
PHYSICAL REVIEW B VOLUME 32, NUMBER 1 1 JULY 1985

First-order transitions breaking O(n) symmetry: Finite-size scaling
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The finite-size rounding of a first-order transition is studied in systems representable as n-vector
ferromagnets, so that O(n) symmetry (n )2) is broken at the bulk transition point. Both "block, "
V=I, and "cylinder, " I. 'X oo, geometries are considered for general dimensionality d. Explicit
expressions are obtained for the scaling functions describing the rounded transitions and the cross-
over in shape. Spin-wave effects are shown to be of relative order 1/L, and are calculated in de-
tail in the block case. For n =3 (and d =3) this provides an extension of Neel's phenomenological
theory of superparamagnetism. The analysis for cylinders involves the formulation of a "degenera-
cy kernel" to describe the asymptotic rounding of first-order transitions and establishes a general re-
lation between the helicity modulus (or "spin-wave stiffness" or "superfluid density") and the
transfer operator spectrum. The relationship to finite-size scaling in the critical region is examined
with emphasis on the extra scaling combination, Vt, that is needed for d ~ d &

——4. All the re-
sults found can be checked in the limit n ~ oo against exact results for spherical models (described
elsewhere).

I. INTRODUCTION

In a system with short-range interactions and at most
one infinite linear dimension, all thermodynamic phase
transitions are rounded off and occur smoothly: the free
energy and correlation functions vary analytically with
temperature and external fields, and all symmetries of the
Hamiltonian are fully respected. However, when the fin-
ite dimensions of the system grow without bound, the
rounded transition becomes increasingly sharp and, in the
full bulk limit, a true phase transition, with nonanalytici-
ties in the free energy, etc. , is attained. If the transition is
of first order, one (or more) of the symmetries of the
Hamiltonian may be spontaneously broken. The aim of
finite-size scaling theory is to describe this crossover from
analyticity to singularity asymptotically for large length
scales, L, and to determine how far it may be described by
appropriately scaling thermodynamic and correlation pa-
rameters by powers of the linear dimensions, I.. The
development of the theory to describe critical phenomena
in finite systems is now familiar the current status has
been reviewed by Barber.

More recently, attention has turned to first order transi-
tions. The present authors (in work to be referred to as I)
laid out a systematic and detailed scaling theory of the
rounding of first-order transitions in systems with no spe-
cial symmetries, which can thus be regarded as possessing
a single, scalar or (n =1)-component order parameter, and
thence can most conveniently be pictured as ferromagnet-
ic Ising models. The treatment yields explicit expressions
for the scaling functions, of appropriately scaled field
variables, for systems shaped both like "blocks" and like
"cylinders" (in which one "long" dimension may become
indefinitely large). It also describes the crossover between
the differing behavior arising in these two limits. The
work thus extends an earlier scaling treatment (see also
Binder and co-workers ' ) and various approaches by oth-

er authors.
On the other hand, for systems displaying a continuous

symmetry which is broken by a first-order transition, only
restricted results seem available in the literature. '

Prominent examples in which an O(n) symmetry with
n &2 is broken are XI'-like (n =2) and Heisenberg-like
(n =3) ferromagnets, and superfluids and superconduc-
tors (n =2) where, however, the appropriate conjugate or-
dering field is, unfortunately, not physically accessible.
Our aim in this paper (denoted as II) is to treat systems of
this sort systematically from a scaling viewpoint: as such,
this article constitutes a logical continuation of E.' How-
ever, our presentation will be quite self-contained and,
indeed, because of the complications induced by the pres-
ence of a continuous symmetry, much of the analysis fol-
lows a rather different course. More concretely, we
analyze systems which can be represented as ferromagnets
composed of n-component spins of fixed length situated
on the sites of a d-dimensional lattice and coupled
through magnetically isotropic, short-range interactions.
It will be convenient, accordingly, to employ "magnetic"
language in deriving and describing the results. Both
block and cylinder geometries will be considered for gen-
eral n., including the limit n= oo. We will show that
Neel's phenomenological theory of superparamagnetism
provides (for n =3) the correct leading-order scaling re-
sult for block systems in sufficiently small fields: but
higher-order corrections can also be determined explicitly.
An outline of the contents of the paper follows: a more
explicit technical summary is presented in Sec. VII.

In Sec. II the phenomenological scaling theory of the
first-order transition is developed following the postulates
of I (and Ref. 5) for systems of block (or rectangular)
shape with periodic boundary conditions. Explicit expres-
sions for the corresponding scaling functions for free en-
ergy, magnetization, and susceptibility are derived. The
formulas simplify in the asymptotic limit n —+ oo and may
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then be checked against exact results for general spherical
models derived in III (to be published separately). '

In the bulk limit it is now well known that the free en-

ergy, magnetization, etc. of an isotropic O(n) system
(n )2) display singularities as the first-order transition is
approached. ' These arise directly from the spin-wave
excitations or, in other language, from the Goldstone
modes associated with the broken O(n) symmetry. '

Further, these same fluctuations serve, in a system with
short-range interactions, to destroy long-range order and
spontaneous magnetization at nonzero temperatures, T,
whenever d & 2. As a result, there is no first-order tran-
sition at T &0 for d &2. For these reasons all our con-
siderations are restricted to d &2. In a finite system the
spin-wave singularities, like the first-order jump in the
bulk magnetization, must be rounded off. However, spin
waves do not figure in the first-order finite-size scaling
formulation expounded in Sec. II (except partially and in
disguised fashion through their contribution to the spon-
taneous magnetization). This poses a problem which has
no analog in the Ising-like (n =1) case. To study the issue
we recapitulate, in Sec. III, the phenomenological
theory ' of the correlations and fluctuations in an or-
dered system with broken O(n) symmetry. This leads
naturally to a concern with the helicity modulus, Y(T)
(that is, the "spin-wave stiffness" or, for a superfluid, the
superfluid density). On this basis one can see how the
spin-wave contributions scale in a finite system and,
furthermore, one can elucidate the interference between
the rounded spin-wave and first-order singularities. A un-
ified scaling formulation embodies both effects, the spin-
wave terms appearing as "corrections to scaling. "

The crossover in shape to long cylinders (with periodic
boundary conditions) involves a new, longitudinal length
scale, g~ ~

( T,3 ), which must be identified and calculated.
[In I the analogous length for the case n = 1 turned out to
be related to the interfacial tension, X( T).] Some pertinent
results for this longitudinal correlation length have been
described previously. %"e approach the problem in
Sec. IV by a novel technique for estimating the largest
eigenvalues of the transfer operator (or "matrix") which
builds up the system along the cylinder axis. This entails
constructing a "degeneracy kernel" which describes the
fluctuations of the system on the longest length scales and
thus asymptotically mimics the behavior of the full
transfer operator: In this way we derive a general formula
relating g~~(T) to the helicity modulus, &(T), of any O(n)
systems.

Section V develops this approach to describe the leading
first-order scaling behavior in the limit of an infinite
cylinder. The result entails solving a one-dimensional
quantum-mechanical ground-state problem: for n =2 one
obtains Mathieu s equation; for n ~ oo a more explicit re-
sult can be obtained which checks precisely against the ex-
act results for spherical models found in III.' The two-
variable scaling function describing the crossover from
block to cylinder shape can be expressed in terms of the
full set of eigenvalues of the quantum problem.

A first-order transition line quite typically ends in a
critical point. Finite-size scaling of the critical behavior
per se must match the finite-size scaling of the first-order

transition as the critical point is approached. The conse-
quences of this matching are discussed in Sec. VI with
particular emphasis on the modifications of simple finite-
size scaling in the critical region needed for d )4 to ac-
count properly for the first-order behavior. Finally, for
the convenience of readers, the main findings are summa-
rized and referenced by location in the text in Sec. VII.
Some unresolved problems are also mentioned.

II. SCALING FORMS AND ROUNDING
FOR BLOCK GEOMETRY

A finite-size "block" lattice geometry is conveniently
defined by requiring that a sample of, say, rectangular
shape specified by edges of lengths L1 =L

~
~,L z, . . . , L~

retains its proportions in the thermodynamic limit in the
sense that while the volume

V=gL; =—Lo,

diverges, all the shape ratios lj =LJ /Lo =LJ /V'~" a—p-
proach bounded, nonzero limits. A crossover to a
"cylinder" shape, with, possibly, one fully infinite dimen-
sion, will then be contemplated by letting L1 =—L~~ diverge
before or more rapidly than A' '" " when the cross-
sectional area

becomes infinite while the cross-sectional ratios, L;/Lz
(i =2, . . . , d), approach positive constants.

For definiteness we will consider classical n-component
spin variables, s; =(s; )~ ~ „, of unit length

~

s
~

=1,
on a hypercubic lattice of spacing a. The simplest Hamil-
tonian respecting spin isotropy in zero field has nearest-
neighbor ferromagnetic interactions and may be written as

(2.1)

where lt =J/k~T is positive while the unit vector o
(

~

o
~

= 1) specifies the direction of the external field,

H=Hcr =—kg Ther . '

When convenient, we will regard 0 as a real variable
which can take negative as well as positive values. Most
of our considerations will apply much more generally to
models exhibiting a normal n-vector ferromagnetic bulk
first-order transition when H —+0 with 0 & T & T, . How-
ever, we will assume periodic boundary conditions in all
directions, unless specified otherwise: different boundary
conditions involving free surfaces, boundary fields, etc.
may lead to further complications, such as extra scaling
variables, nonscaling shifts in the effective location of the
transition, etc. , which are not discussed here.

Clearly. , classical spin systems precisely respecting O(n)
symmetry and with periodic boundary conditions
represent a theoretical abstractionf But the simplifications
allow us to develop (in this section) a detailed scaling
theory and to derive (in Sec. III) the leading corrections
due to spin-wave fluctuations. As we will demonstrate, a
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finite system in equilibrium below T, essentially acts as a
single, uniform domain. Physically, assemblies of weakly
interacting single-domain ferromagnetic particles dis-
persed in a nonmagnetic matrix are well known: such sys-
tems are customarily termed superparamagnets. This to-
pic was reviewed some time ago by Jacobs and Bean
more recently, Stacey and Banerjee have surveyed appli-
cations to geophysics; basic experimental studies of super-
paramagnetic phenomena continue. If the particles aIe
sufficiently small, typically of diameter less than 150 A,
subdomain formation by demagnetization and surface ef-
fects is suppressed: the particles then constitute single-
domain, Heisenberg-like (n =3) finite-sized systems. To
observe equilibrium behavior the temperature must exceed
the so-called size-dependent "blocking" temperature Tb,
above which the thermal fluctuations can overcome the
pinning effects of various anisotropic interactions, boun-
dary surfaces, etc. By the same token, when T exceeds Tb
the O(3) symmetry becomes valid with reasonable pre-
cision. In practice, for small enough particles Tb can be
reduced to a few percent of T, and quite searching experi-
ments can be performed. ' ' The Neel theory' ' and our
present study are relevant to such systems when the ma-
trix is solid so that mechanical motion is not possible (in
contrast to fluid suspensions). '

A. Basic scaling postulate

=Ao(T) V 'W[B(T)HV;L//V'i"], , (2.2)

where f, is the singular part of the reduced free energy-
density at the bulk first-order phase transition occurring
in zero field. The bulk ( V = oo ) spontaneous magnetiza-
tion, mo( T), may be defined through

m, = —(Bf,/Bh )7 =+mo(T) as h —+0+ .

To reproduce this, the scaling function must satisfy

W(y; li ) = —
i y i

as y ~+ co,

(2.3)

(2.4)

where a convenient normalization- has been adopted,
which then yields

kaTAo(T)B(T)=mo(T) . (2.5)

Now, the longitudinal susceptibility, defined via
=(Bm/BH)z-, is given, for a finite system in zero field, by

2d

X(H =0;Lj.) = g g((cr s; )(o"s )J) t
Vkg T

(2.6)

To utilize this we argue heuristically, and expect to check
later, by various calculations, that the thermodynamically
predominant spin configurations in a block sample at
H =0 will have a uniform magnetization vector m =m pp,
where p is an arbitrary, that is to say, fluctuating, unit

In our presentation of the scaling formulation for the
block geometry, we follow more or less closely Ref. 4,
where the scalar, n =1 or Ising-like case was analyzed.
By considering renormalization-group flows near a
discontinuity fixed point, ' ' one is lead generally to
the finite-size scaling ansatz '

f, (H, T;LJ ) =F, /kg TV

vector. In accepting this we implicitly adopt the usual ar-
guments ' ' ' which relate the "short long-range or-
der" to the spontaneous magnetization in the form

lim lim (s; sz)l, o ——mo(T) .
~ R,. R,. ~

(2.7)

One must also notice the 0( n) symmetry in zero field so
that in (2.6) one has

((0"s;)(tr sJ)) =(s/'sy) =—y (s; s, )
A, =l

1=—(s s).r' jn

Fstimation of the double sum using (2.7) then yields

X(H =0;L.) =m o( T) V/nkvd T .

(2.8)

(2.9)

In assessing (2.2) and (2.9) it is important to note that
we have given no account of the spin-wave (or Goldstone
mode) singularities' that characterize the bulk limit of
a system with a continuous ordering symmetry when the
phase boundary is approached below T, . Specifically the
bulk magnetization, m „(H,T), as a function of the field,
H, regarded as a positive or negative scalar, contains a
singular piece varying as

~

H
~

'" '~ with an additional
factor ln

~

H
~

when d ( & 2) is an even integer. (See Refs.
18—22 and the next section). For d (4 this means that
the bulk susceptibility, X (H, T), in addition to the usual
first-order contribution, 2mo(T)5(H), has an additively
superimposed divergence: specifically for e=4—d &0
one has

(HT)=X (T) ~H
~

'i as H +0, —(2.10)

when T ~ T, . A/l these singularities must be rounded in a
finite system and one must thus ask whether the spin-
wave modes should not interfer in some way and modify
the simple finite-size scaling ansatz (2.2): that ansatz was
well validated in the n =1, scalar case, but the spin-wave
singularities are then absent~

The spin-wave singularities also entail a divergence of
the bulk ("single-phase") correlation length, g„(H, T), as
H~O. By the same token the bulk spin-spin correlations
in the limit H=O contain slowly decaying, power-law
tails (see next section) which, at the very least, must result
in a slower convergence of the sum in (2.6) to the asymp-
totic result (2.9) than in the Ising-like case. We will
demonstrate, nevertheless, that corrections to (2.9) involve
at most powers V' ~ with g&0 and likewise that only
weaker powers of V enter into corrections to (2.2). Thus
let us accept (2.2) and (2.9) provisionally and proceed.

By differentiating (2.2) twice and using (2.5) and (2.9)
we obtain the relation

Ao(T) = —n Wo' (lj ), (2.11)

where Wo'(lJ)=(B W/By, )» o. From this we may con-
clude that Ao(T) is actually independent of T and that
Wo (lj ) is independent of the shape ratios lj =LJ /Lo. A

further normalization of the scaling function beyond (2.3)
is permitted and it is natural to set 8'p' ———1/n so that
Ap = 1. Thus we arrive at the final scaling form for block
domains, namely
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f, (H, T;L/) = V 'W(yv), (2.12)

where, as in the Ising-like case, only the natural dimen-
sionless scaling combination

yp ——mob V=H/Hy (2.13)

enters. However, it must be realized that the scaling func-
tion depends explicitly on the symmetry of the ordered
state as specified by n )2, even though this parameter is
not displayed.

where the integrations run over the angular coordinates
specifying the unit n-vector p. Since we have
Z=—exp( —Vf), the ratio serves to cancel the temper-
ature-dependent "regular part" of the free energy,

f.=f f'—
The integrals in (2.14) may be evaluated explicitly with

the aid of the Funk-Hecke theorem, which yields

g„(y)= I ( —,
' n)(2/y)'" ' I(1/2)„1(y)

I ( —,n)
2k

(2.15)

where I (z) and I (y) denote the standard gamma func-
tion and Bessel function of the imaginary argument,
respectively. In the case n~1 the previously estab-
lished Ising-like result, "' ' namely g] (y) =coshy, is
recovered. For the Heisenberg case, n =3, one obtains the
simple expression' $3(y) =(sinhy)/y.

Finally, the scaling behavior of the free energy follows

B. Explicit scaling functions

If the assumption'" that uniformly magnetized spin
configurations with I=mop predominate is accepted not
only for H =0 but also for small fields in a finite system,
then one may calculate 8'(yv) explicitly. The results will

be checked in III, for n —+op, and further substantiated
for general n) 2 by transfer matrix analysis in Sec. V.
The assumption itself will be revisited in the next section:
it evidently allows us to calculate the overall partition
function, Z (H, T;L/ ), asymptotically for small H
through

Z (H)
g ( h V) I Qn/](]Tv'

d(nn]
JZ(0)

(2.14)

(2.19)

for n)1.
The only general result for n & 2 comparable to

(2.16)—(2.18) that has been reported previously in the
literature is the conclusion X(H =0)—V for T « T, : this
has been derived by Cardy and Nightingale, ' who con-
sidered a renormalization-group transformation of an
Lz &I.

~I
cylindrical lattice down to a one-dimensional

chain. (See also I and Ref. 3.) However, as mentioned
earlier, the results for n =3 (with the tacit but harmless
assumption d =3) are just those of Neel's theory of
single-domain, superparamagnetic particles. ' ' Our
analysis thus shows that Neel's phenomenological expres-
sions are valid for fields,

~

H ~, which do not greatly
exceed Hv. However, when

~

H
~

&&Hv the spin-wave
singularities must enter (and, as usual, further analytic
background contributions must also arise). The spin-wave
terms and their corresponding scale, H&, will be elucidat-
ed in the next section (for general n). It will also be seen
that the effects are not confined to

~

H
~

=Hs. rather,
there is an "interference" term present even for

I
H

[
&Hv.

C. Many-component limit

It is instructive to examine the limit of our results in
which n ~ oo . the integral representation

I ( —,'n) 1

g (y)= I e "(1—~')'"-""d~ (220)
I ( —, )I ( , n ——,

' )—
is then useful. For large n the method of steepest des-
cents is appropriate, the saddle-point equation being

y —(n —3)o./(1 cr ) =0—, (2.21)

with yv H——/Hv and Hv k/—/—T/moV, in accord with
(2.13). Evidently, the scaling functions, which can be read
off, depend on n but are independent of shape and dimen-
sionality (provided a first-order transition occurs, as it
will for d & 2). The behavior for small fields, i.e., yv~0,
follows with the aid of the expansion in (2.15). Thus the
result (2.9) for the susceptibility in zero field is recovered.
For large positive y~ one needs

I„(z)=e'/(2vrz)'/ [1+—,
'

(p ——„' )/z+ . . ],
from which one finds, for example,

m =mo(T)[l —T~(n —1)yv + s (n —1)(n —3)yv + ' ' ']

f(H, T;L/) —f(0, T;L/) = —V 'in(„(moh V),

while the magnetization and susceptibility become

(2.16) which is readily solved. One sees, in fact, that the mag-
netization, m, is equal to o. at the saddle point, and thence
one obtains the equation of state

m (H, T;L ) =mo(T)I(]/2)n(yv)/I(1/2)n —1(yv) (2.17) m(H, T;L/) =mo(T)Y (yv/n),

where the scaling function for n ~~ is simply

(2.22)

2

X(H, T;L/) = mOV I(1/2) (yV)+yvI(]/2)n+1(yV)

B y VI(]/2)n —] y v
2

(]/2)n(y V)

I(1/2)n —1 (y V )
(2.18)

Y"(y) =2y/[1+(1+4y')'/'] . (2.23)

Expressions for the free energy, susceptibility, etc. follow
by integration and differentiation. These results for large
n correspond precisely with those found in the exact cal-
culations for the spherical model reported in III when the
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f(h, K;LJ ) =n 'f (h, K;LJ ),
h =h/n, K=K/n, and J=J/n .

(2.24)

(2.25)

interactions and field are properly scaled: the confirma-
tion represents strong support for the general validity of
(2.16)—(2.18).

For convenience, we record here the scaling of variables
in terms of n, which yields sensible behavior in the limit
n~ op and so allows comparison to be made between re-
sults obtained here and those found for the spherical
model in III. A tilde will denote an appropriately scaled
parameter or function which then appears uninflected in
III. The basic correspondences for the free energy, field,
and temperature are

way in which the rounded spin-wave and first-order
singularities combine in a finite system.

A. Phenomenology for an 0{n) ordered system

Following Refs. 21 and 22 we first decompose the mag-
netization density, m = (mI, m, ), into a non-negative
"longitudinal" component, m~, measured parallel to the
external magnetic field or, when H —+0, along the axis of
spontaneous order, and an orthogonal, "transverse" vec-
torial part, m, . Now, in view of the O(n) symmetry, the
free energy, f (H, T), for a finite or infinite system can de-
pend only on

~
H~ =H&+-, ( H, ~'/H, )+O(~H, ~'/Ht3) .

From these one sees

m=m, X=nX, and g=g, (2.26)

It follows directly ' that the (initial) transverse susceptibil-
ity is given exactly by

and, by way of example, discovers that the scaled variable
yz ——mQAV goes over to

yv ——m0h V =y~/n, (2.27)

for the helicity modulus, which is introduced in the fol-
lowing section.

III. SPIN-WAVE SCALING
AND THE HELICITY MODULUS

The simple scaling results for an O(n)-symmetric first-
order transition in finite block systems obtained in the
preceding section are intuitively appealing. However, one
must certainly assess the nature and magnitude of the
leading corrections to be expected. The main issue, as al-
ready indicated, is to account properly for the role of the
spin-wave fluctuations. (We remark, incidentally, ' that
much less guidance from exact analytical and numerical
studies is available here, and in the transfer matrix con-
siderations below, than for n = 1. )

According to (2.2) and (2.18) the first-order peak,
2mp5(H), in the bulk susceptibility is rounded on the
scale H~ (k~ T/m p) V '——. To determine the correspond-
ing scale, say Hz, for rounding of the spin-wave singulari-
ties, it is reasonable to accept normal scaling ideas and to
suppose that deviations from bulk behavior occur when
the bulk correlation length, g„(H, T), which directly re-
flects the spin waves, attains the linear system dimension,
i.e., g (Hs, T) =L p

——V'~ . Since, as we will check,
(H) diverges when H~O while the spin-wave fluctua-

tions are known to be "asymptotically free" (and so
governed by a Gaussian fixed point), we can hope to
determine g and, hence, the scale Hs by purely
phenomenological or "hydrodynamic" considerations.
For d =3 most of the necessary results have appeared in
the literature, ' but we rederive them here in a unified
way for general n and d which also serves to introduce
important notation. On this basis we will investigate the

in accord with (2.22). Other correspondences follow simi-
larly: we mention only

(2.28)

X,(H, T;L, ) =m, (H, T;L, )/
~

H ~, (3.2)

where
~

H
~

=H~ for—H, =O. For low fields in the bulk
limit this gives

7, (H, T)=mp(T)/i Hi (3.3)

g„(H, T) =[b,(T)m, (T)]'"/~ H
~

'", (3.6)

which, as anticipated, diverges when H~O. This correla-

which we will now use (dropping, in most cases, the su-
perscript oo ).

Now if m( R ) is the coarse-grained magnetization den-
sity, the long-wavelength transverse fluctuations may be
described, correct to quadratic order, by the free-energy
functional '

~,[m, (R)]=Jd R( , b,
~

Vm, —+—,X, '
l
m,

l
), (34)

in which b, (T) is a phenomenological "elasticity coeffi-
cient" which measures the "spin-wave stiffness. " Since

vanishes when H —+0 and since the spin-wave in-
teractions can be shown to be technically irrelevant in this
limit (the fixed point being asymptotically free), we
expect this to yield exact hydrodynamic results. The
longitudinal fluctuations, 5ml(R), may, at the microscop
ic, or renormalized Hamiltonian level, be described by a
similar functional with bI replacing b, and a coefficient rt
in place of X, '. It is crucial to note, however, that such a
description does not hold in the hydrodynamic limit:
there are profound renormalization effects arising, in par-
ticular, from a coupling term proportional to
m, (R)m~(R), and thus r~ cannot be identified with

y —1 21,22

The correlation function,

G, (R)=(n —1) '(m, (0) m, (R)),
of the transverse fluctuations, which is what represents
the spin waves most directly, follows from (3.4) in the
standard way. ' It Fourier transform at small q is

G, ( q ) =kg T/(X, '+b, q ),
and reveals the characteristic spin-wave form. From this
the bulk correlation length must be identified as
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where we use the notation

g . 1= lim —g,
e (2~)d v ~ V

q

(3.8)

in which the sum runs over those discrete wave vectors
compatible with periodic boundary conditions in a finite
lattice: thus, a momentum cutoff of order q~ (n. /a) i——s
understood in all integrals on q. The spin-wave contribu-
tion to the longitudinal susceptibility now follows by dif-
ferentiating once with respect to H to obtain the magneti-
zation, and a second time which yields

Xs(H, T)= —,(n —1)ksT J ( ~H
~
+mob, q ) . (3.9)

q

For 2 &d &4 this diverges when H~O. and then
represents the dominant contribution to g„:—gI . The
behavior (2.10) is generated, with ln ~H

~

replacing

~

H
~

'~ when d =4; the amplitude is given quite gen-
erally by

tion length might well be termed the transverse correla-
tion length. However, as we will see, the longitudinal
fluctuations at long wavelengths are driven by the trans-
verse fluctuations and, consequently, g„also sets the scale
of decay of Gt(R). ' Indeed, as H +0—(or even
when T~T, ) there is no other significant longitudinal
correlation length that can be defined.

To substantiate these claims, ' ' note that the re-
duced bulk free-energy density associated with the spin-
wave fluctuations follows from (3.3) and (3.4) as

fs(H, T)= —,'(n —1)I ln[( IH I
/mo+b, q )/a "k&T],

q

(3.7)

defined ' by "twisting" the orientation of the order pa-
rameter uniformly along the length of a cylinder (say by
imposition of ordering fields at the ends). If Vy is the
gradient of the phase of the mean order-parameter vector,
whose orientation may be supposed to rotate uniformly in
a plane, the incremental free energy for small gradients
should vary as

b,I'= —,
' Y(T)(Vqr) V . (3.13)

This expression serves to define Y( T).
A state of uniform twist corresponds to constant

~
Vm,

~

/mo ——
~
Vy

~

in (3.4) with H=O. Thence we ob-
tain the relation

Y( T)=b, (T)mp(T), (3.14)

(H, T)=
l
Y(T)/mo(T)H (3.15)

Likewise, the spin-wave susceptibility amplitude given in
(3.10) becomes

X„(T)= —,
'

(n —1)xdk~ T[mp( T)/Y( T)]" (3.16)

Note also that b, is proportional, in general, to the square
of the range, Rp, of the underlying ordering forces. Thus,
if Jp is a suitable effective ordering energy, we can write

first derived by Josephson ' for a superfluid (n =2). In
the case of a superfluid the helicity modulus is related to
the superfluid density by '

p, (T)=(m/fi) Y(T), where m
is the helium atom mass. For magnetic systems this ex-
pression relates the helicity modulus to the "spin-wave
stiffness. " By combination with (3.6) we can rewrite the
correlation length generally as

X ( T)= —,
' (n —1)xd k& T/[m p( T)b, ( T)] ~ (3.10) Y( T) =JpR o/a (3.17)

where xd is a universal coefficient with x3 ——I/8~ and
x4 ——1/16m . For d &4 the leading singularity in X (H)
is still of the form

j
H

~

'" '~, with a factor ln
~

H
~

present for d=6, 8, . . . , but lower-order analytic terms,
X +X'

~

H
~
+,arise from (3.9) combined with oth-

er contributions to XI.
On using (3.5), the net longitudinal correlation function

corresponding to (3.9) can be identified as

Gt(q)= —,(n —1)f G, (q —Q)G, (Q)/ m(Tp) .
Q

This inverts to yield

Gt(R) = ,' (n —1)—[G,(R)/m, (T)]',

(3.11)

(3.12)

which confirms the fact that g, as given by (3.6), also de-
scribes the longitudinal fluctuations (up to a factor of 2 in
the regime of exponential decay when H & 0).

B. Relation to the helicity modulus

Before employing these results to assess the contribu-
tions of spin-wave fluctuations to finite-size behavior, it is
useful to recall the relation of the coefficient b, (T) in (3.4)
to an important general property of an O(n) ordered
state. ' Specifically, an isotropic system with a nonvan-
ishing spontaneous order, mp( T) (for d & 2, n )2), is also
characterized by a helicity modulus, Y(T), which may be

where a is the lattice spacing (or inverse momentum cut-
off). By (3.15) one sees that g„varies as Rp, which is just
as expected. Furthermore, in the long-range, Kac—van
der %'aals limit, Ro~ oo, the amplitude X vanishes, and
no spin-wave singularities appear.

We also remark that as t =(T—T, )/T, ~O in the criti-
cal region, the helicity modulus, Y, vanishes as '

~

t
~

~ ",while the field, H, should scale as
~

t
~

'~+r'.
From (3.15) one then finds that g scales as

~

t
~

", as
expected. Similarly, by (2.10) and (3.16), the spin-wave
susceptibility Xs scales as ( (

t
~

' ')
~

t ~:for d &4
the hyperscaling relations hold and the first factor here
becomes unity so that Xs scales like the full susceptibility;
above d =4, however, one has dv —(2—ct) = —,(d —4) )0
and, as is well known, the spin waves then contribute only
corrections to the leading critical behavior. All these and
the other features discussed above are fully confirmed in
the exact solutions for the spherical model (see III).

Hs =Y(T)/mo(T) V""

and corresponding putative scaling variable

(3.18)

C. Scaling the spin-wave contributions

We can return now to the issue of finite-size effects.
The crossover criterion g (Hs T) I.p yields the spin-
wave scale
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mo
I

Hs "r( T)

2

(3.19)

/

included as remains when V—+ oo.
Parallel to (3.21), the net spin-wave contribution to the

magnetization must scale as

This surmise for the rounding scale of the spin-wave
singularities is fully confirmed by the analysis of the
spherical model in III. It is then clear that the problem
involves the field in-dependent scale

Hv ps
uL =

Hs
I yv I

kg T kg Ta"
(3.20)

g ~2
d —2

X(H,T;Li) (n-1) m0 +L2
o (n+2)cT

(V= Lo}

rounded~first-order pius
sp Ln —wove peak

where, in the last part, we have used the form (3.17). For
LQ finite, uI is evidently a measure of the inverse range,
RQ, which vanishes in the long-range limit; equally,
however, uI vanishes when Lo~ oo in any field (provid-
ed, of course, one has d & 2, to which we are already com-
mitted). We may thus conclude that if the limits V~oe
and H ~0 are taken so that H V~ oo while H V
remains bounded, one should not see the rounded first-
order peak in susceptibility as H varies; rather one will see
a rounded spin-wave singularity described (for —,d nonin-

tegral) by a new scaling ansatz that may be written, in the
first instance, as

Xs(H, T;LJ)=X„(T)
I
H

I

'~ Z(ys,'li),
where, in order to reproduce the bulk ( V—+ oe ) result
(2.10), we must have Z(ys, 1J)~1 when ys~oo. Notice
that the shape ratios lJ =LJ /LQ must be allowed for. Fig-
ure 1 illustrates schematically the separation of the scales
Hz and Hs. Note also that in the total susceptibility the
same analytic background, X„+X'„

I
H

I +,must be

b, ms =2(d —2) 'X„(T)
I
H

I

'" ' 1'(ys,'lJ ), (3.22)

where X~1 when ys~ao. But on using (3.16) for X
and recalling the definition (3.20) of uL, this can be writ-
ten in the simple form

~ms(H, T;L~ ) =(n —1)mosgn(H)ui. Ys(ys, lj ), (3.23)

Xz(H, T;LJ ) = (n —1)( Vm o/kg T)ul Xs(ys, lj ),
where for large arguments

(d —4 )/2Xs(ys', ij ) ~ xdys

(3.25)

(3.26)

Note again that the cases —,
' d integral are to be excluded in

the above expressions since logarithmic factors then ap-
pear: these are discussed in III for d =4 when n —+ ao. In
addition, for d & 4 analytic background terms will contri-
bute significantly.

What explicit form should the scaling functions Yz and
Xs take7 An answer is gained if one estimates the spin-
wave corrections in a finite system for a field outside the
first-order region H =O(1/V), simply by replacing the
integrals, , in 3.7 and 3.9 by discrete sums,
V ' g', in which the wave vectors q =(qj ) run over all

the values

qJ 2rrpj /LJ, pj————0, + 1, +2, . . . , (mod XJ ) (3.27)

where X,=L, /a, except that q =0 is excluded. (Note
that the term with q =0 corresponds to no spin-wave ex-
citation, but rather would describe a global rotation of the
uniformly magnetized state. ) One discovers that the scal-
ing forms (3.23) and (3.25) are precisely reproduced with,
for d &4,

where the scaling function diverges for large argument as

1's(ys)=(~ —» 'xdys" "". (3.24)
I

Note that the scaled range parameter, uL, appears as a
simple prefactorf The corresponding form for the suscep-
tibility, which may be compared with (2.18) and (2.9), is

3's p.
&s(ys,'&, ) =Ds(&/)+

p~Q

anaLy ti,c
background

~ 0 ~ ~ ~ ~

4' J ] lJ

(3.28)
I ri I

I ~~ I

1 1-H HV V L0
FIG. 1. Schematic plot of the susceptibility vs magnetic field

in a block system of finite volume, V=LO, for d &2, showing
the rounded first-order —plus —spin-wave peak, varying on the
scale Hv ——k~ T/moV, and the superimposed rounded spin-wave
contribution characterized by the scale Hz ——"f/rnoLO. An inev-

itable analytic background, of order unity, is also indicated. The
symbol c specifies a shape-dependent constant.

2 —2
1 3's

Xs(ysij)= 5 4 X 2+ X
4m J ) lJ.p~P

(3.29)

where p is an integer vector, now unrestricted in mag-
nitude, of d components. The second expression here is
straightforward to derive but the first requires some com-
ment. Specifically, in defining the scaling part of the
magnetization, we separate from the total spin-wave con-
tribution which, even for d &4, depends on the details of
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the cutoff, the value of mz in the limit yz «1 but with

~yi ~

~~1, i.e., for fields, H, much less than Hs —1/Lo
but much greater than Hz-1/Lo. The positive coeffi-
cient Ds(lz)= Ys(0;lj) thus depends on the asymptotic
difference between the sum g' (I/q ) and the corre-

q
sponding integral: the analysis, which has some subtlety,
is presented in an Appendix to III. The result can be
written

1/2 1/2
8n'Ds(l-, )= J dxi . I dxd N(xk, lj),

&(xk,' l) ) = 1

. (x /l )Xg J 1

g,. x;(2p;+x;)/l;

-, ~p g, (p»/~, )'gk (Sk+xk)'/4

(3.30)

While this is explicit, it is not very tractable numerically.
However, it can be cast in other forms' ' and for the
symmetric case li = 1 (all j) when d = 3 we quote
Ds(1)=0.112 89. Physically this term simply represents a
finite-size correction to the "spontaneous" magnetization
(as observed in fields satisfying Hi «

~

H «Hs) due to
the discreteness of the spin-wave spectrum. Its sign can
be understood since the spin-wave fluctuations always act
to reduce the bulk spontaneous magnetization, those at
long wavelength being the most effective; but these are cut
off in finite systems. For d &4 similar subtractions are
needed to allow for the analytic background terms and ac-
count for the finite-size spin-wave corrections they simi-
larly suffer. The explicit scaling functions are analytic,
monotonic functions which are easily seen to satisfy (3.24)
and (3.26). The coefficient xd appears naturally through
the appropriate integral which enters its original defini-
tion in (3.10).

Finally, these results for the finite-size rounding in the
pure spin-wave region, H V~ oo with H V " bounded,
can be checked in the spherical model limit obtained ex-
plicitly in III: with the correct scaling as n ~ oo, all agree
precisely.

D. Spin-eave and first-order interference

Owing to the separation of the scales Hi and Hs, we
were able to give an account of the rounding of the spin-
wave singularities independently of the first-order contri-
bution. However, it remains to address the more chal-
lenging question of the effect of the spin-wave fluctua-
tions on the rounding of the first-order transition when H
is of order Hi or smaller. The temptation merely to add
the two contributions must be resisted since it leads to an
unacceptable answerf To see this, note that in a finite sys-
tem the variation of the magnetization, susceptibility, etc.
must remain smooth and analytic as H passes through
zero; but the scaling form (3.23) with (3.28) and (3.29) im-
plies contributions to m and X varying for small H like
sgn(H) and —

~

H ~, respectively, which are nonanalytic.
(Here again we regard H as a scalar variable which may
assume any sign. )

More generally, then, if we recall that ys —=uI.
~ yi ~

we
may expect the magnetization to be described by the two-
variable scaling form

m (H, T;LJ )=mpY(yi, ul &l~),

with, to recapitulate, yv ——moHLO/k&T and

uL ——ka T/YLo —T/RoLo

(3.32)

When uL ~0 the spin-wave contributions drop out and
the scaling function Y(y, u;lj ) should reduce to

Yo(y) =I~ i ~2~„(y)/Ii i ~2~„ i (y), (3.33)

as implied by (2.17). Evidently, T/Ro acts as an ir-
relevant variable scaling as L0, by contrast to h, which
is relevant and scales as Lo ". The exponents here may be
recognized as the accepted renormalization-group eigen-
values or scaling exponents, A, ~

——d and A, T
——2 —d, at a

discontinuity fixed point in a system with n &2.' '

Furthermore, our analysis here, and also in Sec. V below,
indicates that m ph =m p( T)H /kii T and uI L o

kii T/Y—(T) are appropriate nonlinear scaling fields near
the ferromagnetic phase boundary. In the opposite limit
when yz ~~ the pure spin-wave region should be at-
tained, so Yp~sgn(y) and we expect to find

Y(y, u;l, )=sgn(y)[1+(n —1)u Ys(u ~y ~;l )], (3.34)

where omitted terms should represent the onset, as H is
reduced, of interference between the spin-wave and first-
order contributions. Again, these plausible arguments do
yield the correct results in the spherical model limit.

Some insight into the interference between spin-wave
and first-order terms may be obtained by another route if
we focus on H =0. Thus, one contribution to the devia-
tion,

bXp(T;L~ ) =X(0,T;Li ) mp V/nkii T—, (3.35)

from the first-order scaling result (2.9), can be estimated
heuristically by appealing to (3.12) and (3.5). It follows
that the summand in (2.6) should, ultimately, decrease to
its limit, given in terms of mp by (2.7), like Gi(R;i)
—1/R;1' ', at least this description should be valid for
Lp ))R

&
)&a. Now one sum may be performed by using

translational invariance and the other can then be approx-
imated reasonably by an integral cutoff at R,&-LO. This
yields an additive spin-wave correction to X(0,T;LJ ), pro-
portional to

1 ) kB T(m o/Y) L 0 = (n —1 )(m pV/kii T)ui V

(3.36)

where e=4—d. (Again —,'d must be nonintegral: for
d =4 one finds a divergence as lnV. ) Note that this is just
of the scaling form (3.25) if the scaling function Xs(ys)
approaches a finite limit when y&~0, as it does according
to (3.29). This would, in fact, be consistent with a mere
addition of the first-order and spin-wave forms, but this,
as we have seen, cannot actually be quite correct.

Indeed, another source contributing to hXo is readily
identified if the significance of the term Ds(lz) in (3.28) is
recalled. This represented a finite-size enhancement of
the spontaneous magnetization by an amount km 0= ( n —1 )Ds m p uL . If this correction is allowed for in
(2,9) in the heuristic derivation of bXp, it clearly leads to a
further additive term: naively one gets
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EXo 2Ds(n —1)( Vmo/nkvd T)uL V (3.37)

This is of lower order in uI than (3.36) and hence dom-
inates; but it is not consistent with a purely additive spin-
wave scaling expression (3.25) if (3.29) is accepted. Clear-
ly, then, concrete interference effects between the spin-
wave and first-order scaling behavior are to be expected.
[The guess (3.37) will be confirmed up to a factor
n/(n +2).J

To proceed further, notice that when H approaches H&
from above in a finite system we can no longer accept the
bulk result (3.3) for the transverse susceptibility, X,(H, T),
which controls the spin waves. Rather it seems appropri-
ate to use the general result (3.2) instead. This suggests
that to describe the spin-wave free energy, fs, in a finite
system, we should not only discretize the momentum in-
tegral in (3.7) as above, but we should also replace

~

H
~
/mo by H/m(H, T;LJ ). We may then form an esti-

mate for the total free energy by adding fs to the pure
first-order contribution, say fo, as given by (2.16). Dif-
ferentiating this with respect to H to obtain m (H; T;LJ )

evidently leads to an unpleasant implicit equation, also en-
tailing X(H, T;LJ), whose general validity might well be
questioned. However, we have seen that the spin-wave
term will be proportional to uI which may always be re-
garded as small. Thus, to leading order in uL it
should suffice to replace H/m =H/mo Y(yv, uL, ) by
H/ omYo(yv) in the spin-wave free energy [see (3.7)]. Do-
ing this leads, after some algebra, to the two-variable scal-
ing form (3.32) with the explicit scaling function

Y(yv uL, 'lq ) = Yo(yv)+(n —1)uL z'(yv) Ys[uLz (yv)],

(3,38)
where z(y)=y/Yo(y). This result should, if the argu-
ments are correct, be valid to order uL in all regimes (for
d & 4). It may be compared with the limiting result (3.34)
to which it reduces for large yv since, as

~ y ~

~co, we
have, from (2.19),

z(y) =—y/Yo(y)= ly l
+ ~ (n —1)[1+&(y ')], (3 39)

z'(y)—:(dz/dy)=sgn(y)[1 ——,(n —1)/y +. . . ] . (3.40)

The behavior of these two functions can be determined
simply for n »1 by using (2.23), which yields

differentiation with respect to H (or yv). The overall
scaling function, X(yv, uL', l/) =k~TX/m(V, may be writ-
ten as a sum of (i) a first-order piece, Xo(yv), following
from (2.18), (ii) a pure spin-wave piece following from
(3.25) and (3.29) with ys—= uL, ~yv ~, and (iii) interference
term which, for d & 4, may be written

EX(yv, ui, l/)=(n —1)uL [z"(yv) Ys(yLz)

—ui [1—(z') ]Xs(yLz)

[Xs(uL
I yv I

) —Xs(uL»1 J

(3.43)

where z"=(d z/dy ), z'=z'(yv), and z =z(yv). For
large y& the last term is essentially proportional to
uL Xs(ys ) -Xs/

~ yv ~, where (3.26) has been invoked,
while 1 —(z') and z" decay as 1/yv and 1/

~ yv ~, respec-
tively. Thus all the interference terms are small. For
small yz, the dominant contribution, leading in uL, comes
from Ys(0;ll)=Ds, which was identified before as the
source of the leading correction to the zero-field suscepti-
bility. For small ys, the corresponding interference
correction to the first-order peak is thus

(n —1)m oL~x'"=
Y(T) Ds(lj )z "(yv), (3.44)

which, for large n, reduces to

gy( J) m o V k+ T 2(n —1)Ds(lj )

nkzT YLo [I+(2moHV/nk~T)2]3~~

(3.45)

The field variation for finite n )2 is qualitatively very
similar. In zero field, however, (3.44) yields the shift

2(n —1)moL

( 2)Y(T)

which differs from the naive result (3.37) by a factor of
n/(n +2). Note that we cannot check this factor against
the spherical model results. Indeed, for the present, the
validity of this and our other specific and general conjec-
tures for n & oo must remain unchecked by a more
rigorous argument.

z (y) = ,' n + (y + —„n )
'—

z'(y) =y/(y'+ —,n')' ' .

(3.41)

(3.42)

IV. LONGITUDINAL CORRELATION LENGTH,
THE TRANSFER OPERATOR,

AND THE HELICITY MODULUS
Evidently the replacement of y by z(y) removes the spin-
wave scaling function singularities for small fields since
z(y)) n. Similarly, z'(y) acts as a cutoff factor which
vanishes at y =0 and damps out the spin-wave contribu-
tion for fields up to

~

H
~
=Hv. The qualitative behavior

for all n )2 is very similar.
Although the arguments presented here for the effects

of the spin-wave fluctuations might be characterized as
"naively optimistic, " they are fully adequate in the large-
n limit since the form (3.38) is exactly confirmed by the
spherical model calculations in III. We suspect, accord-
ingly, that (3.38) is actually correct for all n )2.

The behavior of the susceptibility follows by a further

Consider now the case of a long, ultimately infinitely

long, 3 XL
~~

cylinder. The order parameter, m( R ),
within a long cylinder in zero field, cannot reasonably be
supposed to have a uniform orientation as proved to be ef-
fectively the case in a block geometry: rather, owing to
the gain in entropy available, the dominant configurations
will involve relative rotations of the order parameter along
the cylinder on a length scale, say g~~(T). Since g'I~ must
evidently measure the spatial extent of the correlations in
the orientation of m( R), it can be identified ' with the
longitudinal - correlation length of an infinitely long
cylinder of finite cross section, A: as such it must depend
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sensitively on both 3 and T. Our aim in this section is to
elucidate this dependence.

A. The degeneracy kernel

In order to find a phenomenological description of the
rotational fluctuations of the order parameter in zero field
on the longest length scales, let us divide up the 3 )&L~~
cylinder into L~c!b successive slices or layers of length-
wise thickness, b, with, possibly, b~0. The magnetiza-
tion m(R) within a slice may, since we suppose b &&g!!,
be regarded as uniform with an (average) orientation
specified by a unit vector JM. For the present the magni-
tude of this layer magnetization will not play a role, but
one would presume it is close to mo if Lz is not too
small. Now between one layer and the next, with orienta-
tions p and p, there will, in a typical configuration, be a
mismatch in orientation of phase, Acp, and an associated
increment in free energy, b,I'(p, p'). But by the definition
(3.13) of the helicity modulus, Y(T), this increment
should be bF = , Y(Vy) —Ab, where Vq Ab is th——e volume
of a slice. Since cos(b,y)=p )M', we may use the discrete
approximation

—,
' (Vy)'= —,(&gib)'=(1 pp') Ib—' (4.1)

when b is not too large. Apart from an orientation-
independent factor, the Boltzmann factor for the coupling
of two adjacent slices in zero field thus becomes

Y(T)A
A o(p, p')=exp p p'

BT
(4.2)

At (2~)"~ Kg "' I——t )+„g2(Kg ),
where the effective nearest-neighbor coupling is

K„—:Y(T)A/ks Tb .

(4.3)

The lth eigenvalue is manyfold degenerate, the eigenfunc-
tions being the n-dimensional hyperspherical harmonics,
Yt (p), in which the second label is v=1, . . . ,g (l;n), the
degeneracy g (l;n) being given explicitly by

(2l +n —2)(l + n —3)!
(n —2)!l!

Note that this form is rotationally invariant in p space as
it must be: clearly this dictates the dot product form of
coupling.

Now it is evident that we may regard the function
A o(p, p') as specifying the kernel of an effective transfer
operator or "matrix" which can be used in the standard
way to build up the n-vector cylinder slice by slice. The
spectrum of this operator should, in the usual way, ' '

provide information on the correlations and order. Since,
however, the derivation has allowed only for the longest
length scales associated with the buildup of long-range or-
der and, thence, with asymptotic degeneracy in the full
transfer operator spectrum, we may term A 0(p,p') the
degeneracy kernel. The limits of validity and the more
precise interpretation of ~0(p,p') will be discussed fur-
ther below and in the following section.

Now the eigenvalues of the degeneracy kernel (4.2) are
well known. ' With l =0, 1,2, . . . one finds

for l =0, 1,2, . . . and n =2,3, . . . , except for the case
l =0, n =2, for which one has g(0;2)=1. When A/b
and, hence, Kz are large, one can use the asymptotic ap-
proximation

lnAt = I nAO(K~, 'n ) ——,l (l +n 2)E—„'+O(K„), (4.6)

where lnAo is independent of l and thereby has no interest
for us here.

B. Correlation length and helicity modulus

Now the lengthwise or longitudinal correlation length
of an infinite cylinder is given, in terms of the eigenvalues
as usual, by

b/I n(
——Ao/Ai) . (4.7)

For Kz && I, or as A/b~ ao, we thence obtain the rela-
tion

T;A) =2Y(T)A/(n —1)ks T . (4.8)

This result is the analog for n )2 of the formula relat-
ing the interfacial or surface tension, X(T), in a scalar,
n =1 system to the transfer matrix eigenvalues. ' ' It can
be rewritten as

Y( T) = —,(n —1)k Tslim
~ A 1n[tAO(T;A, b)IA, (T;A, b)]

g„/A -(J,R,'/a") t (4.10)

when T~T, , where (3.17) has been invoked. On the
other hand, Brezin has conjectured, on the basis of his
exact calculations for the limit n~oo, that one should
have g'!!/A —

~

t
~

' as t~O. For d (d =4 hyper-
scaling relations such as dv=2P+y hold and Brezin's ex-
ponent agrees with (4.10); however, the conjecture is not
valid for d)4.

In writing (4.9) we have considered only the eigenvalues
of the degeneracy kernel, (4.2); but as the bulk limit is ap-
proached these should reflect accurately the most degen-
erate part of the spectrum of the full lattice transfer ma-
trix, or kernel. (For nearest-neighbor coupling, one may

/

(4.9)

which is an explicit expression for the helicity modulus in
terms of the largest, Ao, and second largest, A~, eigen-
values of the transfer operator. Note that the eigenvalues
depend on the slice or layer thickness, b, but the result in
the limit A~ co will not! The original derivation of
(4.9) for the case n =2 (where the spectrum and eigen-
functions of Mo are simple) followed a somewhat dif-
ferent route: see further below.

One may note that a low-temperature approximation
for g!~(T;A) when n =2 gives g!!-2EA/a ' f«'a
(d =3)-dimensional simple-cubic lattice with lattice spac-
ing a. This result does, indeed, agree with (4.8) since, by
using the original definition (3.13), one easily finds
Y(0)=J/a"

One knows, ' ' as remarked before, that Y vanishes
quite generally as

~

t
~

~ " when t =(T —T, )IT, ~O.
Accordingly the longitudinal correlation length is charac-
terized by
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simply set b equal to the lattice spacing, a; recall that the
limit relating g~~

to Y involves A/b~ca so b may be held
fixed. ) To see the limitations entailed in describing the
spectrum by the degeneracy kernel, note that the succes-
sive "mass gaps" or inverse "higher" correlation lengths
defined by

ki '(T;A) =b '1n(Ao/&i) (4.11)

are given roughly by l /(n —1)g~~ for l &n H. owever, as
already discussed, one must not forget the spin-wave
modes that must be present in the bulk, single-phase sys-
tem. Here it is primarily the transverse spin-wave modes
within a single slice or layer that matter. (The longitudi-
nal modes should be accounted for, in a first approxima-
tion, by the degeneracy kernel itself. ) The transverse
modes must be associated with new spectral features
determined by the transverse dimension Lz ——2' '

The scale of these may be estimated via gz-Lt. (Com-
pare with the spacing of levels in a "single-particle band"
for n =1 as discussed in I.) By equating i /(n —1)g!~ to
Lt, we conclude that Mo(p, p') can describe at best of
order (Y/kii T)'~ LI ' of the largest eigenvalues (not
counting the degeneracies) of the full transfer matrix in
zero field. Nevertheless, as 3~ oo an unbounded number
of eigenvalues should be well represented.

For n =2 one can regard p and p' as phase angles y
and y' and, by symmetry, the eigenfunctions are simply
e—+ ' +. The spectrum is quadratic and can be written

b/pi= —, i /Kq (n —=2), (4.12)

g( T)=k~ T/2~Y( T) (4.13)

for the decay exponent of the bulk correlations with the
recent result of Pichard and Sarma,

which might now be regarded as a definition of Kz. Then
one can reverse the arguments. Specifically, one may
postulate (4.12) and use the character of the eigenfunc-
tions to compute for an 2 XL~t cylinder the incremental
free energy, AF(0), associated with a twist in the order
imposed by the symmetry-breaking boundary conditions
&p=0 at one end of the cylinder and @=0 (

~

0
~

& ~) at the
other end. One finds that bF(0) varies as 0 A/L~~', but
through (3.13) the coefficient is related ' to Y(T) and
thence (4.9) is recaptured (for n =2).

This argument suggests that if (4.12) is valid for d =2,
n =2 (i.e., for the two-dimensional XY model), then the
helicity modulus in the Kosterlitz- Thouless, critical
phase ' ' below T, should also be given by (4.9); or, to
put the matter alternatively, that the longitudinal correla-
tion length in an Lz & oo two-dimensional XY model strip
with periodic boundary conditions should be given by
(4.8). In fact, this answer is correct! This follows by com-
bining the famous relation

spectrum has not been checked in detail. It must, howev-
er, reflect the asymptotically free spin-wave character of
the Kosterlitz-Thouless phase. (See Refs. 49—51 for
various studies of the transfer matrix for the d =2 XY-
model. ) It is also true, in the absence of a spontaneous
magnetization (mo—=0), that the physical picture leading
to the degeneracy kernel (4.2) might be considered defi-
cient. Recall, however, that mo does not actUally enter
into the specification of A o(p, p') and one may, following
current ideas, regard Y as measuring the long-wavelength,
renormalized coupling between coarse-grained or renor-
malized "block" spins representing a layer.

The arguments used by Pichard and Sarma for (4.14)
are rather formal and of a somewhat peculiar character.
However, it is worth remarking that they also apply for
d & 2. Specifically, they construct a fluxlike integral
based on the logarithmic derivative of the total correlation
function

G„„(R)=(s-s-) =mo+Gi(R)+(n —1)G,(R) (4.15)

in zero field. In a cylinder their method relates this to g~!.
Then if (4.8) is accepted, one obtains, for the bulk correla-
tion function, the relation

lnG„, (R)= ——,(n —1)kiiTI ( —,d)/m"~ Y(T)R"
dR

(4.16)

as R ~ op. This can be integrated using (4.15) to yield
an asymptotic expression for G, ( R ) in zero field, which is
in complete accord with the phenomenological result (3.5)
with (3.6) and (3.14).

V. ROUNDING AND SCALING
FOR CYLINDER GEOMETRIES

A. Scaling forms

Since, as we have demonstrated, a new length scale,
g~~(T, A), appears in cylinder geometries when L~~ exceeds
Li, it is natural to extend the first-order scaling ansatz
(2.12) to

f, (II, 'F;LJ ) = V 'IV[ino(T)h V;L~~/k~~(T A) j, (5.1)

in which, now, L ~
=—L

~~
may grow at the same or a faster

rate than L2, . . . , Ld, which all diverge at comparable
rates measured by

d
A =L = g L; = V/Li~ iL /Li~i. ——

I =2

The longitudinal correlation length diverges like A ac-
cording to (4.8). For L~! &&g~~ we must regain the results
for a block geometry so that one has

(4.14)
W(yv, O) = W'(yv) (5.2)

which has been rederived elegantly by Cardy, who invokes
conformal covariance of the critical correlation func-
tions.

While the conclusion (4.8) is thus valid for d =2 and
n =2, the quadratic nature, (4.12), of the transfer matrix (5.3)

where the latter scaling function follows explicitly from
(2.15) and (2.16). On the other hand, in the limit
L

~ ~

&&g~ ~,
which includes an infinite cylinder, we expect

the dependence on L
~I

to drop out. This occurs provided

W(yv.,x) =x8' (yv/x) as x 00 .
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In this cylinder limit, therefore, we expect

f, (H, T;LJ ) =(g))A) 'W' (y„),
where the new scaled field variable is

y„=mohan))A —2mo(T)Y(T)HA /(n 1)ki'i T

(5.4)

(5.5)

The first-order scaling behavior of the magnetization and
susceptibility in the cylinder limit follow by differentia-
tion as

spherical harmonics, Y(,(p) for l =0, 1,2, . . . and
r= l, . . . , g(l;n), as described in Sec. IV: see (4.5). The
eigenvalues are given by

n(„)Y„(p)= l(—l +n —2) Y„()u, ) . (5.1 1)

If one compares this with the result (4.6) for the eigen-
values of A p, one sees that A p can be approximated for
A/b~co by an exponential of A(„). In fact, using (4.6)
and (5.5) we can, more generally, rewrite the degeneracy
kernel as

m(H, T;LJ)=mo Y (yz),

g(H, T;L/)=2[moYA /(n —1)k ~T ]X (yz) .

(5.6)

(5.7)
A ((M, p') = |)(tu, —)M')exp[(yzb/g)()cos8]

&j exp[bQI„)/(n —1)g))], (5.12)
Evidently the initial (or zero-field) susceptibility,
Xo(T;L~ ), diverges as A -L i ' for all n & 2; this con-
trasts with the exponential divergence of gp with 3 in the
scalar, n = 1 case as found in I. The behavior Xo(T) -A
has been observed previously for T~O by Cardy and
Nightingale. ' The roug. ding of the susceptibility peak
occurs on the scale

Ha ———,(n —1)(kaT) /moYA (5.8)

which, given d ~2, is much smaller than the block scale
Hp-.

B. Extended degeneracy kernel

will provide an asymptotically exact account of the largest
eigenvalues of the full transfer operator for d &2. In
writing this, following (4.2), we have used (4.8) to intro-
duce g)). [The kernel has been written in unsymmetric
form merely for convenience: it may be symmetrized by
replacing p by —,

' (p+ p').]
To analyze the degeneracy kernel, let us denote the an-

gular part of the Laplace operator in n dimensions, V[„~,
by 0[„]. if r is the n-dimensional radius, A[„~ is defined
via

2 —(n —1) a n —1 a + —2~v [~~——r
ar

r
ar

+r (5.10)

and acts only on the n —1 angular coordinates specify-
ing the orientation p: more concretely, we will denote the
angle between p and the fixed field direction, o., by 0, so
that cr p =cosO. The eigenfunctions of Q[„]are the hyper-

In order to explore the foundations of the scaling ex-
pressions (5.1) and (5.4), let us introduce an external field
into the considerations leading to the formulation of the
degeneracy kernel (4.2). A field H=ksTho must couple
to the total magnetization, say IAb, of a layer or slice.
As mentioned originally, it is reasonable to suppose that
m=mpp, ' but, as seen in Sec. .III, there should be some
spin-wave corrections to this. However, we will suppose,
here, in analogy to what was established in Sec. III, that
these corrections are of higher order in 1/Lz and so do
not affect the leading first-order scaling behavior. Thus
we are lead to expect that the degeneracy kernel

A (p, lJ, ') =exp[ —,(n —1)g))p p'/b]exp(mohAbo"p)

(5.9)

when g))/b-A/b oo, where QI„) acts on the p' depen-
dence only. Now, in this same limit with yz ——O(1), the
commutators entailed in replacing a product of operator
exponentials by an exponential of an operator sum can be
neglected as of higher order in b/g)). Thus our extended
degeneracy kernel is equivalent, as the bulk limit I.j ~~
is approached, to the differential operator

~=exp[(b/g)))[(n —1) 'II, „,+y„cos8]) . (5.13)

C. The cylinder limit

To proceed further, consider the Schrodinger equation

[—(n —1) '0(„)—y„cos8]p(p )=Ep(lj, ), (5.14)

where it)(p) is a continuous function on the unit sphere
(

~ p ~

=1) in n dimensions. This equation specifies a
discrete spectrum of eigenvalues Eo(y„) & E i (y„)
&E2(y„)& . . For n =2 it is simply Mathieu's equa-
tion,

d g
dO

+(E+y~cos8)f(8) =0, (5.15)

which is well studied. Here one seeks periodic solutions
with g(0) = i'(2ir).

For n =3,4, . . . , a reduction to a single-variable
Schrodinger equation follows from the identity

II(„)——(sin8) " (sin8)"
ae ae

+ (sli18) 0( i )
(5.16)

q(8;e) =(sin8) -'"-""u (8)Y„(e) (5.17)

leads to the ordinary differential equation
r

d u 1 n —4 k(A+n —3),
(n —2) 1 — u+ — u

do 2 - 2tan 0 sin 6

= ( n —1)(E+yz cos8)u . (5.18)

in which Q(„ i) acts on the set e, of (n —2) remaining
angular coordinates beyond 0: see Ref. 34, Sec. 11.1 for
further details and a description of a convenient choice of
6, the hyperspherical polar coordinate system. Then,
if Yi (e) now represents the (n —1)-dimensional
hyperspherical harmonics with k =0, 1, . . . and
=I, . . . , g(A, ;n —1), setting
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This must be solved subject to the boundary conditions
that g(0) and P(m) be finite: by (5.17) the boundary con-
ditions for u(9) thus depend on n .It is now evident that
the eigenvalues in (5.14) may be labeled by three quantum
numbers: the "principal" quantum number, say,
=0,1,2, . . . runs over the eigenstates of (5.18).for fixed A, .
The full eigenfunction, P„~„is given by (5.17) in terms of
u„(9) and Y~ (6), and has energy E„~ =E q

—given by
(5.18), each level being g(A, ;n —1)-fold degenerate. How-
ever, when y~ ——0 the degeneracy is higher: multiplets
merge into degenerate sets of g(l; n ) levels, where
1=0,1,2, . . . . Finally, notice that since the "centrifugal"
term, cc 1/sin 9, is positive, the ground state of (5.14) al-
ways lies in the X=0 sector.

Now if Ep(yz) is the ground-state eigenvalue of (5.14)
[or (5.18)], the largest eigenvalue of the degeneracy
kernel, A, is, asymptotically, given simply by
Ap=exp[ —bEp(yg)/g~~] and should represent accurately
the dominant field dependence of the largest eigenvalue of
the full transfer operator. For an infinite cylinder of fin-
ite cross section the first-order transition should thus be
described by

These physically obvious statements can, of course, be ful-

ly justified analytically.
To obtain a more explicit expression for the scaling

function, note that the scaling function for the magnetiza-
tion in (5.6) now corresponds to

Alp

dEp dEp = (cos9)p,
dy

(5.25)

Ep (y)= —,Y (1—Y„)—y Y

while minimization leads to

Y„/(1—Y ) =2y .

(5.26)

(5.27)

This latter relation is an algebraic equation for the mag-
netization scaling function Y (y) valid for large n (in the
cylinder limit). For small y =yz/n, one can solve to ob-
tain

where (cos9)p denotes an average in the ground state and
so approaches cosOp when n ~ ao. The substitution
cos9p ——Y„ in (5.24) then yields

f, (H, T;L~ ) = (bA ) 'i—nAp-(/~~A ) 'Ep(y~ ), (5.19)
Y (yz, n) =2y[1 —8y +O(y )] . (5.28)

which thus confirms the scaling postulate (5.4) and shows
that the scaling function is given by W (yz ) =Ep(yq ).
One can easily check that Ep(yz ) is an even function of
y~, which varies as —yz ~

when y~ ~+ co. [Compare
with (2.4).] Likewise, the scaling functions Y and X
entering in (5.6) and (5.9) are equal to the derivatives Ep-
and Ep. As a—n example, we have evaluated Ep'(0) by
standard perturbation theory for n =2. This gives the
height of the rounded first-order susceptibility peak as

X (TpLJ ) 47rm p(T)Y(T)'(A /k~ T) (n:2 L ]~ oo )

(5;20)

D. Infinite-component limit

The degeneracy kernel arguments yielding (5.19) are, we
believe, convincing, but they are certainly not rigorous. In
order to check them against exact calculations,

'

let us ex-
amine the limit n ~ co. To this end, return to (5.18) with
A, =O and set

IV (y~, n ) = —, n Y (1—+Y )l(1 —Y )

= —ny [1—4y +O(y )] as y~0,
n~y

~

[1——1/+2 y ~

+O(y ')]

(5.29)

(5.30)

as ~y ~

—+op . (5.31)

A crucial point, however, is that the first-order
behavior in the cylinder limit may be calculated exactly
for the spherical model: see III. One finds that the scal-
ing functions 8' and F, for free energy and magneti-
zation, are precisely as given by (5.27) and (5.29). Thus
the degeneracy kernel approach is certainly correct for
large n. Incidentally, in making this check, one needs the
explicit value of the helicity modulus in the spherical
model which has been calculated by Barber and Fisher.

In terms of this function the scaling function for the free'

energy for large n follows via (5.21) and (5.19). With
y

—=yz /n it can be written more explicitly as

E(y„)=nE(y) and y& ny . ——
For large n the Schrodinger equation then becomes

1 d
n dO

+ [E U(9)]u =0, —

in which the potential is given by

U(9) = 1/4 tan~9 —y cos9,

(5.21)

(5.22)

(5.23)

E. Finite cylinders

For a cylinder of finite length, I ~I, with periodic boun-
dary conditions, the partition function may, as regards the
field dependence, be approximated by

=TrIX

=Tr[exp[(L~~/g'~~)(n —1) 'Q~„~+mph Vcos9]I,

while terms of relative order 1/n have been dropped. But
(5.22) is simply a Schrodinger equation for a particle with
a mass proportional to n in a fixed potential. As n be-
comes large, therefore, the ground-state wave function
peaks at the (unique) minimum of the potential, and, cor-
respondingly, the ground-state energy, Ep, approaches

(5.32)
where Tr[ I represents a normalized integration over the
orientational coordinates specifying p as in (2.14). The
associated free energy, —V 'ln&, has precisely the two-
variable scaling form anticipated in (5.1). The result can
also be written asymptotically as

Ep (y)= min U(9)=U(9p) .
p&8&~

(5.24) f, = —V 'ln g exp[ —(L((/g'(()Ek(yg )],
k=p

(5.33)
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, (n —1)uzi
~~

.— (5.34)

Here we have ill =LII Lp=l], while uz=ki]T/YL p is
the parameter, introduced in (3.20), which measures the
strength of the spin-wave contributions in the block limit
relative to the leading first-order terms scaling with

y~ ——mohV. It is then clear that the derivative term in
(5.32), while vital in the cylinder limit, l~~

~ oo, represents
essentially only a spin-wave correction in the block limit,
l~~=0(1). Furthermore, since terms proportional to
l2, I3, . . . , which must be anticipated on the grounds of
symmetry, do not appear, it is clear that spin-wave modes
"propagating" transversely to the cylinder axis have not
been properly accounted for. Recall that the leading ef-
fects of all the spin-wave modes in the block limit are
represented by the scaling-with-corrections expression
(3.38) and the associated results. Since, by construction,
the degeneracy kernel took direct account only of the
spin-wave modes with wave vectors parallel to the
cylinder axis, the absence of the other contributions is
hardly surprising. Furthermore, as the check in the
spherical model limit confirmed, their absence is no loss
as regards leading behavior either in the limit of a long
cylinder with l~~ &&1 or in the block situation. Nonethe-
less, as l

~~
decreases and crossover occurs one will reach a

final region in which the degeneracy kernel partition func-
tion (5.32) successfully represents the leading first-order
behavior but is numerically inaccurate as regards the
spin-wave terms of order uL in which the shape depen-
dence enters and out of which the crossover to the
cylinder limit develops.

One might attempt to go further by adapting the lines
of argument used in Sec. III to elucidate the spin-wave in-
terference effects in the block limit. Some improvement

where the Ek (yz ) are the eigenvalues of the full
Schrodinger equation (5.14), where k denotes, collectively,
all the quantum numbers. For long cylinders with
L

~~
~~/~~( T;A) the term with Ep dominates and the result

(5.19) is reproduced. Evidently the leading correction to
this is of relative order exp[ —(LII ~~ll)b'E](y„)], where
the energy gap AE& ——E& —Eo takes the value 1 when
y„~0. In the other limit, L~~ &&g~~(T;A), one may
neglect the derivative term in (5.32) and the original block
scaling result (2.16) is correctly recaptured. In between,
(5.33) provides a leading-order description of the cross-
over from block to cylinder geometries.

In the scalar case, n = 1, it was shown in I that only the
two leading eigenvalues of the transfer matrix were neces-
sary to describe the first-order transition in the block lim-

it, in the cylinder limit, and in the full crossover region
between them. The situation here is not so simple. In
the first case, it is clear that once L

~ ~

& g'~ ~, successive
terms in the series (5.33) decrease only by factors
exp[ —(L ~i/~ii)AEk], with hE„=E„—E„„which a« of
order unity (for bounded k) and hence cannot be neglect-
ed.

More physical insight can be gained, however, if we
note that the crucial scaled combination can be written,
using (4.8) and (5.8), as

X=L~)C~~(»'A)=H /H =
2 (n —1)k8TL~~/&Lp

is probably to be had by modifying the value, mo, as-
sumed for the layer magnetization, in the formulation of
the degeneracy kernel in order to allow for the truncated
spin-wave enhancement of m for small H as found in Sec.
III. However, a less ad hoc treatment would have to ac-
count for the propagation of spin waves from one slice to
the next in constructing a suitably expanded degeneracy
kernel. It is not clear how that could be done in general
without substantially complicating the formalism. (In the
limit n ~ oo the results can, of course, be found analyti-
cally by direct analysis: see III.)

Despite the restriction to
~

H &&Hs in the approxima-
tion (5.33), it is worth exploring a little further to show
that some important spin-wave features are nevertheless
represented in qualitatively correct fashion. Thus, consid-
er the field dependence and note that when yz ——H/Hz is
large (and, say, positive), one may use cos]9=1——,8,
tan0=0, and expand around the potential minimum to
approximate (5.18) as an equation for a harmonic oscilla-
tor. Leaving aside pure numerical factors, the first energy
gap then varies as

EE](yg 'n ) =E]—Ep [m pHgt~A /('n —1 )ks T]
(5.35)

But this corresponds to a correlation length

g](H, T)=gii/bE] [ f(T)/mp(T)H]' (5.36)

Near the critical point (H=O, T=T, ), thermodynamic
properties and the correlation functions, etc. should obey

Comparison with (3.15) reveals precise agreement with the
variation of the isotropic bulk correlation length,

(H, T), which in turn represents a direct manifestation
of the spin waves. Despite this, the fact that the degen-
eracy kernel, as formulated, does not fully include the spa-
tially transverse spin-wave fluctuations shows up even in
an infinite cylinder. The resulting first-order crossover
scaling function, e.g. , for the limit n ~ co in (5.26)—(5.31),
is correct on the scale Hz —1/A (as checked for n ~ oo),
but clearly contains no structure on the spin-wave scale
Hs —1/L p. [See (3.18).] One should note, however, that
H~/Hs ———,(n —l)uzi~~ so that, as in the block case, the
residual spin-wave effects must be regarded only as
corrections to the leading scaling behavior —and the lead-
ing behavior is given correctly by the degeneracy kernel)

Similar considerations apply if one views (5.1) as a scal-
ing relation at a renormalization-group discontinuity fixed
point' at h =0, T =0. Indeed, by (5.34) the ratio
L~~/g~~ ]s just a product of the two scaling combinations 1~~

and uz. The cylinder scaling result (5.33), which satisfies
(5.2) and (5.3), describes correctly that part of the uz
dependence of the full two-variable scaling form, as in
(3.32), which is singular or "dangerous" when the product
l~~uI. becomes l~~g~. In the opposite limit of small l~~uL,
the uL dependence is reproduced correctly only to order
(uz) in an expansion of the full scaling function in
powers of the irrelevant combination uL. happily, such
an expansion is quite legitimate in this, the block limit
(see Sec. III), even though the (uz )' terms are needed to
see the leading spin-wave corrections.

VI. FIRST-ORDER SCALING
IN THE CRITICAL REGION
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the usual, "critical" finite-size scaling theory. ' For the
singular part of the free energy (as defined, in particular,
in Ref. 53), one adopts the hypothesis

f.(H» L, ) =
I

t
I

' ~;(h/
I

t
I
', Lo

I

t
I
";ij), (6.1)

for h —+0 and t=(T T,—)/T, +0+—with b, =P+y. . This
embodies the assertion that all unbounded lengths should
be scaled asymptotically by the bulk correlation length,

, say, in zero field above T„where it diverges as t
Now, as observed in I, the critical and first-order scaling
regimes have overlapping domains of validity, specifical-
ly, small, fixed t &0 with h —+0+ and large Lo. Then, in
the first-order scaling expressions, one should take

mp(T)=B
I

t
I

~ and r(T)/ksT=D
I

t (6.2)

Inasfar as the scaling behavior matches, so too must the
first-order and critical scaling functions correspond, as
demonstrated in I. We will not enter into any details here
since they parallel closely those presented in I and in Ref.
54; however, we will examine the degree to which the sim-
ple scaling form (6.1) and its natural extension

g(H, TL, )= t Z +(h/—
I

t
I

~-, Lp
I
t;1,) (6.3)

for correlation lengths defined in various ways are actual-
ly valid. As pointed out by Brezin and discussed in I
(and Ref. 54), finite-size first-order behavior is not ade-
quately represented by (6.3) when hyperscaling fails. This
happens for d )4 when, in particular, the combination

dv —(2—a) =—cp*v (6.4)

fails to vanish identically: for ordinary 0( n ) critical
points one has co* =0 for d &4, but co* =a —4 for d )4.

To discuss this issue, note that (6.1) and (6.3) entail only
the scaled variables

y=h/I t
I

and zp=Lp
f
t I', z)I LII I

t ', etc. ——(6.5)

Our first-order scaling results for the block limit involve

yv=mohv=&yV
I

t
I

' =&yzo
I
t

I
(6.6)

zv=Vft
I

—=L() It
I

(6.7)

thus enters for d )d &, for d (d & one has zz ——zo.= d

If, following Brezin (and I), we define an ouera/I size-
dependent correlation length via

gv(H, T;LJ ):—a(k~TX/ad) ~r, (6.8)

it is natural to postulate that g'v scales, in the first-order
region, only with zz, rather than with zo. Accepting this
yields

gv(O, T;L~)=
I

t
I

'Zv(zv;lj),

and then the critical point value must vary as

(6.9)

where the standard scaling relation a+2P+y=2 (valid
for all d) has been used. As anticipated, the first-order
scaling is encompassed by (6.1) when co* =0, as for d & 4,
but fails when (o*&0. (We ignore logarithmic factors
present at the borderline d &

——4.) As commented in I, the
extra finite-size variable

(L ) L(d —()l(d ( co )Zc(i (6.12)

For (v*=0, i.e., d &4, one has again /II, —Lq, but for
d &4 one finds /II, -L~" " . These results are clearly
independent of n (even encompassing n =1) and they
agree with Brezin's exact calculations for n ~ Oo (up to a
logarithmic factor at d =4).

When only the scaling combination zv or zv/z)I enters,
one can rewrite scaling expressions to use L as the pri-
mary variable and thence explicitly exhibit the modified
powers I." '" ', etc. In general, however, one must ex-
Pect both zp (or the individual z)I =z(,zz, . . .) and zv to
enter. We should also recall, as explained in I, that in
renormalization-group theory the breakdown of simple
finite-size scaling is associated with the appearance (for
d &4) of a dangerous irrelevant variable. This enters
directly into first-order scaling quantities like the total
free energy, the helicity modulus and, for n = 1, the inter-
facial tension.

The corrections to first-order scaling in the block limit
due to spin waves entail the correlation length g (H, T)
defined in (3.15) and the new scaled field variable ys in-
troduced in (3.19). As regards the former, we have

=
I
T/moH

I

'"-I/
I y I

'"
I

t
I

which satisfies the expectations of simple scaling, as
remarked earlier: We also have ys ——(Lo/g ) —fy fzo,
for which the same is true. But the "irrelevant" spin-
wave parameter of (3.20) reduces to uL =zo/Dzv, which
involves z~. This is a reflection of the fact that for d )4

kv. ,
=—kv(0 T. L', )=Lo"' v(i/) . (6.10)

Thus g, diverges as Lp for d &4, but like Lp for d &4.
Except for a logarithmic factor at d =4, these conjectures
agree precisely with Brezin's exact calculations for
n~ oo.

In the case of a block which becomes a long cylinder, a
second first-order scaling parameter entered, namely

2 2

x= = —,(n —1) = dt
LII ) kmTLII (n —1) z

YV 2D zod

2
(n —1) II (6 11)

2D zv

where the relation y=(2 —q)v has been invoked. Once
again, simple scaling holds only if co* vanishes. However,
no new scaling variable is needed beyond zz, which al-
ready entered in the block limit. [In I it was sug-
gested, following the analogous reasoning involving the
surface tension, that one would also require
zz ——3 t

I

"(=2
I

t
I

~ for d &4); but one easily checks
that z& ——zt/zff holds for all d so z& is not separately
needed. ]

The scaling of the correlation length /II defined through
the gap in the transfer matrix spectrum can only depend
on the transverse dimensions since this is a feature of an
infinite cylinder (LII~ ). Thus only the scaled com-
bination zz ——zv/zII Lz '

I

t
I

—— ' should enter. Fol-
lowing an argument parallel to that used for gv then
yields
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the spin waves actually enter into the asymptotic critical
free energy only as corrections to the leading scaling
behavior, which is otherwise fully classical and indepen-
dent of n, .

VII. SUMMARY AND FURTHER
DEVELOPMENTS

For convenience we present here a brief overview of our
results referencing the most important expressions. We
also raise some questions that remain to be answered.

First, we have shown, for the block limit, that a finite
system of volume V=LO should behave, in leading order,
as a single, fully magnetized domain which is, however,
free to reorient in the external field. As a result, the one
and only basic scaling variable is

g~~(T, A ) = b/1 n(A o/A&) =2Y(T)A /(n —1)k~ T . (7.4)

This formula follows by construction of a "degeneracy
kernel" [(4.2) and (5.9)] which asymptotically approxi-
mates the transfer matrix. This also serves to establish
the correct scaling behavior in a field, which is postulated
in (5.1) and entails the previous variable yv and the new
combination

wave fluctuations: the expression (3.44) shows this is of
order uI relative to the leading result (2.18). Figure 1 de-
picts these various conclusions schematically.

For cylinder geometries with cross-sectional area
2 =L z ', the longitudinal correlation length enters: this
is related to the two largest eigenvalues of the transfer
operator and to the helicity modulus via

yv= H/Hv—=moHV/4T (7.1) x —L((/g((( TA ) ——,(n —1)ul (L((/Lo) (7.5)

ys—=
I

H
I
/Hs=mo

~

H
~

I o/Y ' (7.2)

see (3.18) and (3.19). From this one sees that the relative
magnitude of the spin-wave terms, which now appear as
corrections to the leading behavior, is determined by the
asymptotically small parameter

uI. =Hv/Hs =ka T/Y( T)Lo (7.3)

The rounding of the spin-wave singularities in the
domain Hz «H=H& is now described by scaling func-
tions Yz(ys) and Xs(ys), which make contributions to the
magnetization and susceptibility, respectively, proportion-
al to uL and uL. [See (3.23), (3.25), (3.28), and (3.29).]
Finally, the full scaling behavior of the magnetization for
the block situation including the "interference" terms be-
tween first-order and spin-wave rounding, is described by
a scaling function of two variables, namely Y(yv, uL ).
[See (3.32) et seq. ] To first order in ui, the function is
given ex'actly in (3.38). Among its principal consequences
is a finite-size correction to the susceptibility peak in
small fields (of order Hv) arising directly from the spin-

where mo(T) is the spontaneous magnetization. The cor-
responding scaling behavior of free energy, magnetization,
and susceptibility is' independent of shape and can be ex-
pressed explicitly for general n in terms of Bessel func-
tions: see (2.16)—(2.18). For large n the results —see
(2.22)—may be checked against exact results for the
spherical model presented in III.' The precise correspon-
dences needed to do this in the limit n~ oo are given in
(2.24)—(2.28).

The leading-order scaling results do not allow for the
bulk singularities associated with spin-wave fluctuations
as observed, say, in the susceptibility: see (2.10). To dis-
cuss this, a phenomenological treatment based on the
free-energy functional (3.4) is appropriate. This yields ex-
plicit expressions for the bulk correlation functions [in
(3.5), (3.6), (3.11), and (3.12)] in. terms of the spin-wave
stiffness parameter, b„' this, in turn, may be related, via
(3.14), to the helicity modulus, Y(T), which is defined in
(3.13). Thereby the bulk correlation length, g (H, T), for
small fields below T, depends only on Y and mo. see
(3.15). The proper scale for the rounding of the spin-wave
singularities is thence found to be

In addition, it yields expressions for the scaling functions:
see (5.32) and (5.33). For a long cylinder it proves neces-
sary only to compute the ground-state energy Eo(y~ ) of
the Schrodinger equation (5.18), in terms of which (5.19)
yields the free energy as a function of

y„=H/H„=moHg„~A/k, T=y, /x . (7.6)

It follows that rounding now occurs only on the scale
H& —1/A . The quantal problem simplifies in the limit
n~ co to yield (5.27)—(5.31), which agree with the exact
spherical model results in III. Although the scaling for-
mulas for cylinder geometry entail the spin-wave parame-
ter uI and reproduce some important spin-wave effects,
they are valid only to leading order since the residual bulk
spin-wave singularities are not accounted for: to do so
remains a task for the future.

Finally, in the critical region, first-order scaling proves
fully consonant with the simplest critical finite-size scal-
ing formulation, provided d & 4 when the hyperscaling re-
lation dv=2 —a is valid. This fails above d =4, howev-
er, and then one finds, in agreement with Brezin, that
g~~(H=O, T=T„L~) varies as L~ ' in a cylinde~
geometry, while for blocks an appropriately defined
"overall" correlation length, gv(H =0, T= T„Lo),
diverges as Lo . [See (6.8), (6.10), and (6.12).]

Of course, all the results described pertain only to true
equilibrium conditions. In real experiments or practical
simulations one may, owing to strong pinning or to insuf-
ficient observation times, see hysteresis and other none-
quilibrium effects near a first-order transition, even in a
finite system. Indeed, as mentioned, to ensure equilibrium
for a given particle size in superparamagnetic materials,
the temperature must exceed the size-dependent blocking
temperature. But even then, it is clear that periodic boun-
dary conditions are not realized in nature! Nevertheless,
with due precautions, the effects predicted should be ob-
servable in Monte Carlo simulations of adequate
length

As to other further, not fully resolved aspects of first-
order finite-size scaling, the most important is, surely, to
relax the constraint of periodic boundary conditions. If
the boundary conditions respect the O(n) symmetry and
do not enhance the surface interactions, rather few
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changes are likely to occur: by symmetry, there will be no
finite-size shift in the transition point and no independent
.surface ordering will occur. The spin-wave boundary con-
ditions will change, so the corresponding scaling functions
must change, but the quantitative effects should be minor
and the spin waves and other boundary effects should still
appear only as higher-order corrections. These considera-
tions apply, of course, to d & 2 and should provide a
reasonable account of various practical situations. For
d =2 and n =2, however, there arises the interesting prob-
lem of finite-size effects on Kosterlitz-Thouless phases;
but since those exhibit algebraic decay of correlation, the
task is really one of critica/ finite-size scaling, which is
probably much harder.

If the interactions on the boundary are sufficiently
enhanced, one will encounter incipient ordering of the sur-
face before the bulk tends to order. A high degree of or-
der, reflecting near broken symmetry on the surface, may
clearly affect the internal region of a system significantly.
Consequently, the formulation of the finite-size effects
could be considerably more complicated. Similar issues
arise when the boundary conditions actually break the
O(n) symmetry. If there is a true ordering field on the
boundary, the effective transition point in a finite system

will shift. ' But the boundary interactions might merely
serve to lower the symmetry from O(n) to, say, O(l), rath-
er than to destroy it entirely. The resulting anisotropies
will certainly affect the scaling behavior. However, one
may again hope that with appropriate shifts in the scaling
variables all the boundary effects will remain as higher-
order scaling corrections. More detailed considerations,
however, are essential to confirm such a speculation and
estimate the actual nature and magnitude of these effects.
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