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Finite-temperature properties of the damped one-dimensional quantum sine-Gordon model
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The finite-temperature properties of the damped one-dimensional quantum sine-Gordon model

are investigated by using the semiclassical approximation. The renormalization of the phonon mass
and the soliton density is calculated. It is found that the dissipative effect changes the low-

temperature behaviors of these equilibrium properties by suppressing quantum fluctuations. The
dynamic response function is obtained. The limit of applicability of the theory and its relation to
other classical and quantum theories are discussed.

I. INTRODUCTION

The quantum statistical mechanics of soliton-bearing
systems have attracted the attention of many authors. '

Maki and Takayama' (hereafter referred to as MT) have
studied the static and dynamic properties of the one-
dimensional sine-Gordon P and double-quadratic models
using the semiclassical approximation. The static proper-
ties of the sine-Gordon model have also been investigated
exactly using the Bethe-ansatz method. '

On the other hand, the relevance of dissipative effects
in quantum systems has been recognized recently in rela-
tion to macroscopic quantum phenomena. ' This should
also be important in the investigation of soliton-bearing
systems, because they are usually derived by elimination
of microscopic degrees of freedom, which results in a
damping mechanism. For example, experimental data in-
dicate that the motion of a charge-density wave in a
quasi-one-dimensional conductor is overdamped. Intrin-
sic damping is also observed for quasi-one-dimensional
spin systems.

In the one-dimensional quantum sine-Gordon model,
we have shown that dissipation effects change the weak-
field singularity of the quantum soliton-pair creation
rate. Finite-temperature effects on this phenomenon
were also discussed and the features of the crossover from
quantum to thermal behavior was found to be essentially
affected by dissipation. These phenomena were investi-
gated at temperatures well below the phonon mass.

In the present paper, we investigate the properties of
this system including the temperature range higher -than
the phonon mass but lower than the soliton mass. We in-
vestigate the effects of damping on the thermal and quan-
tum renormaliz ation of phonons and solitons. The
dynamical response function is also obtained. These re-
sults are compared with previous quantum and classical
calculations. It is found that the dissipation changes not
only the dynamical properties but also equilibrium prop-
erties such as the soliton density in the quantum case.

Damping is introduced in the Feynmann path-integral
description following the method of Caldeira and Leg-
gett. This method allows us to describe the damping ef-
fect in a compact manner.

In the next section we formulate the problem in terms

of a Feynman path integral. The phonon renormalization
is calculated in Sec. III. The soliton density is calculated
in Sec. IV. The dynamic response function is obtained in
Sec. V. The last section is devoted to concluding remarks.

II. PATH-INTEGRAL FORMULATION

The one-dimensional quantum sine-Gordon model is
defined by the following Lagrangian:

L/2
2 2fBb 2~or=-,' f„,(a,p)' —(a.p)'+, cos(gp), dx,

(2.l)

where P is the bose field, mb the bare phonon mass, mo
the renormalized phonon mass at zero temperature, g the
coupling constant, L the system size, and t and x are time
and space coordinates, respectively. Planck's constant and
the phonon velocity are taken to be equal to unity. In the
presence of damping, the partition function Z is expressed
in terms of the path integral

J J e~. w D ' exp{ —S[4(x r)]IP(x, r)

=P{x,O)

(2.2)

S=SO+Sd,
P

S,= —f dry, ,

(2.3)

(2.4)

, m. [P(x,r) P(x,r')]—
4~ —«~ o o p sin [~(r—r')/p]

(2.5)

Wz is the Euclidian Lagrangian obtained by setting
t~ ir in (2.1). Sd —represents the Ohmic damping intro-

duced by Cladeira and Leggett. "' ' The extension to one-
dimensional systems is explained in Refs. 8 and 9. In the

where p is the inverse of temperature T and C is a diver-
gent constant wnich is determined to give a finite result
for Z. S is the Euclidian action including the effect of
damping given by
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real-time equation of motion this corresponds to the
Ohmic damping force which is equal to —gP.

In this paper, we confine ourselves to the weak-coupling
region (g /8~&&1) and low temperatures compared to
the soliton mass (T &&8mp/g ). In this regime thermal
and quantum fluctuations can be treated by perturbation
theory, and the self-consistent harmonic approximation is
applicable.

II. RENORMAL'IZATION OF PHONON MASS
2= 2 2

mp ——mbexp — g ln
4n.

2A

mp+r//2
(3.8)

The third term is convergent. We can, therefore, take the
limit A~ oo safely in this term to obtain the finite result.
We evaluate the above expression analytically in the low-
temperature limit (T «m ) and numerically at finite tem-
peratures.

At T=O, the summation reduces to the integral and
can be evaluated analytically. We have

In this section we calculate the properties of the system
in the absence of solitons. In the one-dimensional sine-
Gordon model, the ultraviolet divergence is completely re-
normalized by assuming a normal product in the cosgP
term. ' The same is true for the dissipative case because
dissipative effects are irrelevant for the ultraviolet diver-
gence. The renormalized value itself, however, depends
on the strength of dissipation. In the ground state the re-
normalized mass mp is expressed in terms of the bare
mass mb in the form

2m p =pl pp exp —— — g ln
4~

mpp

mp+ q/2
(3.9)

where mpp ——m( T=0, g=0). This equation is solved nu-
merically for g =0.2m (Fig. 1). This value is chosen to
compare our results with those of MT. In the weak-
damping limit (q « m ) it reduces to

where mp ——m(T=O). This formula can be written in a
form independent of the cutoff as

2

m p =mbexp — (P )x2= 2 (3.1) mp =-mpp+g(g') /16m. , (3.10)

:A:=A —(A )p„,, (3.2)

where ( )~„,denotes all possible pairings of the P field in
A at finite temperatures. ' Then we can write

where ( )x denotes the average in the ground state. ' At
finite temperatures, it is convenient to introduce the
finite-temperature normal product defined by

where g' is the renormalized coupling constant given by

(g') =g —1/8m. . (3.11)

The temperature dependence of m is calculated analytical-
ly for T « m to be

mbcosgP =m:cosgP:,
where

(3.3)
~T2 g2g g2 mp

m =-mp —
2 1, —

48 mp'
'

8 m +ni2
(3.12)

2

m'=mbexp —g (P')
2

(3.4)

(y2)= f g(co2+k2+ ~co„~g+mz)
n

(3.5)

where co„=2nnT (n an integer), and A is the momentum
cutoff. This is calculated as

Here ( ) denotes the thermal average. The phonon mass
defined as above is the self-consistent phonon mass at fin-
ite temperatures. The quantity (P ) is evaluated using
the linearized action around / =0 to have

It should be noted that the correction term is proportional
to T, while in the undamped case it is proportional to
exp( —/3m). At higher temperatures it is calculated nu-
merically for g =0.2m, which is shown in Fig. 2 for vari-
ous values of parameters. At high temperatures it tends
to the value of the undamped case. This is seen clearly
because the last term of (3.6) vanishes as 1/T for
T ))7[~m.

The partition function Zp in the absence of solitons is
calculated using the linearized action around the ground
states as

(y') = ln
2&

2A +fp(/3m ) 1.10-

Illy
flloo

gz= 02Tt

+T g f [(co„+m +k +
~
co„~q)

1.05

where fp is defined by

—(co„+m +k ) '] (3.6)

fp(P )=—f dk

X [exp[P(k +m2)'~ j—1I ' . (3.7)

1.00
10 200 5 15

FIG. 1. g dependence of the phonon mass in the ground state
for g =0.2~.
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to the present case is difficult. The r-dependent soliton-
(anti)soliton pair solution is allowed. This, however, con-
tributes to higher-order effects in the soliton density,
which we neglect here.

The partition function in the presence of solitons is cal-
culated by linearizing the action around the soliton (4.1).
For this purpose, it is convenient to introduce the eigen-
modes Ut of the fluctuations around the soliton in the fol-
lowing way

a' 2 2+m cos(gPs ) Ut (x ) =Qt Ut (x) .
Bx

(4.2)

0.90
0 0.5 1.5 2.0 T/'m

FIG. 2. Temperature dependence of the self-consistent pho-
non mass for g =0.2m and q/moo ——0,2,20.

The orthonormal set I Ut(x) I is given by the following.
(i) For the continuum,

k, +tm tanh[m(x —xs)] tk, ~

[PL(Qt —2m/L )]'

(4~'n'+5. ,p) T'

t, n ~n +
I ~n I

'ti+ m +kl

1/2 where Qt ——(kt +m )' and kt satisfies

h(kt ) +Lkt ——Zml, (4.4)

Pl
Xexp 13L

g

mo
,'+, (y'& (3.13)

b,(k) =2arctan(m/k), (4.5)

where I is an integer not equal to zero and 6 is the phase
shift due to a soliton given by

where kt satisfies

Lkt —2ml (i=an integer) . (3.14)

The constant but divergent normalization factor which
depends on neither g nor T is chosen to give

1

coshrn (x —xs )2P

which is defined to satisfy —m & b & n.
(ii) For the zero mode,

' 1/2

( 2+k 2) 1/2

Zp= Q 2slnh
2T

r

pp1 p ping
2

Xexp LP z
— 2+ (P )

g
(3.15)

in the absence of dissipation, although this choice is arbi-
trary. Expression (3.15) is the partition function obtained
by MT in the absence of solitons.

n= —oo I= —~
P„te " Ut(x) .

o=o
Here all the functions are normalized as

f dr f dxiUti =1

up to order 1/L.
We expand the fluctuation field P =P Ps as—

(4.7)

(4.&)

IV. SOI.ITON DENSITY

4
Ps ———arctanIexp[m(x —xs )]I,

g
(4.1)

where xs is the center of the soliton. Here m is, in princi-
ple, the phonon mass renormalized in the presence of soli-
ton. It turns out, however, to be equal to that in the ab-
sence of a soliton (Appendix A). In contrast to MT, who
treated the motion of solitons in a real-time representa-
tion, the single moving soliton does not appear in our
imaginary-time scheme even in the undamped case be-
cause of the periodic boundary condition along
imaginary-time axis. In the presence of damping, there is
no stationary moving soliton in the real-time representa-
tion. Therefore, the direct extension of the method of MT

In this section, we evaluate the density of solitons
which are thermally excited. In the present scheme, a sol-
iton appears as the stationary point solution Ps of the ac-
tion S as

Using the linearized action around Ps and integrating
over P„t,we find

Z~ Zp(m /~——2m. )exp( PF) f dPpp, — (4.9)

where

dk + 2[k arctan(m/k) —m]
cp„+kz+mz+g

~
tp„~

fP7——,'gin 1+ (4.10)
n~p ~n+'ri

I ~n I

Here Ez ——Sm/g is the classical soliton energy. The
second term is due to the contribution from the continu-
um modes and the third term from the zero mode. In ob-
taining the second term we used (3.13), (3.14), (4.4), (4.5),
and the result of Appendix A. This calculation is similar
to that of MT except that the summation over n cannot
be performed analytically. Therefore we do not repeat it
here.
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The integral over goo is evaluated as follows: The exci-
tation of jboo mode corresponds to the translational dis-
placement of the soliton. By considering the normaliza-
tion of Uo given by (4.7), the displacement of the soliton
dxs is related to dgoo by

dxs =d0~/(PEs)'" . (4.1 1)

Therefore, we have

f dy~=(PE,')'" f „dx,=L(PE,')'". (4.12)

Considering that the phase shift by ns solitons and n~
antisolitons is equal to h(ns+n~ ), the partition function
with ns solitons and nz antisolitons is given by

Zn n =ZO(ZI /ZO) /ns nA. . (4.13)

as loIIg as the soliton density is small; (ns+nz )/I «L.
Therefore the full partition function is given by

Z = g g Z„,„exp[—) (n, +n, )]

=Zoexp(2ZIe "/Zo) . (4.14)

Here IM is the common chemical potential of solitons and
antisolitons which is introduced in order to count the soli-
ton number.

The soliton-antisoliton density is Xs (ns+——nz )/L
given by

1 8
s = — lnZI Bp

=2ZI /ZOL =2m(pEs/2m )'~ exp( pF) . (4.15)—

The quantity F is evaluated analytically for the following
cases: ~ (i) low-temperature limit T && m, g; (ii)
intermediate-temperature regime in underdamped case
(g «T &&m); (iii) classical limit g, m «T.

(i) Low-temperature limit. Here Xs is given by

where Es is the renormalized soliton mass in the presence
of dissipation at T=0. The ri dependence of Es is calcu-
lated numerically and is shown in Fig. 3 for g =0.2m.
For weak damping (ri «m ) the analytic expression is ob-
tained

8mpEs-— — + ln
(g')2 2'

2mp
(4.17)

where mo is given by (3.10). On the other hand for strong
damping Es tends to

Es~8m 0/g (4.18)

It should be noted that the prefactor does not depend on
T, in contrast to the undamped case. '

(ii) Intermediate temperature. In this regime, both dissi-
pation and renorrnalization of the soliton by thermal pho-
nons are irrelevant. Therefore, we obtain

Ns ——(EsT/2n )'i exp( PEs )— (4.19)

where Es =8mIIO/(g') . This coincides with the result of
MT in the undamped case. In the present case, however,
the validity of this formula is limited to this temperature
range.

(iii) Classical limit Here s.olitons are renormalized not
only by quantum fluctuations but also by thermal pho-
nons. This changes the temperature dependence of the
prefactor of Xs. We find

~s =—4m(PEs/2m)'"exp( —PEs~) (4.20)

which coincides with the classical result. '"
In the prefactors of (4.16), (4.19), and (4.20), there ap-

pears Es, while in MT it is replaced by the "inertial
mass" of the soliton. This difference, however, is out of
the scope of our approximation because the correction to
Es is of the order of m or T and this corresponds to the
higher correction to F which we have neglected.

The soliton density is calculated numerically for

Xs-2(Esri/2m )I~'exp( PEso), — (4.16)

II
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FIG. 3. q dependence of the soliton mais in the ground state
for g2=0. 2m. .
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FIG. 4. Temperature dependence of the soliton density
Xq(T) for g =0.2m and g/moo ——0,2,20.
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g =0.2m and various values of 21 (Fig. 4). At low tem-
peratures, the soliton density is sensitive to 21, reflecting
the property in case (i). At higher temperatures the curves
for the damped case approach that for the undamped
case.

V. DYNAMIC RESPONSE FUNCTION

When the external field e conjugate to P is applied to
the system there appears a time-dependent response of P
which is given by

L/2

(P(x, t)&= f dx' f dt's (x x', t—t')e(—x', t')

(5.1)

where r is the imaginary time introduced in Sec. II.
When the soliton density is small (Ns «m ), the expec-

tation value of the intensive physical quantity Q is given
by

(5.3)

@„q=@„q=(co„+!a)„!2l+m2+q2)

where q satisfies

(5.4)

where ( &iv denotes the average in the presence of X soli-
tons The intuitive derivation of this formula is given in
Appendix B. In the absence of solitons, the evaluation of

~ is straightforward and we obtain

in the real-time representation. The Fourier component
of X„&of the response function is given by

R
X~& l&@~„q! ice„~a&+io

L/2
Pl e Eg[,X —X )

—L/2 0

Lq=Lqt =2m. l (l an integer) .

In the presence of one soliton we have

(P(x, r)P(x', 0) &i
—(Ps(x xs)Ps(x—' xs}&, —

+ (P(x —xs, r)P(x' xs, O) &, . —

(5.5)

- X & T,y( , )y( ',0)&

(52)

The first term, however, does not contribute to the
dynamic properties because it is time independent. In the
following, we take only the second term. Then we have

L/2 L/2 P j~ ~+jqy=——f„,dxs f dy f dre " (P(x+y xs ~)P(x —xs0)&—i

Here the average is take over the position of the soliton.
Using the expansion by U~ we have

p L/2
N„'

q
——g f . Ui(x)e'2 dx (P„iP „ i&,

kg

where

(co„+m'+ki+!to„!71)
' for 1~0

(io„+!co„!21)
' for l =0.

(5.7)

(5.g)

(5.9)

The matrix elements are given by

IgpX exp(iq, xs)
[LP( +k, —2 /L)] i h[(q —k ) /2 ]

(5.10)

f L/2 exp( iqi'xs )
Uo(x)e ' dx=-L/2 (2mP) ' cosh(mqi /Zm )

(S.l 1)

where the conditions (4.4) and (5.5) are used for ki and qi.
After lengthy but straightforward calculations, we find

where

(5.12)

2m 1 q —a 1 1 " 4m[4(n+a/2m)2 —q2/m2]
22+ 2 2 2 2L a(a+m) (q +a ) Lm a2 —m2 „0a[4(n+a/2m)2+q2/m2]2

(5.13)
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gime v0q ~&co is obtained. In the opposite regime,
Upq &to, our calculation fails. The real-time approach,
which is successful in the classical case, is desirable also in
the . quantum case. The discrepancy found between the
classica1 limit of our theory and the previous classical cal-
culations requires further investigation.

The precise comparison between our theory and the ex-
periment is not possible at the present stage. From this
point of view, the extension of the present theory to other
quantum systems such as spin systems is desirable.

The concept of a finite-temperature soliton mass intro-
duced by MT is not well defined in the present theory
even in the undamped limit. It is not possible to fix the
position and velocity of the soliton, because the fluctua-
tions in them are automatically introduced as the transla-
tional mode. It should be noted that this concept is not
well defined also in the exact Bethe-ansatz scheme. '

The inclusion of a breather mode is also in interesting
problem. It is clear, however, that the usual breathers be-
come damped modes here and the number of them is no
longer conserved. Therefore, it would produce more diffi-
culty than in the undamped case. This is also left for fu-
ture studies.

the contribution to (P ), from these corrections exactly
vanishes.

APPENDIX 8
In the dilute soliton limit, with soliton (antisoliton)

number ns (n~ ), it is possible to divide the system into
N=ns+nz subsystems with length L; (i =1, . . . , N,

L; =.L), each of which contains one soliton or antisoli-
ton. The average value of an intensive physical quantity
in the ith subsystem is given by

(A ) ) t ——(A )p L.+5A/L;, (B1)

where

5A=L((A)i I —(A)pL ) (B2)

and ( )„I denotes the average in the subsystem with
length L and n solitons or antisolitons. 5A/L is the
change of expectation value of A due to the addition of
one soliton or antisoliton. It should be noted 5A does not
depend on L, . The average over the total system is given
by
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g L„(A)„+g 5A

=(A )p t+N5A/L

APPENDIX A

The quantity (P ), is defined by

(~p) g f (A1)

where 4~ ~ is calculated in Sec. V. The correction due to
soliton is given by the second and third term of (5.13). By
using the identity

= (A ).+N((», —&».) .

The thermal average over soliton number is given by
OO 00

( A ) =—g g Z„,„„I(A )p+(ns+n„j
ns ——0 n~ ——0

(B3)

X —Q
dx =0,—"(x2+a )

= (A )p+Ns((A ) i —(A )p) . (B4)
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