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Dynamic structure factors and neutron scattering spectra of liquid He- He mixtures
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The dynamic structure factors SJ.(k, co) (i,j=3,4) of density fluctuations in mixtures of various
He concentrations are evaluated at zero temperature for a range of wave numbers k and frequen-

cies co centered around the He roton excitations. The calculations are performed within a model
that has been derived earlier by the authors and which is based upon a 2&&2 matrix dispersion-
relation representation of the dynamic density susceptibilities of the mixture. The role that the three
different partial density-fluctuation spectra S~(k, co) play in determining the spectral structure (and
its variation with wave number and concentration) of the total neutron scattering law of the mixture
is elucidated in quantitative detail. The theoretical predictions for the latter are compared, after ap-
propriate resolution broadening, with low-temperature experimental neutron scattering spectra ob-
tained for wave-number transfers in the roton range.

I. INTRODUCTION

The dynamical properties of density fluctuations in a
mixture of He and He atoms, i.e., a many-body system
consisting of interacting fermions and bosons, represent
an interesting and challenging problem.

Historically, the first research efforts' aimed at
determining the dispersion' e3(k) of He quasiparticles in
the He II bath. In particular, He quasiparticle excita-
tions in the frequency and wave-number range of He ro-
tons attracted much interest. Many models were ad-
vanced with partly contradictory predictions for the
behavior of the dispersion e3(k). However, only a few of
them produced results that are in accord with experi-
mental" ' observations: namely a weak monotonic in-
crease of the effective He mass with wave number such
that e3(k) approaches the He single-mode dispersion
curve e4(k) near its roton minimum. The different spec-
tral behavior of He excitations below and above the
energy-momentum threshold for generation of He rotons
has been explained by two theories. '

Also, the change of the He single-mode excitation
dispersion e4(k) induced by He impurities was investigat-
ed, mainly in the roton vicinity. Since the experimentally
observed shifts could not be explained by an approach'
producing only a dynamical level-repulsion effect between
'E3(k) and e4(k), Hilton et al. " suggested that the increase
of the He mean particle distances in the presence of He
atoms might also cause, via a shifted peak in the He stat-
ic structure factor, a change of the He excitation energy
e4(k).

These intuitive, physically plausible arguments were put
on firm ground in our theory' (hereafter referred to as I).
This theory makes use of a 2 X 2 matrix dispersion repre-
sentation of the dynamic susceptibilities of the mixture.
Approximations to the matrix of self-energies are based
on (i) the experimental observation that He-roton widths

in mixtures"' ' at low temperatures are very small, and
(ii) the assumption that the He subsystem without the
coupling to the He bath may be treated as an ideal Fermi
gas. We elucidated and showed quantitatively that the al-
tered He structure dominates various other static and
dynamic effects in determining the energy shift of He
single-mode excitations in dilute mixtures. '

While most of the above theoretical works dealt only
with the single-impurity problem or with mixtures of He
concentration x=%3/(%3+%4) &0.06, neutron scatter-
ing experiments have also been performed on low-
temperature He-"He mixtures with larger He concentra-
tions x=0.12 and 0.25. On the other hand, to our
knowledge, only one theoretical attempt' (to be discussed
critically later on in this work) at explaining the larger-x
neutron scattering spectra has been reported so far.

In this work we use our theory I, which has already
been applied successfully to x =0.06 mixtures, to calcu-
late the various density-fluctuation spectra in mixtures
with larger He concentrations in a broad wave-number
band around the roton and compare the results with neu-
tron scattering experiments.

In Sec. II we recall model I. The density-fluctuation
spectra of the model are discussed and compared with
available experimental data in Sec. III. Possible exten-
sions of the present theory are discussed in the last sec-
tion.

II. THEORETICAL FRAME%'ORK

+ (1—x)S44(k, co)

if an incoherent contribution is neglected.

(2.1)

The neutron scattering intensity from He- He mixtures
of He concentration x is proportional to'

S„,(k, co) =4.38xS33(k,co)+4.07v'x (1 —x)S34(k, to)
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At T=0 K the partial dynamic structure factors
S,J(k, co) are simply related via

The imaginary part of the polarization operator

m(k, z) =m„G(k,z)[1 y—(k)~„o(k,z)] (2.10a)
S,,(k,~)=2e(~)lmX, , (k, ~+io) (2.2)

X(k,z)= —k [z —Q (k)+zX(k, z)] 'm (2.3)

Here m is the diagonal matrix of the two bare masses I3

and m&, 0;~(k) are characteristic frequencies of the re-
storing forces, and X;J(k,z) denote the complex self-
energies.

Our approximations to the above quantities ip I were
motivated by the fact that the roton linewidth"' ' is
very small, and by the assumption that the He subsystem
may be described in ter'ms of an ideal Fermi gas (FG).
The only damping mechanism for He density fluctua-
tions incorporated in our zero-temperature model is the
generation of He quasiparticle-quasihole excitations.

A. Susceptibilities

%'ith the approximations of I one arrives at the follow-
ing expressions for the matrix elements X,J(k,z). The He
response function

XFG(k, z)

m 3 1 —V,rr( k, z)m Fo(k,z)

m*
X33(,z) = (2.4)

turns out to be of generalized random-phase-
approximation type with the polarization operator
a&G(k, z) given in terms of the Lindhard function

mFG(k, z) = —XFG(k,z) /XFG(k) (2.5)

to be evaluated for an effective mass m* given below.
The effective Frohlich-like potential

to the imaginary parts of the density-response matrix ele-
ments X,J(k,z) in terms of which our theory was formulat-
ed in I. The theory is based on a matrix dispersion-
relation representation of the dynamical 2&(2 susceptibili-
ty matrix

describes decay into (interacting) 3He quasiparticle-
quasihole excitations. Thus, in our model He fluctua-
tions with frequency co and wave number k are damped
only in the band

k /2m' kv—F &co&k /2m'+kvF, (2.10b)

where n"(k, co) is nonzero.
The cross susceptibility is given by

1/2
'

coFG(k)e4(k)
y(k)X»(k, z). . . (2.11)

z —e g(k)
X34(k,z) =—

m4

where

coFG(k) =k /[m'XFG(k)]

determines the Fermi-gas restoring force.

B. Coupling function

The coupling function

W (k) X34(k)/[X33(k)X4g(k)]'~

is determined by static susceptibilities. Since these are
rather poorly known, we approximated the above ratio of
static susceptibilities within a generalized Feynman model
for the two-component system in terms of the static struc-
ture factors s;J(k) of the mixture. This leads to a coupling

W ( k)~s 34( 3s34/4 +s44 )[( 3s 33 /4 +s 34 )

X (3s 34/4+s~4)] (2.12)

that is proportional to s34(k) and thus to the square root
(n3n&)' of the mean number densities. Therefore, as a
function of concentration, the coupling is extremal for

1
X —2.

In Fig. 1 we show the vertex y(k) [Eq. (2.8)] which

V ff(k, z) =y (k)z [z —e 4(k)] (2.6)

acting between He quasiparticles describes the exchange
of virtual He excitations of energy

x = 0.12
x =0.25

———-x=05
eg(k) =@4(k)[1—W (k)] (2.7)

This energy differs from the He excitation energy e4(k)
because He and He density fluctuations are statically
coupled with a strength W(k) to be discussed in Sec. II B.
Also, the vertex 0—

y(k)= W(k)[1 —W (k)] (2.8)

—k /m42

X~(k,z) =
z —Eq(k)[1+y (k)m(k, z)]

(2.9)

is given by IV(k). We should like to mention that e4(k) is
not the single-model energy e4(k) in pure He (hereafter
the superscript 0 refers to the x~0 limit), but it is modi-
fied according to the altered He static structure in the
mixture (cf. Sec. II C).

The "He density-response function reads

-01
'l. 6 2.0 2. + o

~
2.S

k(A "j

FIG. 1. Vertex y(k), Eq. (2.8), evaluated for three concentra-
tions x with the static structure factors s;~(k) of Ref. 20 as a
function of wave number. The wave numbers k~ and kz, where

y vanishes, are indicated by arrows (shown for the sake of clari-
ty only for x =0.12).
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practically does not differ from the coupling function
W(k) since W (k) is less than 0.033 in the wave-number

range shown in Fig. 1. To evaluate W(k) [Eq. (2.12)] we
used for s,j.(k) the results of recent numerical calculations
of Fabrocini. Note that the static structure factors
s,j(k) cannot be measured separately but only in combina-
tion. '

The coupling function W(k), and with it the vertex
y(k), change sign at wave numbers kr and kr, marked in
Fig. 1.by arrows for later reference. The change of sign of
W(k) is not an artifact of our approximation (2.12); it
rather reflects the fact that X34(k) is not positive definite.

e4(k) —eg(k) = [044(k)] Zg(k)r44(k) . (2.13)

We use for the single-model resonance energy e4(k), its in-
tensity Z4(k), and the restoring force

[044(k)] =k~/[m4X44(k)]

of pure 4He, the neutron scattering results of Cowley and
Woods.

Into Eq. (2.13) enters the relative difference

r44(k) =s~(k)/s~(k) —1 (2.14)

of the He static structure factors in the mixture and in
pure He. To be consistent with the input for the struc-
ture factors s,j(k), we use also for the quotient in (2.14)
Fabrocini's numerical result.

The function rq4(k) is quite similar. to the vertex y(k)
(Fig. 1). It has two zeros at k„and k„' not far from kr
and k~, respectively, and is positive in between. However,
in contrast to kr the momentum k„' increases with con-
centration. Moreover, the maximum of the ratio r44, (k)
grows with x also above x =0.5.

Finally, we need the concentration dependence of the
momentum-averaged effective mass of He. It was ob-
tained from Greywall's measurements at x =1 and cal-
culations for x~0. In the concentration range con-
sidered our admittedly crude estimation varied between
m =3.3m3 and 3.6m3.

We should like to note that our results are far less sensi-
tive to an uncertainty of the m* input than to an uncer-
tainty in the s;J(k) data. The latter enter both the cou-
pling W(k) [Eq. (2.12)] and the structurally induced He
excitation-energy shift [Eqs. (2.13) and (2.14)].It would be
highly desirable to have more accurate data for the static
structure factors in He- He mixtures.

III. RESULTS

A. Dynamic structure factors S;J{k,cu)

The spectral structure of S;J.(k, co) largely depends on
the position of the He energy e4(k) relative to the band
(2.10b) of the He quasiparticle-quasihole excitation con-
tinuum and on the size of the coupling y(k) (Fig. 1). It is

C. Further input

The structurally induced shift of the "He single-mode
excitation energy in the mixture was approximated in I by

clear from Sec. IIA that, in our model, $44(k, co) reduces
to a 5 function, $34(k, co) vanishes, and $33(k,co) becomes
a simple Lindhard function when the coupling y(k) goes
to zero for k —+k&, k&. In the following we therefore con-
sider wave numbers for which y(k)&0.

Before we discuss in more detail the situation in which
e~ lies within the band, which prevails for wave numbers
in the roton vicinity, we shall briefly describe the spectra
for the other case.

1. e4(k) is outside the He
quasiparticle-quasihole band

In this case $33(k,co) is similar to the Lindhard func-
tion except for a 5 spike close to eq(k) of negligible inten-
sity. If the He level ez(k) lies above the band, then the
He dispersion e3(k) marked by the maximum of $33(k,co)

is shifted downwards due to the negative real part vrFG of
the polarization operator. This repulsion of He and He
energy levels increases with increasing y(k) and decreas-
ing distance between the levels. However, in any case
e'3(k) does not differ much from k /2m *.

Also, the cross spectrum $34(k, co) is a smooth function
with the same (opposite) sign as y(k) if e4(k) lies above
(below) the band.

The He spectrum, on the other hand, is dominated by
a 5 spike at co=@& whenever e4(k) lies outside the band-
the additional smooth contribution to S~(k, co) inside the
band is negligible unless e4 lies very close to a band edge.
In that case the peak's side wing inside the band acquires
more weight.

2. eq{k) is inside the 3He

quasiparticle-quasihole band

In Fig. 2 we show, for a concentration of x =0.25 as a
representative example, the spectra SJ(k,co) together with
S„,(k,co), Eq. (2.1), for two wave numbers for which
e&(k) lies inside the He band. For k =1.7 A ' [Fig.
2(a)] all spectral structures are much sharper than for
k =2. 1 A ' [Fig. 2(b)] because the vertex
y(k =1.7 A ') = —0.066 is of smaller absolute size than
y(k =2. 1 A ') =+0.159. Moreover, e4 lies closer to the
band edge in Fig. 2(a) than in Fig 2(b). .

A striking feature of S33(k, co ) (dashed line) and
$34(k, co) (dotted hne) is the common zero at co=@4(k), so
we will discuss its origin and consequences. The effective
potential (2.6) between He quasiparticles that is induced
by an exchange of a virtual He excitation of energy e„
forces $33(k,co) to be zero at e4(k). Consequently, the He
excitation continuum $33(k,co) is split into two parts by a
dip the width of which is proportional to the strength
y (k) [Eq. (2.8)] of the exchange potential. Thus the split-
ting varies with concentration practically in the same way
as y (k) or W (k): it increases for x &0.5 and decreases
thereafter.

The cross spectrum $34(k, co) Eq. (2.11), changes sign at
e4(k), and thus shows a positive peak at the low-frequency
side of e~(k) and a negative peak at the high-frequency
side. This behavior holds for y(k) &0 as in Fig. 2(b). For
y &0 [Fig. 2(a)] the peak structure is reversed, with
$34(k, co) being proportional to y(k). The peaks become
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dence is not explicitly displayed. The correction term
[c(k)——,

'
]co to the linear behavior of S34(k, co), Eq. (3.2),

gives rise to a curvature that decreases (increases) the
height of the peaks of S34(k, co) as long as the correction
term is negative (positive). This effect may be seen in Fig.
2(a), where y is much smaller than in Fig. 2(b).

The position of the higher peak is below (above) e4 if
m Fo(e4) is negative (positive). As a function of k,

IrFG« ~~)/
I
~FG(k~ ~4+ ~ o )

I

'
0

has a minimum at about k =2 A '. On the other hand,
at fixed momentum it increases monotonously with con-
centration passing from negative to positive values for
1.85 A ' (k (2.15 A '. Thus with growing x a
transfer of the spectral weight from one to the other peak
may appear. Therefore at k=2.0 A ' the sharper peak
is positive for x =0.12 and negative for x =0.5.

S. Scattering intensity St,t(k, ~)

In Fig. 3 we show the total scattering intensity
S«,(k, co) [Eq. (2.1)] for three different concentrations and
for several wave numbers.

The main peak near e4(k) is due to the He contribution
S44(k, co). It should be noted that our theory overesti-

FIG. 2. Density-fluctuation spectra S33(k,co) (dashed lines),

S34(k, co) (dotted lines), S~(k, co) (dotted-dashed lines), and

$„,(k, co) [solid line in (b)] for x =0.25. The spectra S33 and

S34 have a common zero at co=a&(k), Eq. (2.7). See text for a
detailed discussion.

S34(k, co) =b (k) I 1+[c (k) ——,
'

]cojco .

The curvature

(3.2)

sharper when either eq approaches the band edge or when
the coupling between both subsystems, i.e., y(k), in-
creases.

In the immediate vicinity of the zero at e4(k), i.e., for
frequencies such that the absolute size of the reduced dis-
tance from F4(k), c3=co/e4(k) —1, is small compared to
unity, the He spectrum is approximately quadratic,

S33(k,co) =a (k)[1+c(k)r3]co (3.1)

and the cross spectrum is approximately linear in co,
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of S34(k, co) are rather large because of the inverse powers
of the small vertex entering (3.3).
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to the quadratic behavior of (3.,1) gives rise to a dip asym-
metry in S33(k,co). Its largest contribution comes from
the first term in (3.4). In the above formula the k depen-

FECi. 3. Total dynamic structure factor S„,(k, co) for concen-
trations x =0.12 (solid lines), 0.25 (dotted lines), and 0.5 (dashed
lines).
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mates the peak height since the total spectral weight of
Sqq(k, co) in our single-mode model for the He excitation
spectrum is practically centered in one peak, whereas in
reality it is distributed over the low-lying single-mode ex-
citations and a high-frequency multimode continuum.

. With increasing concentration the prefactors in (2.1)
depress the He contribution to S«t(k, co) and enhance
those from S33(k,co) and S34(k,co). This leads to a con-
siderable reduction of the main peak's intensity in
S«,(k,co), to be seen in Fig. 3. The variation of the main
peak's position as a function of concentration is discussed
in Sec. III D.

The contribution from the cross spectrum to S«, (k, co)
causes the main peak to be asymmetric: Its steep falloff is
produced mainly by the negative peak of S34(k,co). Thus
for wave numbers kr &k &kr (k &kr or k &k&), where
y(k) &0 [y(k) &0], so that the negative part of S34(k,co)
is located above (below) e4, the high- (low-) frequency side
of the main peak in Figs. 3(b) and 3(c) [Figs. 3(a) and 3(d)]
is the steep one. We remark in passing that Pedersen and
Cowley' obtained a different main-peak asymmetry,
which is partly due to the somewhat arbitrary form of
their dynamic susceptibility matrix.

Also, the characteristic features of the contribution
from S33(k,co) (cf. Fig. 2) can easily be recognized in
S«,(k, co) (Fig. 3). It is the growing bandwidth of the He
quasiparticle-quasihole continuum with increasing con-
centration that causes the associated spectral broadening
of S«,(k, co) as x becomes larger. Note that in the fre-
quency range below (above) the main peak's position
where —for kr &k &kr in Figs. 3(b) and 3(c) [for k &kr
and k &kz in Figs. 3(a) and 3(b)]—both spectra, S33 and

S34 are positive, they combine to enhance the spectral
weight in S«,(k, co) in. comparison with the frequency
range above (below) the main peak.

Lastly, we should like to mention that the contribution
to the total scattering intensity from S3q(k, co) Is never
negligible. It modifies considerably the main peak also
for small concentrations.
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C. Comparison with experimental scattering spectra

Since the peaks in S«,(k, co) (Fig. 3) are strongly asym-
metric, one has to be careful when comparing them with
resolution-broadened spectra measured in experiments" at
a fixed scattering angle y. Therefore, we (i) transformed
our S«,(k,e) into a constant-scattering-angle spectrum
S«,(y, co), and (ii) convoluted it with a Gaussian resolu-
tion function of half-width 1 K that is appropriate for the
experiments of Hilton et ai. " In Fig. 4 the resulting
spectra S«,(p, co) (solid curves) are compared with experi-
mental data" for a x =0.25 mixture at T=0.75 K. The
peak positions of Sto, (p, co) correspond to wave numbers
(a) k=1.80 A ', (b) 1.93 A ', (c) 2.03 A ', and (d)
2. 10 A ', respectively.

Plotting the spectra at constant scattering angle does
not lead to structures that differ from those found at
constant-wave-number transfer, but the whole spectrum
becomes slightly compressed (e.g., by about 1.5 K at
y = 123'). The. convolution with the Gaussian of half-
width I K, on the other hand, has a bigger effect: First of
all, the experimental resolution curve is too broad to let

~ ~

8.0 12.0
u(K)

16.0

FIG. 4. Dynamic structure factors of the x =0.25 mixture
for various fixed scattering angles y. The dashed lines represent
the result S„,(y, co) of our model. Solid lines show S„,(p, m), its
convolution with a Gaussian of half-width 1 K. Points are neu-
tron scattering data (Ref. 11) measured at T=0.75 K. The ar-
bitrary scale factor of the experimental data was fixed at
y= 106 . The peak positions of S„,(qv, co) correspond to wave
numbers (a) k = 1.80, (b) 1.93, (c) 2.03, and (d) 2. 10 A

much of the fine structure and the peak asymmetry sur-
vive in S«, (p, co). In fact, the spectra shown in Fig. 4 are
all quite similar, and, more importantly, the convolution
not only smoothes the original theoretical spectrum
S«, (p, co) (dashed lines), but also shifts the main peak of
S«, (y, co) in the direction of its more intensive side wing,
that is, for the wave numbers kz & k ~kz in Fig. 4, to-
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ward smaller frequencies. For k &kz or k & kz, where
the main peak's asymmetry is different (cf. Secs. III A and
III B), the peak is shifted upward by the convolution.

Note the experimental problem that arises in measuring
the change of the main-peak position in the mixture rela-
tive to that in pure He: Given that the spectrum of the
former (latter) before resolution broadening is asymmetric
(symmetric) near the peak, and given that the experimen-
tal resolution curve in the mixture is wider than in pure
He, one cannot measure the He-induced peak shift

without a theoretical model that gives the peak asym-
metry in the mixture.

The experimental spectra in Figs. 4(b)—4(d) show a
marked high-frequency background which our S«,(y, co)
fails to reproduce fully. One reason could be that, since
the high-frequency hump in S«t(y, co) (dashed curve) is
caused by the contribution S33(k,co), the former is cut off
in our model at the upper band edge of the He
quasiparticle-quasihole continuum, while in reality
S33(k,co) extends to higher frequencies. An additional
second reason could be that our spectrum S&4(k,co) does
not contain high-frequency multimode excitations of He
density fluctuations.

Note, however, that for qr =90' the experimental spec-
trum in Fig. 4(a) does not display a high-frequency back-
ground, but is rither well described on the high-frequency
side by our model, which does not contain spectral inten-
sities at frequencies above the quasiparticle-quasihole
band.

D. Position of the main peak in 5„,(k, cg)

The dispersion curve determined by the main peak posi-
tions in S«,(k, co) differs from e4(k) due to four effects, of
which the altered He structure (e.g., the altered mean dis-
tance between He atoms) in the mixtures is the most im-
portant (cf. I for more details).

The structural change causes, via r44(k), Eq. (2.14), a
shift (2.13) of the He single-mode excitation energy. This
shift is positive in the wave-number range k„&k &k„',
where r44(k) &0 and is negative outside this interval. The
size of the shift increases with concentration. At
k=2.2 A ', where this structurally induced energy shift
is maximal with respect to wave numbers, its values are
0.64 K for x =0.12 and 1.39 K or x =0.5.

A second effect is that the coupling (2.12) to the He
system increases the He single-mode fluctuation frequen-
cy e4(k) to e&(k), Eq. (2.7), by about 10'%f. At
k =2.2 A ', for example, this amounts to an energy
shift of 0.09 K at x =0.12 and 0.14 K at x =0.5.

The third effect is a level repulsion between He excita-
tion energies centered around k /2m * and the He energy
level at e4(k). This renormalization of He excitation en-
ergies is produced by the real part of the polarization
operator n [Eq. (2.10a)] that describes the dynamic in-
teraction between the two subsystems generated by decay
of He density fluctuations into He quasiparticle-
quasihole excitations. However, since the vertex strength
y (k) multiplying n. in (2.9) is rather small, the level
repulsion is, at its maximum, k=2.3 A ', only 0.08 K

for x =0. 12 and 0.14 K for x =0.5.
The fourth mechanism is the contribution of the cross

spectrum S34(k,co) that shifts the peak of S«,(k, co) to-
ward the frequencies for which S34(k, co) &0. Thus this
effect lowers (raises) the main peak's frequency in the
wave-number range kr &k &kr (k &kr and k & kr ).
Note that the sign of this peak shift differs from that re-
sulting from a model of Pedersen and Cowley, ' which is
discussed in more detail below. The maximum of this ef-
fect occurs in our model at k =2.2 A ', where it yields a
downward shift of —0.11 K at x =0.12 and of —0.44 K
at x =0.5.

The combination of all four effects described above
combined yields a shift of the peak frequency of S«, (k, co)
in the mixture relative to the single-model excitation ener-

gy e4(k) of pure He that is maximal at k=2.2 A ' and
upwards of 0.64 K in size for x =0.12, 0.84 K for
x =0.25, and 1.23 K for x =0.5. For the last concentra-
tion, S«,(k, co) shows only a weak maximum. These ef-
fective shifts are dominated by the first effect, namely the
structurally induced change of the He single-mode exci-
tation energy. Also, the wave numbers for which the ef-
fective total shift vanishes coincide practically with k„
and k„', where rq4(k)=0, i.e., where the static structure
functions s44(k) and s44(k) intersect.

We have already discussed in Sec. IIIC that the peak
positions of the resolution-broadened neutron scattering
spectra of Fig. 4 do not allow extraction of the above-
described peak shifts of S«,(k, co) relative to e4(k) since
the "real" spectra before resolution broadening are strong-
ly asymmetric. Therefore one has to convolute any
theoretical spectra with the experimental reso1ution curve
and then compare the resulting peak position with the ex-
perimental one. Doing this we find semiquantitative
agreement with the neutron scattering results of Hilton
et al. "

Finally, we would like to comment on the theory of
density excitations in He- He mixtures proposed recently
by Pedersen and Cowley. ' This approach, based on the
polarization potentials of Aldrich and Pines, does not
make explicit use of the static structure factors s,J(k), so
in this theory it is difficult to identify the structural ef-
fects mainly responsible for e.g., the roton energy shift in
the mixture.

Instead, the authors, by choosing rather arbitrarily the
sign of their cross spectrum S34(k, co) [it yields a positive
$34(k) for wave numbers in the phonon region], suggested
that it is just this spectrum which causes the experimen-
tally observed behavior: the negative (positive) peak shift
for smaller (larger) wave numbers. As we have shown,
such an explanation, which ignores the dominant structur-
al effect, is wrong. Presumably, their misconception is
due to the fact that S34(k,co) changes its shape more or
less accidentally around the wave number where the peak
shift (caused mainly by other effects) changes sign.

We have evaluated their S~(k, co) (for k =1.8 and
2.0 A ~ and x =0.5) and found that its peaks are shifted
with respect to pure "He, and that it is this spectrum
which practically determines the dispersion of the peak
position in the mixture. It might be interesting to see
whether the peak shift of their S44(k, co) can be identified
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as a structural effect hidden in their polarization poten-
tials.

As a final point their theory is, at least at small concen-
trations, in conflict with the level repulsion between He
quasiparticles and He phonon-roton excitations, since
their He effective mass decreases with increasing wave
numbers. On the other hand, an advantage of their ap-
proach is that the He dynamic susceptibility is also suit-
able for the high-concentration limit x —+1, which is not
accessible in our model in its present form.

I 44(k) = e4(k)
I
vrFG(k &4)

I
~

y (k)
2

(3.5)

Two principal effects determine I 44(k): the He phase
space

I

m.F'G(k, e4)
I

accessible for the decay, and the
strength y (k). The latter increases with growing concen-
tration, whereas

I
m Fo I

decreases because the maximum
of XFG(k,co) at co=k /2m* is proportional to kF ', and
the static susceptibility XFG(k) increases in the k range
considered here. Moreover,

I
n F'G(k, e4) I

can decrease
when the distance between e4(k) and the band edge at
k /2m +ku~ decreases with growing x.

The wave-number dependence of I 44(k ) can be
described as follows. The resonance position enters the
band at a wave number k &kr, so that I"44(k) initially
grows with k over a short interva1 and theo decreases
again to zero at kz, where the vanishing vertex produces a
5 spike in S44(k, co). Then for kr & k & kr, where
y(k) & 0, the half-width increases, reaching its max-
imum at 2.2 A ': 0.20 K for x =0.06, 0.29 K for
x =0.12, 0.39 K for x =0.25, and 0.32 K for x =0.5.

The width of the main peak in S«, (k, co) is not deter-
mined by I 44(k) alone, but rather is strongly influenced
by S33(k,co) as well. Since the peak width of S44(k, to) fits
into the dip of S33(k,co), the combination spectrum
S«,(k, co) is substantially broadened in comparison with
S44(k, co). With increasing x the relative weight of the
S33(k,co) contribution increases and the well-defined He
resonances in S«,(k, co) disappear altogether. The half-
width of the main peak I «,(k) is maximal at
k =2.2 A ' in our model, with the values 0.2 K for
x =0.06, 0.40 K for x =0.12, and 0.80 K for x =0.25.

Also, the width of the main peak of the dynamic struc-
ture factor S«,(k, co) (broadened by the Gaussian resolu-
tion function of half-width 1 K) increases linearly with
concentration. The slope of the increase is quite close to
the experimentally" observed value, 4 K.

Let us note that the measured half-width in the

E. Half-width of the main peak in S„,{k,u)

The only He excitation damping of our model is due to
the decay into a continuum of He quasiparticle-quasihole
excitations. We discuss first the half-width I 44(k) of the
peak in S44(k, co). Approximating it by a Lorentzian, we
find from (2.9) and (2.10a), with y « 1, that

x =0.06 mixture shows as a function of wave number an
evident enhancement when the He resonance position
enters the quasiparticle-quasihole band and a decrease im-
mediately afterwards, when k approaches k&. As a possi-
ble explanation of such a behavior, we suggest the weak-
ening of the coupling y(k) between He and He fluctua-
tions for k~kr.

IV. FINAL REMARKS

Here we discuss possible extensions of our theory, e.g.,
to wave numbers and frequencies further away from the
roton vicinity.

In our model's present form the He subsystem contains
(if the coupling y to the He system is switched off) only
undamped single-mode excitations as a result of effective-
ly approximating the self-energy X44(k, z) in (2.3) by a
frequency-independent real part. Thus the (decay) cou-
pling to He multimode excitations, relevant at larger fre-
quencies, should be incorporated there. Also (decay into)
mixed He- He fluctuations -p3(k, t)p4(k —q, t) have
been ignored so far in 244(k, z) and X33(k,z). These mul-
timode processes also give rise to damping outside the
quasiparticle-quasihole frequency band. Furthermore,
since our 233(k,z) was approximated by the self-energy of
the ideal Fermi gas of mass m', one could take a more
realistic self-energy, e.g., from recent theoretical works.

In addition, one might want to include the off-diagonal
self-energies 234(k, z) in the dispersion-relation representa-
tion (2.3). A possible way of doing this was presented in
Appendix C of I. However, we think that the main cou-
pling between He roton excitations and He quasiparti-
cles does not come from 234, but rather from the off-
diagonal terms of the restoring forces 034(k), and that X34
contains only additional processes like, e.g., coupling of
multimode excitations. We should like to emphasize once
again that, within the 2X2 matrix representation (2.3) of
the susceptibilities, it is the coupling W(k) produced by
034(k) which leads in the He response function (2.9) to a
polarization operator of which the imaginary part de-
scribes decay of He fluctuations into He quasiparticle-
quasihole excitations (cf. I for a detailed discussion).

Therefore we expect the results of the present theory to
be changed outside the quasiparticle-quasihole band, but
since in the roton vicinity the "He excitations are relative-
ly sharp, and since the approximation of the He subsys-
tem by an ideal Fermi gas seems to be reasonably realistic,
we think that there our present results will not be altered
substantially by the above-discussed effects.
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