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The finite-temperature properties of the damped one-dimensional quantum sine-Gordon model
are investigated by using the semiclassical approximation. The renormalization of the phonon mass
and the soliton density is calculated. It is found that the dissipative effect changes the low-
temperature behaviors of these equilibrium properties by suppressing quantum fluctuations. The
dynamic response function is obtained. The limit of applicability of the theory and its relation to

other classical and quantum theories are discussed.

I. INTRODUCTION

The quantum statistical mechanics of soliton-bearing
systems have attracted the attention of many authors.' =3
Maki and Takayama! (hereafter referred to as MT) have
studied the static and dynamic properties of the one-
dimensional sine-Gordon ¢* and double-quadratic models
using the semiclassical approximation. The static proper-
ties of the sine-Gordon model have also been investigated
exactly using the Bethe-ansatz method.?3

On the other hand, the relevance of dissipative effects
in quantum systems has been recognized recently in rela-
tion to macroscopic quantum phenomena.*> This should
also be important in the investigation of soliton-bearing
systems, because they are usually derived by elimination
of microscopic degrees of freedom, which results in a
damping mechanism. For example, experimental data in-
dicate that the motion of a charge-density wave in a
quasi-one-dimensional conductor is overdamped.® Intrin-
sic damping is also observed for quasi-one-dimensional
spin systems.’

In the one-dimensional quantum sine-Gordon model,
we have shown that dissipation effects change the weak-
field singularity of the quantum soliton-pair creation
rate.®  Finite-temperature effects on this phenomenon
were also discussed and the features of the crossover from
quantum to thermal behavior was found to be essentially
affected by dissipation.” These phenomena were investi-
gated at temperatures well below the phonon mass.

In the present paper, we investigate the properties of
this system including the temperature range higher -than
the phonon mass but lower than the soliton mass. We in-
vestigate the effects of damping on the thermal and quan-
tum renormalization of phonons and solitons. The
dynamical response function is also obtained. These re-
sults are compared with previous quantum and classical
calculations. It is found that the dissipation changes not
only the dynamical properties but also equilibrium prop-
erties such as the soliton density in the quantum case.

Damping is introduced in the Feynmann path-integral
description following the method of Caldeira and Leg-
gett.* This method allows us to describe the damping ef-
fect in a compact manner.

In the next section we formulate the problem in terms
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of a Feynman path integral. The phonon renormalization
is calculated in Sec. IIL. The soliton density is calculated
in Sec. IV. The dynamic response function is obtained in
Sec. V. The last section is devoted to concluding remarks.

II. PATH-INTEGRAL FORMULATION
The one-dimensional quantum sine-Gordon model is

defined by the following Lagrangian:

2mj 2m}
(3,60 — (3,0 P+ 2L cos(gd) — —
g g

o1 fL/Z ix,

—L/2

(2.1

where ¢ is the bose field, m;, the bare phonon mass, m
the renormalized phonon mass at zero temperature, g the
coupling constant, L the system size, and ¢ and x are time
and space coordinates, respectively. Planck’s constant and
the phonon velocity are taken to be equal to unity. In the
presence of damping, the partition function Z is expressed
in terms of the path integral

Z=C[ T sup D |25 lexp{—S[ox,n]), (22)
=¢(x,0) VB

where B is the inverse of temperature T and C is a diver-
gent constant which is determined to give a finite result
for Z. S is the Euclidian action including the effect of
damping given by

§=S0+Sq , (2.3)
B
S():— fO deE > (2.4)
and
L2 2 12
o B Bd , T P(x, ) —d(x,7)] .
Sa= 4 _n® fo dr fo 4 Bsin*[w(t—1")/fB]

(2.5)

L5 is the Euclidian Lagrangian obtained by setting
t— —i7in (2.1). Sy represents the Ohmic damping intro-
duced by Cladeira and Leggett.*®° The extension to one-
dimensional systems is explained in Refs. 8 and 9. In the
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real-time equation of motion this corresponds to the
Ohmic damping force which is equal to —7¢.
In this paper, we confine ourselves to the weak-coupling

region (g2/8m<<1) and low temperatures compared to

the soliton mass (T <<8mq/g?). In this regime thermal
and quantum fluctuations can be treated by perturbation
theory, and the self-consistent harmonic approximation is
applicable.

II. RENORMALIZATION OF PHONON MASS

In this section we calculate the properties of the system
in the absence of solitons. In the one-dimensional sine-
Gordon model, the ultraviolet divergence is completely re-
normalized by assuming a normal product in the cosg¢
term.!® The same is true for the dissipative case because
dissipative effects are irrelevant for the ultraviolet diver-
gence. The renormalized value itself, however, depends
on the strength of dissipation In the ground state the re-
normalized mass m is expressed in terms of the bare
mass m, in the form

m3=mpexp

—’—”5(«;52)3’, . 3.1)

where ( ), denotes the average in the ground state.'® At
finite temperatures, it is convenient to introduce the
finite-temperature normal product defined by

A=A — A i s - (32)

where { )i denotes all poss1b1e pairings of the ¢ field in
A at finite temperatures.! Then we can write

m,,cosg¢=m 2.cosgd: , (3.3)
where
g?
m?=mgexp 7(¢2) . (3.4)

Here ( ) denotes the thermal average. The phonon mass
defined as above is the self-consistent phonon mass at fin-
ite temperatures. The quantity ($?) is evaluated using
the linearized action around ¢ =0 to have

W= [, 553

where w, =2mnT (n an integer), and A is the momentum
cutoff. This is calculated as

(@2 +Kk2+ |, | p+m?)~1, 3.5

2A

(") =5n | 281 ro(am)

[@p+m>+k>+ |, |7

+T2f R 2
—(wp+m?+k»)71] (3.6)
where f is defined by

1 1
fo(Bm):;— fO k_——(k2+m2)1/2

X {exp[B(k*+mH)1/2] 1}, 3.7)
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The third term is convergent. We can, therefore, take the
limit A— oo safely in this term to obtain the finite result.
We evaluate the above expression analytically in the low-
temperature limit (7 <<m ) and numerically at finite tem-
peratures.

At T =0, the summation reduces to the integral and
can be evaluated analytically. We have

2A

1
— % | —=2 3.8
4t mo+1n/2 3.8

m§=mgexp yym

where my=m(T=0). This formula can be written in a
form independent of the cutoff as

Moo
my +77/2

— -1~g 2In

yp (3.9)

m3=mbyexp

where mgo=m(T=0,7=0). This equation is solved nu-
merically for g2=0.27 (Fig. 1). This value is chosen to
compare our results with those of MT. In the weak-
damping limit (7 <<m) it reduces to

mo=mqy+n(g’ /16w, (3.10)

where g’ is the renormalized coupling constant given by

(g')"2=g~2—1/87. (3.11)

The temperature dependence of m is calculated analytical-
ly for T'<<m to be

2 -1

- wT> g’ |, &> Mo
MEMOT T w2 | 87 motn/2 (3.12)

It should be noted that the correction term is proportional
to T2, while in the undamped case it is proportional to
exp(—pPm). At higher temperatures it is calculated nu-
merically for g2=0.24, which is shown in Fig. 2 for vari-
ous values of parameters. At high temperatures it tends
to the value of the undamped case. This is seen clearly
because the last term of (3.6) vanishes as 1/7T for
T>n,m

The partition function Z, in the absence of solitons is
calculated using the linearized action around the ground
states as

110 -
n/ g?=02m

105 —
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FIG. 1. 7 dependence of the phonon mass in the ground state
for g2=0.2m.
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FIG. 2. Temperature dependence of the self-consistent pho-
non mass for g2=0.27 and 7/mg,=0,2,20.
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Zy=
in ©Op+ | @n | n+m2+k}f

Xexp |BL

m? m% m?, ., H
— =4+ —(e%) , (3.13)
g’ g 2

where k; satisfies

Lk;=2ml (I=an integer) . (3.14)

The constant but divergent normalization factor which
depends on neither 7 nor T is chosen to give

2sinh

Zo=11

I B

(m?4k{)'72
2T

xexp |LB (3.15)

2 2 2
m mo m 2
— ——+—(¢ >’
gt g8 2

in the absence of dissipation, although this choice is arbi-
trary. Expression (3.15) is the partition function obtained
by MT in the absence of solitons.

IV. SOLITON DENSITY

In this section, we evaluate the density of solitons
which are thermally excited. In the present scheme, a sol-

iton appears as the stationary point solution ¢¢ of the ac-

tion S as
¢s=§—arctan{exp[m(x —x5)1} 4.1)

where xg is the center of the soliton. Here m is, in princi-
ple, the phonon mass renormalized in the presence of soli-
ton. It turns out, however, to be equal to that in the ab-
sence of a soliton (Appendix A). In contrast to MT, who
treated the motion of solitons in a real-time representa-
tion, the single moving soliton does not appear in our
imaginary-time scheme even in the undamped case be-
cause of the periodic boundary condition along

imaginary-time axis. In the presence of damping, there is

no stationary moving soliton in the real-time representa-
tion. Therefore, the direct extension of the method of MT

FINITE-TEMPERATURE PROPERTIES OF THE DAMPED ONE-. .. 4541

to the present case is difficult. The 7-dependent soliton-
(anti)soliton pair solution is allowed. This, however, con-
tributes to higher-order effects in the soliton density,
which we neglect here.

The partition function in the presence of solitons is cal-
culated by linearizing the action around the soliton (4.1).
For this purpose, it is convenient to introduce the eigen-
modes U, of the fluctuations around the soliton in the fol-
lowing way:!

i 2 7 4.2
———5;5+m cos(gds) |Ui(x)=Q7U(x) . 4.2)

The orthonormal set { U;(x)} is given by the following.
(i) For the continuum,

kj+im tanh[m(x —xs)] ik @.3)
[BL(Q}—2m/L)1'2
where Q; =(k?+m?)"/? and k; satisfies
Ak;)+Lk; =21 (4.4)

where [/ is an integér not equal to zero and A is the phase
shift due to a soliton given by

A(k)=2arctan(m /k) , 4.5)

UI(X)=

which is defined to satisfy —m <A <.
(ii) For the zero mode,

172 :
m
Vo= 2B coshm(x —xg) ’

(4.6)
0y=0..

Here all the functions are normalized as

B L2 )
[ydr [ ax1U|?=1 @7

up to order 1/L. .
We expand the fluctuation field ¢ =¢ — g as

-3

Using the linearized action around ¢s and integrating
over ¢,;, we find

Z,=Zo(m /V2m)exp(—BF) [ ddo , (4.9)

S bue’ " UNx) . 4.8)

=—00

where

w dk 2[k arctan(m /k)—m]
BF=BEs— Py
=) w ontk+mi o, |
2
1 m
- In{l+—5—"7—1. (4.10)
? nzo wﬁ+'fl | op |

Here E{=8m/g? is the classical soliton energy. The
second term is due to the contribution from the continu-
um modes and the third term from the zero mode. In ob-
taining the second term we used (3.13), (3.14), (4.4), (4.5),
and the result of Appendix A. This calculation is similar
to that of MT except that the summation over » cannot
be performed analytically. Therefore we do not repeat it
here.
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The integral over ¢q, is evaluated as follows: The exci-
tation of ¢oo mode corresponds to the translational dis-
placement of the soliton. By considering the normaliza-
tion of U, given by (4.7), the displacement of the soliton
dxg is related to d¢gy by

dxs=ddoo/(BES)? . 4.11)
Therefore, we have
[ dgoo=(BED” [* mdxs =L(BE$'?.  (4.12)

Considering that the phase shift by ng solitons and 74
antisolitons is equal to A(ng+n,), the partition function
with ng solitons and n 4 antisolitons is given by

7

nsh4

=Zy(Z1/Z)" ™ /ngin g (4.13)
as long as the soliton density is small; (ng+n4)/m << L.

Therefore the full partition function is given by

Z= 2 ZZ,,S,,Aexp[ —plng+ny)]

ng=0 "A=0

=Zoexp(221e"‘/Zo) . (414)

Here p is the common chemical potential of solitons and
antisolitons which is introduced in order to count the soli-
ton number.

The soliton-antisoliton density is Ng=(ng-+n,)/L

given by
1 9
Ny=———InZ
s L du p=0

=2Z,/ZoL =2m(BES/2m)*exp(—BF) . (4.15)

The quantity F is evaluated analytically for the following
cases: ' (i) low-temperature limit T <<m,n; (ii)
intermediate-temperature regime in underdamped case
(n << T <<m); (iii) classical limit 9,m << T.

(i) Low-temperature limit. Here Ny is given by

Ng~2(E$n /2m)" 2exp(—BE?) , (4.16)
— T T T
;
oo 110} g?=0.2m i
N
1.05+ -
1 ! 1
1'000 5 10 15 20

’n/mDO

FIG. 3. 7 dependence of the soliton mass in the ground state
for g2=0.21.
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where E? is the renormalized soliton mass in the presence
of dissipation at T=0. The 7 dependence of EY is calcu-
lated numerically and is shown in Fig. 3 for g2=0.27.
For weak damping (1 <<m) the analytic expression is ob-
tained

8m0
(g ') n

where m, 1s given by (3.10). On the other hand for strong
damping ES tends to

0o__
S =

(4.17)

E2—>8m,/g? (4.18)

It should be noted that the prefactor does not depend on
T, in contrast to the undamped case.!

(ii) Intermediate temperature. In this regime, both dissi-
pation and renormalization of the soliton by thermal pho-
nons are irrelevant. Therefore, we obtain

Ng=(EST /2m) *exp(— BE) (4.19)

where EQ=8m2,/(g')%. This coincides with the result of
MT in the undamped case. In the present case, however,
the validity of this formula is limited to this temperature
range.

(iii) Classical limit. Here solitons are renormalized not
only by quantum fluctuations but also by thermal pho-
nons. This changes the temperature dependence of the
prefactor of Ng. We find

Ns=4m(BEE /2mw) ?exp(—BEY) ,

which coincides with the classical result.’>!!

In the prefactors of (4.16), (4.19), and (4.20), there ap-
pears E¢, while in MT it is replaced by the “inertial
mass” of the soliton. This difference, however, is out of
the scope of our approximation because the correction to
ES is of the order of m or T and this corresponds to the
higher correction to F which we have neglected.

The soliton density is calculated numerically for

(4.20)

=0)
3
-

=
o
w
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FIG. 4. Temperature dependence of the soliton density
Ns(T) for g2=0.27 and 1/mg=0,2,20.
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g2=0.27 and various values of 7 (Fig. 4). At low tem-
peratures, the soliton density is sensitive to 7, reflecting
the property in case (i). At higher temperatures the curves
for the damped case approach that for the undamped
case.

V. DYNAMIC RESPONSE FUNCTION

When the external field € conjugate to ¢ is applied to
the system there appears a time-dependent response of ¢
which is given by

. L/2 t N .
($(x,1))= f_L/zdx f_wth (x —x',t—1t")e(x',t")

(5.1

in the real-time representation. The Fourier component
of X ﬁq of the response function is given by

R __ .
Xog= —lwd)w,,q liwn—»w-i»io

L/2 B p
. w,T ; ’
=—iw f dx f nT ig(x —x')
L o dre "e

- XA T, d(x,7)p(x',0)) |

iw, —>w+i0
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where 7 is the imaginary time introduced in Sec. II.

When the soliton density is small (Ng <<m), the expec-
tation value of the intensive physical quantity 4 is given
by

(A)=(A)o+Ns({A),—(A))L , (5.3)

where ( )y denotes the average in the presence of N soli-
tons. The intuitive derivation of this formula is given in
Appendix B. In the absence of solitons, the evaluation of
D, 4 is straightforward and we obtain

Po,q=Po,q =5+ |0, |7 +m>+¢2)7", (5.4)
where g satisfies
Lg=Lg;=2#%l (Il an integer) . (5.5)
In the presence of one soliton we have
(d(x,7)p(x",0)) ;= (¢§(x ;xs Jbs(x'—x5));
+($lx —x5,7)B(x"—x5,0)); . (5.6)

The first term, however, does not contribute to the
dynamic properties because it is time independent. In the

(5.2) following, we take only the second term. Then we have
; ,
(Do),,q =q)clonq
_ 1 L/2 L2 B x‘co,,r+iqy N ~
=7 [ dxs [ av [ dre (Bx +y —x5,7)plx —x5,0)); . 5.7
Here the average is take over the position of the soliton.
Using the expansion by U; we have
. B L/2 ) 2
(bwnq = z‘ kzl l f_le UI(x)equdx l <¢nl¢—n -1 ) ) (5.8)
where
(bud Yo (02 +m2 4k + |, |m)~" for 1520
et (024 | @, |7)~" for I=0. (5.9)
The matrix elements are given by
L igyx . expligpxs)
Ui(x)e "dx = - , s.
Jont [LB(m24 k7 —2m /L)]'7? sinh[(gy—k;)m/2m ] 10
L/2 ian expligrxs)
U, L P p—_ , 11
S, Uotx)e ™ dx BT coshlrar/2m) (5.11)
where the conditions (4.4) and (5.5) are used for k; and g;..
After lengthy but straightforward calculations, we find
@, g =D o +8P, /L , (5.12)
where
2_ 2 o« 22,27
50, q=_~2_m 1 g°—a 1 1 dm[4(n+a/2m)* —q*/m*] ’ (5.13)

n L ala+m) (g®+a?)?

Lm o?—m? neo al4n+a/2m)*+q*/m?)?
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2 2

where a’?=w2 +7 | w, | +m? The analytic continuation
iw, —w+10 is straightforward. Thus we have

X2, =xB0 L Ng(XB —xB)L

=Xgg+NsbXgg , (5.14)
where
Xod =—i0®} 4 |0, oo - (5.15)
Therefore we have
X5 = ———12 (5.16)

?—m?—q’+ion
The function 8X 5q is plotted in Fig. 5 for n=0.5m. Here
the frequency and the wave number is normalized by m.
Structures appear near w~(m2+4¢?'? and w~q~0.
The first one is due to the decrease and mixing of continu-
um states caused by the soliton. The second one is due to
the translational mode associated with the soliton. If 7 is

much larger than m, 68X 5q becomes small for
w>>(m?*+q*/n and  the  structure  around
w~(m?+q2)\? becomes very broad (width

~V'mn>>m) and almost invisible. In the undamped
limit both structures become very sharp.

The above result for g5£0, however, fails in the low-
frequency regime. In practice for ©=0 and g0, solitons
will accumulate around the nodes of the external field and
reach the equilibrium distribution in the periodic poten-
tial. Therefore, the dynamic response function should

FIG. 5. Dynamic response function 8)(5,, due to a soliton
with.-7=0.5m. Wave number and frequency are measured in
units of m and Sxﬁq in units of 1/m.
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vanish, while our result gives the finite value of X, oRq. In
the situation described above, the simplistic dilute soliton
approximation would break down. Therefore, the validity
of our formula should be restricted in the regime where
external field changes sign before the solitons arrive at the
nodes. This is realized if vy <<w, where v, is the
thermal velocity of solitons. vg is estimated to be order of
(T/E$)'? in the absence of dissipation. This would be
also correct for T'>>m. In the present scheme it is diffi-
cult to estimate v, because our formulation does not in-
clude the concept of a moving soliton.

In the regime voq > w, many authors predict the central
peak in the undamped case.!? In the damped classical
case, this regime is studied in a phenomenological way.!?
This yields
? io

Tl (5.17)

X, ﬁq =
around w~q ~0, where D=kzT/8mmn is the diffusion
constant of the soliton. This vanishes for g5£0 and v =0
and is finite for ¢ =0 and w—0. The second term in the
denominator of (5.17) is important for this behavior. Our
simplistic low-temperature approximation fails to pick up
this term because it vanishes at 7—0. Considering the
success of real-time calculations in the classical case, we
expect the quantum Langevin equation approach!* would
be powerful in this regime. This problem is under investi-
gation.

It should be also pointed out that our results in the clas-
sical limit for ¢ =0 do not coincide with the classical re-
sult obtained by the transfer-matrix method and decou-
pling approximations'> !¢ in the following points.

First, in the limit ¢=0, @»—0, we have
X&=m*Ng/2mn while transfer-matrix calculations gives
an additional factor E$/T. This point has been intensive-
ly discussed by Guyer and Miller’> and Biittiker and Lan-
dauer!” who used the dilute soliton-gas approximation in
the classical model. Our result support that of Bittiker
and Landauer.'’

Second, the w dependence of 8YX is still different from
the result of Imada,'® who applied the method of Guyer
and Miller'’ to the calculation of XX, It is not clear to
which extent the decoupling approximation is correct, al-
though it is justified in the infinite damping limit by
Tsuzuki.!®* On the other hand, our approximation (4.2)
might be doubtful for calculating the correlation for
g < Ny because the division of the system into subsystems
(Appendix B) might not be adequate to calculate such a
long-range correlation.

VI. CONCLUDING REMARKS

The finite-temperature properties of the damped quan-
tum sine-Gordon model have been studied using the semi-
classical approximation. It is shown that the low-
temperature behavior of the renormalized phonon mass
and the soliton density are different from the undamped
case due to the suppression of quantum fluctuations by
damping. This is in contrast to the classical case in which
damping has nothing to do with equilibrium properties.

The dynamic response function which is valid in the re-
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. gime vpg <<® is obtained. In the opposite regime,
vog >, our calculation fails. The real-time approach,
which is successful in the classical case, is desirable also in

the .quantum case.- The discrepancy found between the

classical limit of our theory and the previous classical cal-
culations requires further investigation.

The precise comparison between our theory and the ex-
periment is not possible at the present stage. From this
point of view, the extension of the present theory to other
quantum systems such as spin systems is desirable.

The concept of a finite-temperature soliton mass intro-
duced by MT is not well defined in the present theory
even in the undamped limit. It is not possible to fix the
position and velocity of the soliton, because the fluctua-
tions in them are automatically introduced as the transla-
tional mode. It should be noted that this concept is not
well defined also in the exact Bethe-ansatz scheme. !’

The inclusion of a breather mode is also in interesting
problem. It is clear, however, that the usual breathers be-
come damped modes here and the number of them is no
longer conserved. Therefore, it would produce more diffi-
culty than in the undamped case. This is also left for fu-
ture studies.
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APPENDIX A

The quantity {$?), is defined by
2y _ dq &1
(¢ >1~§f > Pana >

where <I>é,n ¢ is calculated in Sec. V. The correction due to

soliton is given by the second and third term of (5.13). By
using the identity

(A1)

x—a

f_w e =0, (A2)
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the contribution to ($?); from these corrections exactly
vanishes.

APPENDIX B

In the dilute soliton limit, with soliton (antisoliton)
number ng (n,), it is possible to divide the system into
N=ng+n, subsystems with length L; (i=1,...,N,
EiLi =L), each of which contains one soliton or antisoli-
ton. The average value of an intensive physical quantity
in the ith subsystem is given by

(A, =(A)or,+84/L; , (B1)
where »
84=L({A)—(A)or) (B2)

and ( ),; denotes the average in the subsystem with
length L and n solitons or antisolitons. 84 /L is the
change of expectation value of A due to the addition of
one soliton or antisoliton. It should be noted 84 does not
depend on L. The average over the total system is given
by

N
<A>N,L:EL,~<A>1,L',/L
i=1

N N
E L,(A >0’Li+2 84

i=1 i=1

/L

=(A4)o;+N8A/L

= ()t N((A)—(d)o) . (B3)

The thermal average over soliton number is given by

(A)Y=—= E E ZnSnA[<A)O+(nS+nA)

nS=0nA-0

X({A4);—(4))]

=(A4)o+Ns({4)—(4)) . (B4)
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