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Effective-medium theory (EMT) results for the behavior of the elastic properties of random-
central-force networks with a fraction p of nearest-neighbor bonds present are extended to
finite frequencies Go. od agreement with numerical simulations for the density of states at all fre-
quencies is demonstrated. In particular, the gap at co =0 that opens up when p =p *,and the loss of
elastic properties are correctly predicted. The fraction of zero-frequency modes is well described by
the EMT and by constraint counting which leads to the same result. The only substantial error is
that the EMT does not give Lifshitz tails at the band edges.

I. INTRODUCTION

Recently it was shown that a simple effective-medium
theory (EMT) gives an excellent description of the elastic
properties of central-force elastic networks created by ran-
domly removing nearest-neighbor central-force bonds
from a Bravais lattice. ' The elastic moduli of model net-
works were computed via numerical simulation as a func-
tion of p (the fraction of bonds present) and were shown
to go to zero at the rigidity threshold p*, whose value was
found to be very near 2d/z (where d is the dimensionality
and z is the nearest-neighbor coordination in the pure sys-
tem), a result previously obtained by constraint counting.
The value of p' is much higher than p„ the critical
threshold for ordinary connectivity percolation, since
these networks contain units which are fully connected
but cannot resist an external strain, and so belong to a
new category of problem called rigidity percolation 'In.
this paper we present the first results for the finite-
frequency response of a system undergoing a rigidity tran-
sition.

The EMT was derived in two independent ways The
static method is an adaptation of an EMT developed by
Kirkpatrick for the conduction problem, and the second
method is based on the coherent-potential approximation
(CPA). Only the elastic behavior of the networks was ad-
dressed in Ref. 1; however, the CPA-based EMT can easi-
ly be extended to give a prediction for the density of states
of the network at all frequencies, as is shown in Sec. III.
The static method can also be extended to finite frequen-
cies and gives identical results. This paper reports on the
finite-frequency results for the central-force elastic net-
works, thus completing the description begun in Ref. 1

and shows that the EMT gives a reasonable description of
I

the finite-frequency properties, although it fails to
describe the Lifshitz tails and structure due to small clus-
ters as would be expected. Some of the qualitative effects
of the rigidity transition at p =p on the density of states
are demonstrated well by both numerical simulation and
EMT.

All the results in this paper are for the triangular net
with nearest-neighbor central forces. Similar results
would be expected for other stable lattices like fcc. In
Sec. EV we describe the numerical simulations and corn-
pare them with the EMT results. Section V presents our
conclusions and makes comparisons with results on other
systems.

II. PURE SYSTEM

Two models were studied in Ref. 1: the triangular net
and the fcc lattice. In this work we focus on the triangu-
lar net. It is important to understand the pure-system
density of states (DOS) before one can see how the DOS
evolves as bonds are cut.

The lattice potential used is central and harmonic:

V= —g [(u; —uj) r;J] p;J,
&ij )

where r,J is a unit vector from site i to site j, u; is the dis-
placement from equilibrium of the particle with mass I
at site i, p,j is 0,1 respectively, as the bond between i and j
is missing or present, a is the spring force constant, and
(i,j) under the summation means that i and j are nearest
neighbors, and each pair is counted just once. One can
construct the 2X2 dynamical matrix D(k) from V with
the result

D(k) =
3 —2 cos(k„a)—cos( —,k„a) cos kya

a

~3a . , v3
sin( —,

' k„a)sin kya

W3a , v 3
sin( —,

' k„a)sin kya3a, v3
1 —cos( —,k„a)cos kya

(2)
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FIG. 1. Dispersion relation co (k) for the triangular net with
lattice potential (1) plotted along the pathway I -A-B-I in the
first Brillouin zone shown in Fig. 2. The abscissa is in units
where a/M= 1 [see Eqs. (3)]. The special points labeled 1—4
are also shown in Fig. 3.

FIG. 3. Vibrational density of states g(co ) for the pure tri-
angular net. The units are such that o./M=1, which puts the
maximum frequency at ~ =6. The special points labeled 1—4
are also shown in Fig. 1.

Diagonalizing D(k), we obtain the phonon dispersion rela-
tions co (k), given by

co (k). As bonds are randomly removed and p decreases
from 1, the DOS will be seen to evolve from the form
shown in Fig. 3.

co (k) = [W1 +( 8'2 )
'/ ],M III. EFFECTIVE-MEDIUM THEORY

W1 ——3 —cos(k„a)—2 cos( —,k„a)cos k~a, (3)
v3

v38'2 —— cos( —,k„a)cos k~a —cos(k„a)3'

2

P

+3 sin ( —,k„a)sin k~a2 ~&

where a is the nearest-neighbor bond length. Figure 1

shows the two branches of co (k) plotted along the path-
way 1 -A-B-I' (see Fig. 2) in the first Brillouin zone of the
triangular net.

Knowing co (k), we can easily generate the DOS g (co )

by randomly selecting points in k space and counting the
number of points falling in any given small range of co .
Figure 3 shows the result for the pure-system DOS ob-
tained in this way. There are critical points at
Mco /a=2, 4.5, 5, and 6 resulting from local extrema in

The derivation of the CPA-based EMT was given in
Ref. l. Equations (27) and (28) from that work are repro-
duced here as Eqs. (4) and (5):

u —am =0
1 —2(a —a )r12'(P11 —P 12) r12

(4)

~&m
Mn1 P11 1+ r12 (P11 P12) r12

d
(5)

where P ~ ~,P]2 are the diagonal and nearest-neighbor
effective-medium Green s functions, respectively, a is
the effective-medium force constant (complex and energy
dependent in general), and p =2d/z is the EMT rigidity
threshold. Equation (4) is the basic EMT result derived in
Ref. 1, and Eq. (5) is the equation of motion for the iso-
tropic site-diagonal Greens function. Using Eq. (5) to
simplify Eq. (4), we obtain the CPA equation whose solu-
tions are described in Sec. IV:

a[p+p "(Mco P» —1)]—a [1+p*(Mco P» —1)]=0 .

(6)

P11 and a are complex, in general, so that Eq. (6) can be
thought of as a pair of coupled equations for the real (a )

and imaginary (a ) parts of a . P11(co,a ) is defined
as

FIG. 2. First Brillouin zone of the triangular net, showing
the symmetry points I, A, and B.

2aM ~2AM q, n12 —~,(k)

where the sums are over the first Brillouin zone and the
two branches (s= 1,2) of the dispersion relations shown in
Fig. 1 [with a replaced by a in Eq. (3)]. The EMT DOS
g ff(co ) can be calculated from
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geff(~ ) Impel 1(~ ~+m ) ~

M 2 (8)
0.4

p = 0.85
so that the weight under g,&&(co ) is normalized to l.

Equation (6) can be solved by iteration for all values of
co (except for a few cases discussed later). One computes
P~~ via numerical integration for an initial value of a
and then the new value of a is computed via Eq. (6).
This process is iterated until the values of o. and P~]
converge to within about a percent. Typically this re-
quired 6—12 iterations. The last values of P» and a are
saved, and g,g(co ) is extracted from ImP».

IV. RESULTS

The numerical simulation results for the DOS, which is
the "experimental" data with which we compare g,rr(co )

were generated using the standard negative eigenvalue
method (NEM) ' but adapted for use with sparse random
matrices, so that only the nonzero matrix elements are
stored and processed. The model networks studied with
the NEM were the same three configurations of the tri-
angular networks used in Ref. 1 which had 440 sites
(20X22) and periodic boundary conditions. The NEM
computes the number of modes with eigenvalues less than
zero for the matrix A=D —co I, where D is the real-space
dynamical matrix for the network, ' and thus the number
of modes with frequencies less than co . The NEM leads
to the DOS g(co ) in histogram form. The accuracy of
the histogram is limited only by finite-size noise and the
bin sizes chosen. The essential parameter for the finite-
size noise is the average number of modes per bin, which
depends on both the system size and the bin size. For all
the work reported on in this paper, typically 20 bins were
used so that there were about 132 modes per bin on the
average [a total of three configurations were used to aver-
age g(co )]. To get significantly higher resolution in the
NEM histograms, we would have to use much larger sys-
tems. For the purposes of this study, the systems used
were of adequate size.

Four values of p were selected at which to compare the
CPA and NEM results. They were (1) p =0.85, (2)
p=0.70, (3) p=0.50, and (4) p=0.20. The first value was
chosen to be close to the crystal and well out of the criti-
cal region, where the CPA might be expected to be quite
accurate. Point (2) was chosen to be just above
p =2d/z = —, (d =2, z=6) in order to provide a
stringent test of the accuracy of the CPA close to the crit-
ical region. The value of p=0.50 was chosen because
when 50% of the bonds are present, the triangular net-
work is still connected geometrically but disconnected
elastically, i.e., all moduli are zero. Finally, at p=0.20,
the network consists only of isolated clusters, since

p, =2 sin(m/18) =0.3743
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FIG. 4. Density-of-states histogram for the p=0.85 net-
works, averaged over three configurations. The dashed line is
the effective-medium result discussed in the text and a/M= 1.

crystal in the broad peaks which remain at Mco2/a=2
and 5, while the effect of bond cutting shows in the in-
crease in the low-frequency density of states, since

g(co )= — (C()'+C~')-(p —p*) ' as co ~0
8m

(see Ref. 11). All these features including the decrease of
the right band edge are reproduced well by the CPA. The
integrated weight under g,rr(co ) is equal to 1, as it should
be.

The DOS results for p=0.70 are shown in Fig 5. The.
agreement between CPA and NEM is similar to that in
Fig. 4. The CPA has a very narrow peak at small co that
goes up off the graph to about 1.9 and then comes back
down to the correct co =0 result (which can be obtained
from the elastic constants ). The bin size used in the his-
togram was not small enough to check if this behavior
was real or an artifact of the CPA. Our networks were
not big enough to justify smaller bin sizes because of the
noise problem mentioned above. One can clearly see in
Fig. 5 the beginning of the divergence of g(0) as the elastic
moduli go to zero with p~p'. The right band edge of
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Figure 4 shows the results for the DOS at p=4.85. The
dashed line is the CPA result g,rr(co ) while the histogram
is the NEM experimental determination of g(co ). At the
level of accuracy of the histogram the agreement between
NEM and CPA is good. One can see the memory of the
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FIG. 5. Density-of-states histogram for the p=0.70 networks
averaged over three configurations. The dashed line is the
effective-medium result, and a/M= 1.
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g (co ) continues to decrease as p decreases, with the CPA
roughly tracking this behavior.

At p=0.50, the network is connected geometrically but
disconnected elastically. Figure 6- presents the CPA and
NEM results for this value of p. Again, the overall shape
of g (co ) is reproduced by g,rr(co ) to the level of accuracy
of the histogram. The one systematic deviation is at the
right band edge where the CPA cuts off before the actual
band edge. The CPA shows a small gap opening up at
low frequencies, with the new band edge at about
Mco /a=0. 05. This is to be expected, as the network has
no acoustic modes for p &p*. The histogram does not
have fine enough resolution to see this effect. In reality
we would expect Lifshitz tails' at both band edges. It is
difficult to solve the CPA Eq. (6) in this region since, to
get the band gap, the solution to Eq. (6) must jump from
the Riemann sheet that was valid above the rigidity tran-
sition to a new solution sheet in the gap. At p=0.50, the
value of f' (the fraction of modes with zero frequency)
should be

f(p) =1—p/p* =0.25 . (9)

Therefore, the integrated weight in the band should be
0.75, which it is for both the NEM and CPA DOS. The
contribution to the DOS from the zero frequency modes
will be a 5 function at the origin with weight 0.25. This is
not shown in Fig. 5; however, the CPA does give this 6
function with the proper weight f(p) given in Eq. (9) as
will be shown below.

At p=0.20, the network consists of isolated clusters of
sites and bonds, with many clusters containing only one or
two bonds. This is reflected in the NEM results shown in
Fig. 7. The disproportionately large weight in the bins at
Mco /a=1. 5, 2.0, and 2.5 come from one- and two-bond
clusters. These are isolated cluster modes, and obviously a
simple effective-medium theory cannot be expected to get
these right. However, the CPA does not do too badly in
reproducing the other features of the density of states.
The overall shape of the density of states, excluding the
isolated cluster peaks, is reproduced fairly well by the
CPA. At p=0.20 the weight at zero frequency is 0.7, so
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FIG. 7. Density-of-states histogram for the p=0.20 networks
averaged over three configurations. The dashed line is the
effective-medium result, and a/M=1.

g,rr(co ) = — ImP& ——(1—p/p')5(~2),

which agrees with the result from constraint counting. In
Fig. 8 the real and imaginary parts of a are shown as
functions of cu for p=0.85 and 0.20. For p=0.20 it is
clear that both a~ and a~ go to zero with cg, so that the
CPA does indeed give the result of Eq. (11). The graph of
a for p=0.85 shows the real part going to

that the weight in the band is 0.3. The weight under the
CPA and NEM curves is equal to this value within com-
putational error.

The CPA in the floppy region below p* predicts a 5
function at the origin with a weight which agrees with the
result from constraint counting, f (p) = 1 —p/p*. This
comes about in the following way. Assume that for
p &p*, as co ~0, a~ and a~~0 as well. Then Eq. (6)
can be rearranged to become

Pi i = (1—p/p') (10)
N

When we take the imaginary part of P» to get g(co~), we
find that

0.5
)fc

0.55= P
p p =0.85

(12)
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p = 0.50
which agrees with the EMT of Ref. 1. One should also
note that a~ is zero outside the band. This is because the
only way g,rr(co ) can be nonzero is if ImP&~ is nonzero,
and that will occur only when a has a finite imaginary
part.

Other features of interest in Fig. 8 are the cusplike
behaviors of a (p=0.20) for low frequencies. This is an
indication that the solution changes sheets in going from
in the band to below the band, as was mentioned previous-
ly. The solution

(~'=0) =a(p —p")/(1 —p*) (13)

FIG. 6. Density-of-states histogram for the p=0.50 net-
works, averaged over three configurations. The dashed line is
the effective-medium result, and a/M= 1.

remains a solution below p as well as above, but below
p* it is not the physical solution as it gives elastic
behavior at low frequencies. For p &p* at low frequen-
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FIG. 9. Network units A and 8 are connected through pin
joints 1 and 2. The connection fails to be rigid if either 1 or 2 is
removed thus making the determination of the rigidity of the
combined unit a nonlocal problem.

FIG. 8. Showing the real and imaginary parts of a~(cx, a~)
for p=0.85 and p=0.20 as a function of co, where a/M= 1 and
+=1.

cies one must carefully search numerically for the other
solution which is the correct one in this region. The less
prominent cusplike feature in a and a (p=0.20) at
Mco /a =4.0 is probably at least partially a numerical ar-
tifact, as it was difficult to solve the CPA equation at the
right band edge for p &p*.

V. CONCLUSIONS

The effective-medium-theory description of the vibra-
tional behavior of nearest-neighbor central-force random
elastic networks is now complete. Effective-medium
theory describes both the elastic and finite frequency
behavior of these networks with reasonable accuracy over
the entire range of p, the fraction of bonds present. It is
unusual for a simple effective-medium theory to be so ac-
curate over such a broad range of system parameters (the
other example that comes to mind is the simple mass de-
fect ). A recent result for longer-range central forces
preserves this picture, showing again excellent agreement
between EMT and numerical simulations for the elastic
properties.

The EMT and the constraints argument both lead to a 5
function at co =0 with weight f (p) =1—p/p*. It is not
entirely clear to us why these two very different ap-
proaches lead to the same result. It is important to under-
stand this equivalence better as it serves to locate the tran-
sition at p by setting f (p) =0. Numerical simulations
show that the EMT estimate of the number of zero fre-
quency modes f (p) is very accurate except very close to
the transition.

Other workers have recently presented results for the
density of states of depleted elastic networks. ' These net-
works were different from ours in that sufficient micro-
scopic forces were specified so that the networks were
rigid for all p &p„ the regular connectivity percolation
threshold. The focus of that work appears to have been
the effect of the fractal geometry of the percolation back-
bone on the density of states, in particular examining the
crossover from a Debye-type spectrum to a fracton fre-
quency regime as m increased from zero. The exponent of
the co power law in the fracton regime was shown to de-
pend on the fractal dimensionality of the percolating

backbone. Effective-medium approximations have also
been used to study such networks. '

For our central-force random networks the situation is
quite different. Since p* is much larger than p, for the
triangular net, the geometry of the random networks is
not fractal-like at the rigidity transition. However, the
part of the network which can resist an external stress
could very well be of fractal character. This rigid back-
bone is not easily identified, and thus its geometrical char-
acter remains unknown. That is why we have ignored the
co ~0 critical behavior in this paper in favor of those
features of the spectrum more readily accessible to
analysis, such as the overall shape of g(co ), the appear-
ance of band gaps, and the fraction of zero-frequency
modes. There are geometrical rules which have been for-

, mulated to identify sites which are not part of the rigid
backbone at a given value of p, but these rules have been
shown to be incomplete. ' The difficulty of the problem
is illustrated in Fig. 9, where unit A is rigidly connected
to piece B through pin joints 1 and 2. The connection is
only rigid however, if both 1 and 2 exist. If either joint is
removed the entire connection fails. Thus the problem of
determining whether A and 8 form a rigid unit is a non-
local one and involves long-range effects as 1 and 2 can be
separated by an arbitrarily large distance.

In summary, we have presented the first results for the
finite-frequency response of a system undergoing a rigidi-
ty transition. We find that effect-medium theory for ran-

'

dom central-force elastic networks is "almost exact" for
the number of zero frequency modes and the elastic con-
stants except near p*, where only very small discrepancies
with numerical simulations are observed. At finite fre-
quency the effective-medium-theory description is very
satisfactory and correctly shows the band gap opening up
at co =0 when the networks' elastic properties are lost. It
misses some important elements, however, such as the
Lifshitz tails at the band' edges and the structure due to
small clusters in the dilute limit when p &&p, .
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