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Roughening transition temperature in the presence of an adsorbing fluid
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The effect on the roughening temperature T~ of an adsorbing fluid above the substrate is calcu-
lated. The partition function is evaluated for three models, the Ising model, the absolute solid-on-
solid model, and the discrete Gaussian models, with the addition of a second species in vapor form
above the surface. Then with the use of the duality tranefornreehsn ef Jose st cL and the
renormalization-group method of Kosterlitz, a relationship between T~ and the chemical potential
of the fluid is obtained. TR is then expressed in terms of the ambient pressure by using approximate
equations of state. It is found that a significant decrease in T~ may occur as the pressure is in-

creased, and the conditions under which this effect might be observed are discussed.

I. INTRODUCTION

In a previous communication' it was noted that the
equilibrium roughness of a solid surface will increase in
the presence of an adsorbing gas if the preferred adsorp-
tion sites are the edges of the protrusions associated with
the roughness. Therefore, one would also expect a lower-
ing of the roughening transition temperature Ttt. In this
paper, we calculate TIt as a function of the chemical po-
tential of the fluid above the surface, and of the adsorp-
tion energy. Three models are considered: First we dis-
cuss the simple Burton-Cabrera-Frank (BCF) picture,
which reduces to the two-dimensional Ising model; then
we discuss the absolute solid-on-solid (ASOS) model and
the discrete Gaussian model. The renormalization
theories that have been established for the "pure" sur-
face ' are immediately applicable in the presence of the
adsorbing fluid. The only change is that the energy J
needed to create a step of unit height on the pure surface
is replaced by a function J':

J/
=f(J/kttT, (p+

~
~i )/AT),

kgT

where p is the chenucal potential,
~

e
~

is the adsorption
energy, and kit is Boltzmann's constant. The value of
IC =(J'/k~T) at TIt, the roughening temperature, is
known from renormalization theory; therefore, Ttt in the
present case is the solution of the equation

f(J/kBTR y (p+ I
e

I )/kBTR) .

The relation between chemical potential, pressure, and
temperature of the adsorbing fluid is then used to calcu-
late the roughening temperature Ttt as a function of pres-
sure for the gaseous as well as liquid phases where appli- '

cable (i.e., where Ttt is less than the gas-liquid critical
temperature). As one might expect, substantial lowering
of Ttt occurs in the liquid range. Even if the free liquid is
gaseous, the result for the liquid should still be the
relevant one, once the adsorbate is several layers thick.

The physical system that we have in mind is that of a

II. INTERACTION BETWEEN THE FLUID
AND THE SURFACE

A. BCF model

In 1951 Burton, Cabrera, and Frank proposed a two-
level model of a crystal surface, in which the roughness
energy between two neighbors is written as

U(o;, o;+s)=J 1—or or'+s

crystal surface (for example, silver) in contact with a gas
of a different species (for example, carbon dioxide).
Models of crystal growth must take into account the ex-
change of atoms between the substrate and the vapor (or
solution) from which the deposit is being made. But it is
also of practical interest to consider the effect of a second
substance above the surface. In principle, competition be-
tween the two vapors is a complicated process; therefore,
in this report we make the assumption that the second
species has a significantly larger vapor pressure than the
first. We also neglect interaction between the two gases
and assume that a phenomenological treatment relating
the chemical potential to the vapor pressure will be suffi-
cient for our purposes. The second species can adhere to
edges of protrusions so that there should be a decrease in
Ttt as the pressure is increased; the detailed behavior of
the gas will not qualitatively influence this conclusion.

This paper is organized as follows. In Sec. II we dis-
cuss the calculations involved in obtaining Ttt as a func-
tion of the chemical potential of the fluid for three dis-
tinct models: the Ising, the ASOS, and the discrete
Gaussian models. The results are Eqs. (9) and (18). Since
the second species is adsorbed at the edges of the substrate
we expect the roughening effect to be enhanced as the
pressure of the fluid is increased. Therefore, in Sec. III
we apply approximate equations of state relating the
chemical potential of the fluid to the pressure and tem-
perature, enabling us to obtain TR explicitly in terms of
P. The results are plotted in Figs. 1—3.
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In this expression, J =P/2 (P is the binding energy of the
crystal), and the variables cr;,cr;+s take on the values + l.
The summation index i runs over all sites of the lattice
and i+5 runs over aH nearest neighbors in the positive
direction T. herefore, the roughness energy for the surface
with a given distribution of I cr; I is

is independent of the configurations Icr; ]. It is clear from
Eq. (6) that the roughness energy J in the BCF model is
now replaced by J,ff through the following equation for
all temperatures:

E= g U(cr;, cr;+s) . (2) I ettlng E~~ ac, 1.e., et ~—oo (which means that flat sites
are not eligible for adsorption), this expression reduces to

Since the model is effectively the two-dimensional Ising
model, the roughening transition temperature Tz is exact-
ly known

1 —1.135 .
lncot(m/g)

(3)

In the presence of an adsorbate, we can write the energy
for a given step distribution as

Z= g exp

(rn; I

J g (1—cr;cr;+s)

+p g m;+s (1+cr;cr;+s)
i, 5

6'()

+ g m;+s —(1+cr;o;+s)+—(1 cr;o—;+s), (4)
i, 5

where m;+s=0, 1 is the number of adatoms, e~ is the ad-
sorption energy at a smooth site, and eo is the adsorption
energy at a rough site. Including the possibility of ad-
sorption at smooth sites evidently involves no extra work
in this model. The grand partition function for the sys-
tem is B. The ASOS and discrete Gaussian models

The partition function evaluated in Ref. 1 was

Z= g exp[ PH+PpN(b, h—;s)],
I h,. j

~here

(10)

ISING MODEL

Not surprisingly, this is also what we obtained for the
ASOS model at low temperatures, ' where step increments
greater than 1 are unlikely.

The roughening transition temperature is now given by
the solution of the following equation:

kiiT=1. 135[J—k&Tin(1+e ' e~")], (9)

where e~" is a function of pressure P and temperature T.
In the'case of an ideal gas, for example, e~~= (I'/T)A, , A,

is the de Broglie wavelength of a gas molecule at tempera-
ture T. Evidently, Tz is a function of (P,eo,J), and when
P =0, p= —Oc, which means no adsorption is available,
we recover the BCF value of Tz. In Fig. 1 we plot I' vs
Tz, the manner in which e~& is evaluated in terms of I'
and T will be discussed in Sec. III.

Fo+ (1—cr;cr;+s)
O. l = I

)

I I I I

)

I I l I

~

I I I I

where e& ——p —e&, eo ——p —eo, and p is the chemical poten-
tial of the adatom in equilibrium with its vapor.

For any well-behaved function f(cr;cr;+s), bearing in
mind that (cr;cr;+s) "=1,we have

f(cr;cr;+s) = ,
' [f(1)+f ( —1)]—
+ ,

' cr;cr;+s[f(1)—f ( ——1)].
%'e are now left with

Z= g Aexp —g cr;cr;+s J+—ln(1+e )P 1 K
(cr, j is

0.01 =

0.001 =

0,0001 =

105, , I. . . , I. . . , I. . . , l. . . ,

0.8 0.9 1.0 1.1
TRANSITION TEMPERATURE TR

where

——ln(1+e )
1 o

(6)
FICx. 1. The graph of P vs T~ in units of J for the Ising

model. kJ ——(2m' /MJ)'~. The adsorption energy e is plotted
once for

~
eo

~

=J and once for
~

eo~ =2J. Also shown are the
same curves in the liquid region with a change in chemical po-
tential Ap= —2.57J. The Lennard-Jones parameter uo was
evaluated at uo ——4.3J.
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H=Jg ~h; —h;+s~,
i,5

N(b, h;s)= g m seo
i,5

0, 1 if jh; —h;+s~~0
0 otherwise .

Z= g f dIp; exp
i

1 2

2~ X(q —q +s)
eff i 5

+yocos(2m'; )

|l is summed over all positive directions. With this partic-
ular Hamiltonian, called the ASOS model, these sums can
be evaluated exactly, and the result is

cos(P; —P;+s) —e
g;s ——1+(1+e» )

cosh(PJ) —cos(P; —P;+s)
'

V'=S +
I

&o
I

~

(12)

The indices run over all sites of the lattice, and there is
one factor its for each bond between sites. In the limit of
low temperatures, as has been pointed out by Weeks, "
the partition function takes a form similar to that of a
classical planar Heisenberg ferromagnet. For our pur-
poses, it is sufficient to expand g in powers of the differ-
ence of the angles, giving

K= —+nIC exp ——Kln(8e &)
2 2

2
(18)

so that as in Ref. 3(c) we work with the spin-wave vari-
ables rather than the vortex variables. Defining the
Careen's function to be

2

(y (q)) '=G '(q)= +mt',
Eg

the renormalization-group method of Kosterlitz@ ' can be
applied. The spin-wave correlation function G(q) is not
directly related to any quantity referring to the original
lattice variables h;; however, the recursion relations for

'

the parameters K, y, and m are similar (though not identi-
cal) to those of Kosterlitz. We assume that the fixed
point of the dual lattice corresponds to the critical point
of the original lattice.

The equation for the fixed point value of E, denoted
K*, is

zm dPIZ=& f exp
l

&eff

+O((P; —PI+s) )

The effective coupling is

1+e» sinh(PJ)
cosh(pJ)=1 sjnh(pJ)+e»(1 —e ~ )

(13)

(14)

y is Euler's constant. From this we find K"=0.7 and
can then obtain T~, the roughening temperature, as a
function of chemical potential, or less directly as a func-
tion of the pressure of the gas, by equating K"=Egff.
(The results are plotted in Fig. 2.) Various values of the
adsorption energy e0 are shown, each indicating a reduc-
tion of TR as the pressure is increased.

For comparison, we have also treated the discrete
Gaussian model

The index i refers to a lattice site, i =(i„,i~), and 5 is
summed over all positive directions. In order to proceed
with the analysis, we use the duality transformation of
Jose et al. " This has the effect of taking the original
lattice with site variables pI defined on the interval (0,2m. )

into an new lattice whose site variables p; run from —oo

to +~

H=J Q(h; —h;+s)
i, 5

ASOS MODEL

1 I I

)
I I I I

)

I I I I

i

I I I I

0.1 =

0.01 =

Xexp — g (yI y;+s) +—2m g mIyt
1 2

eff i 5 i
0.001 =

(15) 0.0001 =

In addition to the "spin-wave" variables q&, this transfor-
mation introduces a set of "vortex" variables m; which
range over all positive and negative integers. Introducing
an extra term in the exponent, lnyom;, the final form for

-the partition function is obtained by expanding in powers
of yo [Refs. 3(c) and 4(a)]

10 5 I I l . I I I I I I I

1.0 1.1 1.8 1.3
TRANSITION TEMPERATURE TR

FIG. 2. The graph of P vs T~ for the ASOS model. The
same as in Fig. 1 but with Ap = —3.43 and ua ——5.1.
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1+8pp'
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ticular value of e0, however, this dependence is very weak.
A change of 1% was found in u, „when e0 had been in-
creased by a factor of 50.

One important approximation has been made which re-
quires a brief explanation. The gas-liquid phase transition
was treated phenomenologically within the model of an
unbounded van der Waals gas. The equation of state of a
gas bounded by a smooth surface has been treated in the
lattice-gas " " and the Potts lattice-gas models. ' '

One simple improvement of our model would be to use
the equation of state of Ref. 7(c) or 7(d). A truly com-
plete treatment would simultaneously take into account
roughening and the interactions considered in these refer-
ences.

IV. CONCLUSION

In this paper, we have considered the effect of having a
second fluid above a crystal surface near the roughening
transition temperature. The adatoms generally can adhere
to smooth sites or to the edges of protrusions on the sur-

face, with characteristic energies. Only the latter process
was investigated, and it was found that a decrease in
roughening temperature Tz results. Phenomenological
equations of state were employed to obtain TR explicitly
in terms of the vapor pressure of the fluid.

In conclusion, it can be seen from the graphs that once
the gas is in liquid form, considerable decrease in the
roughening temperature occurs for relatively little change
in pressure. As a result, there is hope that this effect can
be observed even if the transition temperature at low pres-
sure is relatively high since the liquification causes a dras-
tic increase in the effective adsorption energy. For a sub-
strate with J-0.1 eV, a proper choice of gas would re-
quire a material whose binding energy is about 0.5 eV, for
which the van der %'aals equation would predict a critical
temperature of about 100 K.
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