will be carried out for 3=3,
where r, = —S, = —1/2' = —0.051.
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III. NCOP: TEMPERATURE QUENCH
IN ZERO FIELD

In this section we consider the time deve plo ment of the
instability when the system, initially prepared in the state

), 1 toward the new equilibrium state
characterized by (rJ; &rq, hF 0——) W. e choose rq ——+ oo

d we will consider both r~) r, and rz&r, . The veryan we

tial which constrains the order parameter to remain near
the origin wi no'th fluctuations (see Fig. 1). Consequently,
we have

5

c/P 4

C(q, tp) =0,
S(tp)=0 .

(3.1a)

(3.1b)

I I I I l

2 5 0 5 6

A. Noninteracting theory

Before proceeding with the full analysis of the dynam-
ics associated wit qs.d with E s. (2.34)—(2.37), it is worth discuss-
ing the noninteracting theory (u =0), since it gives some

'
h

'
t the importance of nonlinearities in t e prob-

ndentl fromlem. In this limit each mode evolves indepen en y
the others through the equation

= —( + )C(, )+1,
Bt

which has the solution (for rz & 0)
—( ~+r )t

Cp(q, t ) =Cp(q rp ) +e (Cp(q rg ) —Cp(q, rz

(3.2)

(3.3)

where Cp(q, r) is given by (2.19). For rF &0, one has ex-
ponentia re axa i1 1 tion to the equilibrium state Co q, rF

1/2For rF & 0, however, all modes with q & q, =
~
rF

~

are

illustrated in Fig.The distinction between the two cases is i..us
' 'g.

2 through the time development of

Sp(t)= f 3 Cp(q, t) .
d q

(2m )

FIG. 2. Time evolution of So(t) in the noninteracting theory
for quenches above and below ro, ——=0.

B. Interacting theory: rF & r,

The interacting theory can be solved numerically using
a standard forward step time integration and a numerica
integration over a 100-point mes

'
qh in to obtain t .

Above the critical point (rz & r, ), the time evolution in the
inc ' '

b
'

t racting case is not expected to b qbe ualitatively dif-
ferent from the noninteracting case. The behavior o

'
r of S(t)

Fi . 3) displays the same saturation pattern observed in
the noninteracting case for r & . n is c
r = —1/2' &0, there is also no instability for r, &r &0,C

as shown in Fig. 3 for rF ———0.025.
Th t cture factor C(q, t) shown in Fig. 4 displays ae s rue

uniform growth from the initial value (3.1) to the final
equi i rium o'1'b '

Lorentzian form (2.15). The same e avior is
observed for a quench to the critical point rF r„w ic-—
for completeness is shown in Fig. . One in s a
peak eig a q=h

'
ht =0 grows linearly with time and the

width narrows with a t ' behavior.

90

I

&COP

v(xj
20

io

8
C/)

~ 0.5

—20

l2

I i I i I i I

—2 0 2 4

FIG. 1. Potential V(x)=rx +x for various values of r.

FIG. 3. Time evolution of S(t) for NCOP in the interacting
t eory or a quh f quench above the critical point (rF ——0.5 and
rF ———0.025).
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symmetry breakin, throu
o not contain a s mm

'

g, oug dynamical equations whi h

y etry-breaking mechanism. Th
ic

ore, or all finite tim th pontaneous magneti-cs ere is no s on

~ ~

and there is no distinction between
itudinal and transverse modes. The

' ' 's

given by
e mo es. The equation of motion is

l.2

BC;(q, t) = —(q' —g)C;(q, t)+1, (3.5)

with

0.8 (rF+—S) . (3.6)

04
0.5 I.O

FIG. 4G. 4. Time evolution of the str
ve e critical point (rF ——0.5). The e uilibri

E ashed curve) is reached for t —10

C. Interacting theory: rF & r,

(3.4)

and the static structure factor behaves
longitudinal d

or e aves differently in the
'na an transverse directionstlOns as 1 d a ed Eqs.

Therefore, the time
quench with, '

p

'me evolution after a
i rF ~ r, is expected to ex"' '

ina equilibrium state, which requires

I

NCOP

=-0.05l

As was discussed in Sec. II in the equilibrium state
F &r, t e symmetr is br

develops a s ontan
y

'
roken and the system

ps a spontaneous magnetization, (2.13b) with u =1
2

z ="c

For very early times we ex ect ive expect, given the initial condition
a ——rF and the dynamics will r

the noninteractin
proceed as in

ing case. Namely, that each
evolve independently from the

fo = —10 ha h h fa e growth of the eak at
1 b (3 3) fy . or times up to t=

ti "h'""thr, e noninteracting theor ra i
d' " 'nd n'nl'"" tn inear interactions becom gy

is precisely these nonlinear in
tame the instabilit d

'
ear interactions which

This is due to th f d
a i i y an eventuall e uilib

e ee back of the flue
y q

' '
rate the system.

plification factor iv
uctuations on the am-

ac or, given by the presence of S in E . 3
As the instability proceeds, the flue g

e va ue o g, i.e., of the ch
ince the expected e uiliq bnu state is g ven

h ihi f h
'

d

g vanishes and S
S(oo)=

~

r . Th'
es an (t) grows toward th

q ilibrium is reached as
r the saturation value

rF . is is clearly illustrated in Fi . 6
gives the behavior of S(t)IS( oo ) forordi e e tvauesof

t odiff tti ': he regimes: the fast tran
di d h 1e ear y stage of the instabilit

the
o e saturation value S( oo ) = r

t e ensuing slow transient for subsequent times. I

e mec anism governin the ins
'en is quite di ferent from the one operat-

1.2

0.8

I I

NCOP

'O

0.4

8

0.5

0.5 1.0

0 l2
FIG. 5G. . Time evolution of the structure

a e critical point (rF ——r, = —0.0

C(q, oo)=1/q .
n s e asym toticy p 'c critical structure factor FIG. 6. T'Time evolution of S(t ) for NC

e critical point (r~ ———1 = —5,, rI; ———5, rg ———10).
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ing at the early stage and, in fact, we expect it to be dom-
inated by the interaction among the modes.

Notice that although g is small and S(t)-S( )

still a situa
'

, this is
a si uation far from equilibrium, since Eq. (2.18) re-

quires in the equilibrium state S=S =—=,= —I, «S(~)
=

~
rF ~. In other words, during the early stage the s s-

tem has mananaged to reduce the amplification factor by
age e sys-

developing anomalously large fluctuations. The dynamics
o the later stages must then satisfy the twofold require-
ment of keeping the amplification factor small (g vanishes
as r ') and reducing the value of S(oo) to S, . This is
done by shifting the fluctuations from the high-q modes
to t e low-q modes through the mode interaction, as is il-
lustrated in Fi . 7g. , which depicts the time evolution of the
structure factor. In the early stage, C(q, t) grows from
zero almost uniformly for all values of q shown (Fig. 7
corresponds to

~
rz

~

=10 and therefore q, & 1, initially).
Subsequently, after S(t) has reached 1 1

oo, t e dynamics of the structure factor evolves via the

rium value —1/q (dashed curve in Fig. 7) and by the
continuing growth of the low-q modes. Eventually, when

g is very close to 0 and S(t) to S(oo ), only the =0 d
p on growing without limit, while C(q, t) approaches

q&0.
the Nambu-Goldstone contribution C ( ) = 1/ f

C(q, t)=C(q, t)exp —I ds(q —g)
t

t
dt' exp —j ds(q —g)

where t is an instant-of-time intermediate between to and
t. I t is chosen in the late stage of the relaxation then, as
it has been remarked above, g is small and there is a ran e
of wave vectors q »g, such that g can be neglected in
the right-hand side of Eq. (3.8), yielding

C(q t)=C(q t)e ~' '~+[I —e i ~' '~]/'q

(3.8)

(3.9)

This kind of behavior means that the system attempts
to reduce the anomalous high value of fluctuations as
represented by S(t)-S(oo)] by ordering. The ordering
corresponds to the growth of domains of the desired final
equilibrium state. However sine th

'
dce ere is no dynamical

mechanism for symmetry breaking in the equations of
motion, all possible orientations of th de or ering will be
represented among the domains, and m(t) remains zero
on averaging over the entire system. The development
an inexorable growth of these domains is reflected in the
form of t e structure factor. The solution of the e

'
n o e equation

o motion (3.5), with the initial conditions (3.1) is given by

C(q, t) = dt'exp —j ds(q —g), (3.7)

which can also be rewritten as

500
lQ

NCOP

r =-tO

Furthermore, if (t t) is sufficien—tly large, the first term
can be neglected with respect to the second one. This
holds true as long as q &g. On the other hand, for q (
(which gives a narrow interval around th
chosen ver

e origm w en t is
c osen very large) the opposite occurs, namely, both terms

rig — an side of Eq. (3.8) describe exponential
growth but the first one is overwhelmi 1 b'ming y igger since it
contains the cumulative effect of the instability at the ear-
ier times. Hence, in the late stage the structure factor to

a good approximation can be written in the form

C(q, t) =D(q, t)+CNG(q, r),
where

CNG(q, r)=[1—e ' ']/q',

(3.10)

(3.11)

(3.12)
t

D(q, t) =D(q, t) exp —I ds[q g]—
2

D(q t), q
C q, t)— CNo(q r)

(3.13)

l l I I

0 0.2 0.4 0.6 0.8 I.O

FIG. 7. Time evolution of the structure factor for NCOP and
a quench below the critical point (r = —10). Th&F——— . e dashed curve

u- o stone contributionrepresents the equilibrium Nambu-G ld

~~ q)=1/q .

D(q, t) =AL 3(t)F(qL(t)),

all the re
with I' 0 =1, implymg that at this stage of the evolution

e relevant time dependence appears through one fun-

(3.14)

The contribution (3.11) describes the growth of the
dstone modes and yields asymptotically the

1/q behavior. The term D(q, t) instead describes the
growt of the central Bragg peak associated with the
development of order. Furthermore, this latter contribu-
tion can be put in scaling form,
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damental length L(t), which gives the linear dimension of
the domains. The form (3.14) of D(q, t) is immediately
obtained from Eq. (3.12) after defining F(x ) through

D(q, t)=D(q=O, t)F(q, t) .

This gives

F(q, t) =F(q, t)e
2t

with the solution F(q, t)=e ~ ', which can be rewritten
as

domains of the new phases, and the linear term corre-
sponds to the development of Nambu-Goldstone modes
within these domains. Finally, notice that the form (3.10)
of the structure factor applies to all i components of the
order parameter. Namely, the Bragg peak develops along
all directions as domains pointing in all directions are
formed, and globally the symmetry is not broken.
Therefore, the Nambu-Goldstone modes must be present
for all values of i, since a given value of i is transverse
with respect to all the remaining ones.

F(x)=e

with x=qL(t) and

(3.15) IV. COP: TEMPERATURE QUENCH WITH
CONSTANT MAGNETIZATION

A. Noninteracting case

L(t)=(t/a)' '. (3.16)

C(O, t) =t+423.7t'~', (3.17)

where the t ~ term corresponds to the setting up of

I.O

0.8

I

Ioop

0.6

Defining L '(t) as the width at half-height of the peak,
we have a = ln2 and L(t ) =1 20t ' . . Even though
m(t) =0 at all times, the quantity A in Eq. (3.14) evolves
to the value 3 =mF given by Eq. (3.4), where mF is the
value of the spontaneous magnetization associated with
the final equilibrium state.

The above predictions for the structure factor are sub-
stantiated by the numerical computation. In fact, Eqs.
(3.10), (3.11), and (3.14) give an accurate representation of
the numerical data for the structure factor in the late
stage. After the subtraction of the Nambu-Goldstone
contribution (3.11), the Gaussian (3.15) with a = ln2 gives
an excellent fit of the data for the shape function x & 4,
and it is found to be independent of time and of the value
of rF (Fig. 8). From the data for the inverse of the width
of the Bragg peak, we find L(t) =1.32t ' for long times,
in agreement with Eq. (3.16). We remark that the
behavior of L(t) is in agreement with the Lifshitz-
Cahn-Allen curvature-driven growth law developed for
scalar order parameters. This suggests that in the NCOP
case the growth law is independent of the number X of
the order-parameter components. The q=0 component
of the structure factor satisfies, for long times,

B. Interacting case

The preparation of the system in the interacting case is
a bit more subtle. We assume that in the initial state
(rl, hl&0) there is a finite magnetization mi&0. Then we
imagine suddenly dropping r to a value rF below the coex-
istence curve and adjusting the field so that the average
magnetization is fixed at the value II. On and below the
coexistence curve the field vanishes, so that the final
equilibrium state is characterized by (rF, hF ——0). Since in
this problem the symmetry is broken from the onset, we
must distinguish between longitudinal and transverse
modes. We must solve Eq. (2.36) for the transverse direc-
tion

d Cg(q, t)
Bt

= —q'(q' —ki)Ci(q t)+q'

where

(4.1)

The noninteracting solution (u =0) for a COP corre-
sponds to the Cahn-Hilliard —Cook theory with a
structure factor given by (3.3) but with (q +rF)t multi-
plied by q in the exponential. For rF &0, we obtain ex-
ponential relaxation to equilibrium at rF, except for the
point q =0, which is pinned at the initial value
C0(O, ri ) = 1/ri by the conservation law. For rF & 0, we
again have unstable, exponentially growing modes for
wave numbers q & (

I
rF

I

)' . Because of the conservation
law, there is a single wave number qM

——(
I
rF I

/2)'
which grows faster than the others. Therefore, C(q, t) is
characterized by a peak located at q=qM, which grows
exponentially as

~r ~2~/'4
C(qM, t) =2(e 1)/

I
rF

I

g~= —(rF+S+m ) . (4.2)

0.4—

0.2—

FIG. 8. Shape functions for NCOP and COP.

The behavior of C~~(q, t) then is obtained from the equa-
tion analogous to (4.1) replacing gz with g~~

=gj —2m .
In the initial state with ri ——+ ao, we have, as in Eqs.

(3.1) and (3.2), Ct(q) =St ——0. The first thing we note in
this case is that we can map the problem for the trans-
verse modes with a finite magnetization into one with
zero magnetization if we replace rF +m = rF and treat rF
as an effective "temperature. " Clearly the main qualita-
tive effect of m is to define the coexistence curve.
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the s stem is unstable for rz &,.r' r . NumericalTherefore, t e sys em
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of Eq. (4.1) in the form analogous
es

ous to (3.8),

Ci(q, t)=C&(q, t)exp —q ~ ds q—

Ci (q, t) =D(q, t)+ CNo(q, t

with

4t
CNo(q, t) =(1—e ~ ')/q

(4.4)

(4.5)

D(q, t)=D(q, t) exp —q ~ ds q2 —i (4.6)

l 0-- ———-r =-lo —-- - - - ---
0.8

S
0.6

l

'COP

0.4

0.2

2 4 6 8 IQ l2 l4 l6 l8 20
t

+q dt exp —q ds q-+ ' — — ) (4 3)

t —1/2'call that for large times, gi t-Since we find numerica y
for t sufficiently large we may write, as m q.

- 2—

0 0.5 l.0

OP andevolution of the structure, factor for CO
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osition of the Nambu-GoldstoneThe peak height and position o
contribution are given y PN& ——

the Nambu-GoldstoneAfter subtracting t eqNG ——0.6
r the eak term D(q, t ) are wellcontribution, the data for the pea erm

fitted by the scaling form

D(q, t) =AL3(t)F(qL(t)), (4.7)

e osition of he Bragg peak given by
nd the eak height given by

h the coefficients arePM(t)=104.0t, w ere
r = —10. Again we find (u =1)rF=—

2 2—m —S~ =mF —m (4.8)

V. ISOTHERMAL FIELD REVERSAL
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nism of nucleation. We point out. that we use nucleation
in a generalized sense here because we expect a qualitative
difference between the X= 1 case, where one has sharp in-
terfaces between phases, and X & 1 where one has "gradu-
al" Bloch walls separating domains. We assume that the
system is prepared in an initial equilibrium state lying on
the coexistence curve, namely, rl ~r„with a nonvanish-
ing magnetization

mt ——(r, —rt )'1/2 (5.1)

m (t) —mF
(t) =

ml —m+
(5.2)

where m~ is the final equilibrium magnetization satisfy-
ing the equation of state (2.7), and defining the lifetime r
of the initial metastable state by

(5.3)

we obtain r as a function of hz for rj; ———10, as shown in
Fig. 12. Our best fit to the data is given by
25.66' hF

~

', while a fit to ~-
~
hF

~

' fits well for
~
hF

~
& 1, but less well for higher values of hz

l
.

Of particular interest is the behavior of the transverse

pointing in the positive 1 direction. We may think that
this state is realized in the presence of a positive and in-
finitesimally small external field ht ——0+. At some time
tp the field is suddenly reversed to a negative final value
h+ &0. The time evolution toward the new equilibrium is
governed by Eqs. (2.34) and (2.35) for the magnetization
and the transverse structure factor, namely, we must solve
(2.34), (2.35), (2.37), and (2.38) with i being a perpendicu-
lar component for m(t) and Cz(q, t).

The longitudinal structure factor C~~(q, t) then is ob-
tained by replacing gz with

(rt+~+—3m ) .

The resulting equations have been studied numerically
and the behavior of the magnetization, shown in Fig. 11
for rt ———10, exhibits the typical behavior expected when
the new phase is formed through a nucleation process.
We notice that there is no limit of stability as has been
found in certain approximate treatments ' of the X= 1

case.
Introducing the relaxation. function

200
I l I l l I I 1

I60--

120--

7

80—

40 —$

Numerical values af T

best fit
r=zs.ss [hF[

o r=z7.pp )hFJ

0—
l

0 1 2 5 4 5 6 & 8 9

l&F I

FICr. 12. Dependence of r [see Eq. (5.3)] on
~
hr

~

for
rr ———10. )& are the result of our numerical solution for m(t).
The solid curve is the fit to v=25. 66

~
hF

~

' and the open cir-
cles are for r=27.00

~
hF

~

structure factor during the time evolution. Initially

gz ——0, and in the transverse directions there is only the
contribution of the Nambu-Goldstone modes
Cq(q, ti) =1/q . The effect of the negative external field
hz in the right-hand side of Eq. (2.34) is to reduce the
size of the magnetization, which in turn produces a posi-
tive value of gz and therefore a growth of the fluctuations
in the transverse directions. These reach a maximum
when the magnetization along the longitudinal direction
goes through zero and then decrease gradually as the mag-
netization grows negative (Fig. 13). The time develop-
ment of the structure factor is illustrated in Fig. 14 for
hF ———1.0 and r = —10. The continuous lines show the
growth of the structure factor above the 1/q behavior as
the magnetization decreases from the initial value to the
zero value (compare with Fig. 13). In this regime the sys-
tem is compensating for the loss of order in the longitudi-
nal direction by building up fluctuations in the transverse

—lo

-0
0 —'

-0
foal 6S

l

80
t

j20
I

160
t0 20

t
30 40

FIG. 11. Time evolution of the magnetization (NCOP) in an
isothermal field reversal for various values of hF and rl ———10.

FIG. 13. Time evolution of the magnetization m(t) and of
the transverse fluctuations S(t ) in the isothermal field reversal.
r = —10 and hF ———1.0.
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