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We have estimated the strength of the electron-phonon coupling in Fr and Ra plus the light ac-
tinides Ac through Pu. The underlying self-consistent band-structure calculations were performed
by the scalar relativistic linear-muffin-tin-orbital method including l quantum numbers s through g,
and the electron-phonon parameters were obtained within the rigid-atomic-sphere approximation.
The electron-phonon coupling in Fr through Th is found to be dominated by pd and df scattering
and in Pa through Pu by pd and fg scattering. At the equilibrium volumes and as a function of
atomic number, the electron-phonon parameter A, is found to attain its maximum value in Ac, and
we predict a transition temperature of 9 K for this metal. In the light actinides Th through Pu, A, is
found to be of order 0.4 and within a factor of 2 of experiments which is also the accuracy found in
studies of the transition metals. The Hopfield parameter q is found to increase under compression
in Th and U, as are the individual I, l + 1 contributions to q, except the df contribution which is ap-
proximately pressure independent in Th and negligible in U. The calculations suggest that the
unusual pressure dependence of T, in Th may be related to the changeover from an s-to-d to an s-
to-f electronic transition and a related change in the topology of the Fermi surface.

I. INTRODUCTION

From experimental and theoretical studies over the last
decades' it has become increasingly clear that the light ac-
tinides Th —Pu are part of a transition series in which the
Sf band becomes progressively filled as the atomic num-
ber increases, in complete analogy to the 3d, 4d, and Sd
transition-metal series. In addition, one finds between Pu
and Am a dramatic change in the character of the f states
which may be thought of as a localization of the Sf elec-
trons. Hence the actinide metals form a unique series in
which the lighter metals Pa—Pu have itinerant 5f elec-
trons residing in a moderately wide f band, while the
heavier metals Am —Lr, at least at normal pressures, may
be described as having localized 5f electrons in close anal-
ogy to the lanthanide series Pr—Lu.

Recently, Smith has reviewed the superconducting
properties of the actinide metals as observed experimental-
ly, and he finds that also the appearance of superconduc-
tivity among the actinides and their alloys may be under-
stood within the above picture. Thus, pure Th, Pa, and U
are superconductors with transition temperatures T, of
1.4, 0.43, and 0.2 K, respectively, while Np and Pu are not
superconducting at normal pressures because of a tenden-
cy towards magnetism. Owing to the nonmagnetic
(J=0) ground state of its 5f electrons the next element,
Am, is again a superconductor. This is in contrast to the
elements beyond Am which have magnetic 5f ground
states and which are therefore magnets rather than super-
conductors.

Theoretically the superconducting transition tempera-
ture T, may be obtained from McMillan's formula or the
related Allen-Dynes equation

OD 1.04(1+A, )

1.4S g —p*(1+0.62k)

where OD is the Debye temperature related to some aver-
age phonon frequency, A, the electron-phonon coupling or
mass-enhancement parameter, and p may be taken as a
constant equal to 0.13. It follows that T, is primarily
determined by A, , and it is therefore of considerable in-
terest to investigate from first principles how this parame-
ter varies with atomic number for a series of metals.

Such investigations have previously been performed for
the 3d (Ref. S), 4d (Ref. 6—8), and 5d (Ref. 9) transition-
metal series in order to discover which terms are most im-
portant in determining the trend exhibited by the derived

In the present paper we investigate the light actinides
within a model where the 5f electrons are treated as band
electrons on the same footing as the s, p, d, and g elec-
trons. Our objective is to understand the variation of A,

with atomic number across the actinide series as establish-
ed by means of Eq. (1) from the experimentally deter-
mined transition and Debye temperatures.

One should note that the constants in (1) have been
determined by fitting to calculations and to the phonon
spectra for the d transition metal Nb and do not represent
the optimal choice in the present case. There is, however,
no comparable study of these constants for the actinide
metals and we have used (1) as it stands but allowed p" to
be state-density dependent; see Eq. (10) below.

The basic problem in the theory of the electron-phonon
interaction is the calculation of the change in the self-
consistent crystal potential caused by an infinitesimal dis-
placement of an ion. VA'thin the rigid-muffin-tin approxi-
mation (RMTA) (Ref. 10) such a change is related to the
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gradient of the usual muffin-tin potential, and several cal-
culations for the 3d, 4d, and Sd transition metals show
that this RMTA gives estimates of the electron-phonon
mass-enhancement parameter A, of sufficient accuracy to
be used in the study of trends, although Glozel et al. "
found that it did not yield accurate transition tempera-
tures.

In the present calculations we have used an atomic-
sphere potential' ' to evaluate the electron-phonon ma-
trix elements rather than. the more conventional muffin-
tin potential. There is, however, no a priori reason for
preferring either of these rigid-ion approaches over the
other, and we expect the rigid-atomic-sphere approxima-
tion to be as accurate as the RMTA.

element could be written directly in terms of the phase
shifts 6(,

dV
R~ R~+&r dr =sin(5& —5~+, ) .

dr

However, - in the atomic-sphere approximation the usual
phase-shift notation becomes meaningless, and instead
M~ ~+ &

is expressed in terms of the logarithmic derivatives
D~ =rR/ /R~ evaluated at the sphere boundary. In agree-
ment with Pettifor and Glozel et al. ,"we find

W, i+ i
= A(Ep—)P~+ i(Ep)

II. THEORY OF ELECTRON-PHONQN COUPLING X {[D&(Ep) l][D(+—&(Ep)+ I +2]

In the present section we shall briefly introduce the
various terms which one must calculate from band theory
in order to determine the electron-phonon coupling pa-
rameter A, . According to McMillan one may write A, in
the form

fi fr+i
go ——2N (Ep )g(l + 1 )M (3)

where N (Ep) is the total state density per spin at the Fer-
mi level, f~ a relative partial state density,

Ni(Ep)
N (Ep. )

and M~ ~+ &
the electron-phonon matrix element

dV
Mh )+)—— Rg R)+]r dr

0 d7

(4)

(5)

obtained from the gradient of the potential and the radial
solutions R~ and R~+ ~ of the Schrodinger equation
evaluated at the Fermi energy. The special form of Eqs.
(3) and (5) stems from the atomic-sphere approxima-
tion, ' ' in which the radial wave functions are normal-
ized to unity in the atomic sphere of radius S, i.e.,

R~ p p' 1&=1 (6)

Gaspari and Gyorffy' showed that, with their normali-
zation and within the RMTA, the electron-phonon matrix

M(co')

which separates into electron and phonon contributions.
Here M is- the atomic mass, (co ) an average phonon fre-
quency, and q the so-called Hopfield parameter. The
above separation is only approximate since the phonon
term (co ) is, in principle, also determined by the elec-
tronic states. However, at present it is not feasible to cal-
culate phonon spectra for f and d-band m-etals from
band theory, and (co ) must be estimated from experi-
ment. It follows that the Hopfield parameter is the most
basic quantity which one may obtain from first principles.

Within the RMTA (Ref. 10) the spherically averaged
part of this Hopfield parameter may be obtained from (in
atomic rydberg units)

+ [Ep —V(S)]S J, (8)

(9)

which is an average over the Fermi surface of the
electron-phonon interaction.

Theory and experiment are traditionally compared at
the level of A, and therefore (1) must be inverted to give A,

from the measured transition temperatures. In this inver-
sion one may take p* as a constant or estimate it from the
empirical expression

N(Ep)
1+N(Ep)

p* =0.26 (10)

given by Bennemann and Garland. ' The corresponding
theoretical A, is obtained from (2) by means of the follow-
ing empirical estimate,

/

(co ) 'i =0.690D, (11)

of the average phonon frequency.

where V(S) is the one-electron potential and P&(Ep) the
sphere-boundary amplitude of the I partial wave evaluated
at the Fermi level.

In the present calculations we have restricted ourselves
to the spherically averaged Hopfield parameter g0, which
is. simply obtained from the results of a band calculation
by means of Eqs. (3), (4), and (8). According to previous
calculations for the transition metals ' the nonspherical
corrections are expected to be small compared to g0.
Furthermore, since we have used the scalar relativistic
linear-muffin-tin-orbital (LMTO) method, ' ' the
electron-phonon matrix element may be evaluated from
the nonrelativistic expressions. '

Although the Hopfield parameter is the basic quantity
to be calculated it still depends upon the actual state den-
sity at the Fermi level. This is important in the present
case because the heavier actinides have such complicated
crystal structures that the self-consistent band calculations
have been performed assuming a fcc crystal structure.
Hence, the calculated g's are only strictly valid for the fcc
phases. To reduce this unwanted crystal-structure depen-
dence one may calculate yet another quantity,
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III. METHOD OF CALCULATION

It follows from the theory outlined in the preceding sec-
tion that the Hopfield parameter may be trivially calculat-
ed once a full band structure has been obtained. In the
present case we have calculated the energy bands for the
actinides by means of the self-consistent LMTO method
within the atomic-sphere approximation (ASA). ' ' The
calculations include the relativistic mass-velocity and
Darwin corrections but neglect spin-orbit coupling, and
may therefore be referred to as scalar relativistic.

The logarithmic derivatives and the partial-wave ampli-
tudes which enter the electron-phonon matrix element (8)
are trivially obtained from the LMTO potential parame-
ters. The appropriate expressions may be found in Chap.
3 of Ref. 13.

Exchange and correlation have been included within the
local-density approximation by means of the parametriza-
tion given by von Barth and Hedin. ' This approach has
previously given ground-state properties for the actinides
in excellent agreement with experiment. ' '

It may be seen from the conventional RMTA expres-
sion (7) that the magnitude of the electron-phonon matrix
element is determined by the difference between the phase
shift for one I and the next. This means that, in the cases
where the f phase shift is expected to be appreciable, one
must include / quantum numbers s through g. Hence, we
have included 1 =s,p, d,f for Fr—Ac and l =s,p, d,f,g for
Th —Pu. As it turns out, the fg contribution is crucial for
the trends exhibited by the calculated q's in the heavier
actinides.

The total and partial I state densities which enter (3),
(4), and (9) have been calculated by means of the tetrahe-
dron technique' ' using 240 points in the irreducible part
of the fcc Brillouin zone.

All calculations have been performed assuming a fcc
crystal structure of the appropriate volume, and the calcu-
lated state densities are therefore only strictly valid for the
fcc phases. Since the exact value of the state density at
the Fermi level can be rather crystal-structure dependent,
this assumption is expected to lead to some errors in the
calculated values of k and g for Pa, U, Np, and Pu. As
mentioned earlier (I ) may be less crystal-structure
dependent.

IV. THE ELECTRON-PHONON COUPLING
ALONG THE ACTINIDE SERIES

A. Calculated values

We have calculated the electron-phonon coupling pa-
rameters for the first eight elements Fr—Pu in the seventh

row of the Periodic Table by means of the theory outlined
in the preceding sections. We shall loosely refer to this
series of metals as the actinide series although a genuine
occupation of the Sf band which is usually connected
with the term actinide is only found in Pa and beyond.
The results of the calculations are shown in Table I, but
before we deal with the trends exhibited in the table we
shall first briefly present the underlying band structures
and then discuss the individual terms which, according to
Eq. (3), contribute to go.

I. Energy bands

From the energy-band edges shown in Fig. 1 and the
occupation numbers in Table I we have the following
physical picture of the band structures of the actinide
metals as calculated at their observed equilibrium atomic
radii. The 6d band, which in Fr is high lying and unoccu-
pied, moves down as a function of atomic number and be-
comes occupied in Ac. In the following element Th, the d
occupation has reached a maximum of 2.46 from which it
decreases gradually in the heavier actinides. Similarly, an
initially unoccupied 5f band moves down with increasing
atomic number and becomes progressively occupied
beyond Th. Hence, between Th and Pa there is a cross-
over from a d-dominated behavior to an f-dominated
behavior which, as we shall see, has important conse-
quences for the trends exhibited by the calculated
electron-phonon coupling parameters.

2. State densities

The total state densities evaluated at the Fermi level are
shown in Fig. 2. A comparison between the earlier calcu-
lations, ' which only included s, p, d, and f orbitals, and
the present results (see also Table I) reveals differences in
the calculated total state densities for U, Np, and Pu of
approximately 20%%uo. These differences are not caused
directly by the addition of g orbitals to the basis set but
rather indicate that a slight change in the position of the
Fermi level within the relatively narrow ( W=0.3 Ry)
range of strong f character with its rich structure can
have a relatively large effect upon the calculated X(EF).

In Fig. 3 we show the relative state densities which
enter the expression for (I ) through Eqs. (3), (4), and (9).
We expect these quantities to be relatively independent
both of the particular value the state density assumes at
the Fermi level and of the crystal structure assumed in the
state-density calculation.

The results in Fig. 3 clearly exhibit the crossover from

TABLE I. State densities N{E~), f occupation number nf, average over the Fermi surface of the electron-phonon interaction
(I ), Hopfteld parameter go, and the electron-phonon coupling constant A, .

N (E~) (states/atom Ry)
nf(EF ) {states/atom)
(I ) (10 3 a. )u
~ (eVrA')

17.41
0.01
0.045
0.019
0.067

Ra

14.23
0.04
0.785
0.272
0.179

Ac

22.08
0.17
6.962
3.735
1.265

19.50
0.49
6.277
2.972
0.592

Pa

21.09
1.54
3.491
1.788
0.268

U

48.81
2.78
4.422
5.243
0.423

Np

80.81
4.12
2.766
5.429
0.404

Pu

57.22
5.25
3.033
4.216
0.486
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FIG. 1. Band energies for the actinide metals. Shown are the
bottoms 8„8q,Bf of the s, d, and f bands, and the top Af of
the f band together with the Fermi level EF and the one-
electron potential V(S) evaluated at the atomic sphere. The
latter is approximately equal to the muffin-tin zero. The band
edges Bl and A~ were calculated from the signer-Seitz rules.

a d-dominated to an f-dominated behavior which is an
important feature of the band structures of the actinide
metals. However, as we shall see in the following the
electron-phonon coupling parameter of a particular ac-
tinide metal depends not only upon the dominating l state
density but also upon the state densities vnth angular
quantum number l —1 and I +1. Thus, although they are
small, one cannot neglect the g state density for Pa—Pu,
the f state density for Ra—Th, and the p state density for
any of the actinide metals.

80—

60—

0.0
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FIG. 3. Relative state densities f& N~(Ez)/N——(Ez).

3. Matrix elements

The electron-phonon matrix element (5) describes the
scattering of an electron by the potential fluctuation
caused by a lattice vibration, and owing to the gradient of
the potential entering Eq. (5) this scattering involves the
I+1 selection rule referred to above. In the phase-shift
notation used in the RMTA the matrix element is there-
fore equal to sin(5~ —5~+&), cf. Eqs. (5) and (7), and the
important parameters are the phase shifts. In the present
formulation the electron-phonon matrix element is ex-
pressed in terms of the logarithmic derivatives D~(E~) as
described by Eq. (8), and the important parameters are
therefore these logarithmic derivatives.

The values and the variation of the logarithmic deriva-
tives D~{EF) presented in Fig. 4 may be understood in
terms of the Wigner-Seitz rule, according to which an I
band is formed in the energy range where D~(E) is nega-
tive. Hence, if the I band is occupied, i.e., the Fermi level
falls within that band, the corresponding logarithmic
derivative DI(EF) will be negative while an unoccupied

40—

E 20—
V)
0)

0 ~
c

10
LLj

u.

8- &N
\
\

~Np ~ Ng

Fr Ra Ac Th Pa U Np Pu

Fl&. 2. Total and i, p, d, f, g partial state densities for the
actinide metals in the fcc structure evaluated at the Fermi level.
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FIG. 4. Logarithmic derivatives evaluated at the Fermi level.
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band will have a positive D~(EJ;). It follows immediately
that the 7s band, which is always occupied in the ac-
tinides, cf. Fig. 1, will have a negative logarithmic deriva-
tive, while the 5g and 7p bands which are never occupied
will give rise to positive logarithmic derivatives, cf. Fig. 4.

The Wigner-Seitz rule further states that the bottom
and the center of the l band may be approximated by the
energies where the logarithmic derivative is equal to 0 and
—/ —1, respectively. With this in mind it is easy to ra-
tionalize the variation with atomic number of the 6d and
5f logarithmic derivatives shown in Fig. 4. According to
the band energies in Fig. 1 the 6d band becomes occupied
in Ac, and from thereon remains approximately one-
quarter full. Therefore D~(EF) crosses 0 at Ra and settles
at a value of —1. Similarly the Sf band becomes occu-
pied in Pa, but in contrast to the 6d band it is progressive-
ly filled in the following elements. Hence, Df(E+) is ap-
proximately zero in Pa and becomes increasingly negative
with atomic number, indicating the continued filling of
the 5f band.

According to Eq. (8) the magnitude of the electron-
phonon coupling matrix element is determined by the
partial-wave amplitudes and by a competition between the
potential-energy term and the logarithmic-derivative term,
i.e., by

[D((EF)—1][DI+)(EF)+(+2]+[E~ V(S)]S, —(12)

where the potential-energy term [EF V(S)]S —for the
heavier actinides Ac—Pu turns out to be approximately
equal to 9. A simple model of the actinides based upon
the band energies in Fig. 1 and the Wigner-Seitz rule
would be to assume a logarithmic derivative equal to —1

for an occupied band and equal to l for an unoccupied
one. Within this model one finds for occupied s, d, and f
bands that the expression (12) is equal to 6, 9, 0, and —27
for sp, pd, df, and fg, respectively, which including the
partial-wave prefactors in Eq. (8) gives reasonable esti-

mates of the relative sizes of the matrix elements shown in
Fig. 5. In particular, it explains that the df matrix ele-
ment vanishes in the heavier actinides as a direct conse-
quence of the fact that the 6d and the Sf bands are simul-
taneously occupied in Pa—Pu. A similar conclusion may
be obtained from the RMTA phase-shift formulation, Eq.
(7), according to which the df matrix element will vanish
if the d and f phase shifts are approximately equal, as one
expects them to be within a conventional resonance pic-
ture with the 6d and 5f bands both occupied.

From the matrix elements calculated by means of Eq.
(8) and shown in Fig. 5 one may expect the pd matrix ele-
ment to be important in all the actinide metals, while the
fg term is expected to play a dominant role in the actinide
metals beyond Ac. It is also seen that the df contribution
will be unimportant in the actinides beyond Th.

The average electron-phonon coupling parameter (I )
shown in Fig. 6 exhibits a distinct maximum at Ac fol-
lowed by a somewhat irregular decrease in the heavier ele-
ments. In terms of the individual l, l+1 contributions
also shown in the figure one sees the weight change from
a pd- and df-dominated situation in Fr—Th, over a pd-
and fg-dominated situation in Pa and U, to a pure fg
dominance in Np and Pu. According to Eqs. (3) and (9)
these individual contributions are proportional to
MI t+&f~f~+~, where MI ~+& is one of the matrix elements
shown in Fig. 5 and f&,fi+ &

are the relative state densities
defined by Eq. (4) and shown in Fig. 3. It may therefore
be realized that the variation exhibited by (I ) in the first
part of the series from Fr to Pa is determined primarily
by the d state density. It may furthermore be seen that
the decreasing trend which is found beyond Ac and which
is caused by the decreasing d state density is arrested by
the growing f state density, to the extent that the fg con-

2.5
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00 ~ o-
Fr Ra Ac Th Pa U Np PU

FIG. 5. The electron-phonon matrix elements squared for the
actinide metals.

Fr Ra Ac Th Pa U Np Pu

FIG. 6. The Fermi surface average of the electron-phonon in-
teraction (I ) and the individual contributions to (I2) from the
sp, pd, df, and fg scattering processes.
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tribution becomes the dominant one in U, Np, and Pu.
To summarize, the trend exhibited by the electron-

phonon coupling parameter (I ) may naturally be ex-
plained in terms of the changes in the gross features of the
energy-band structure which take place as a function of
atomic number. Thus, in the beginning of the series
where the 6d band becomes occupied, the corresponding
negative logarithmic derivative Dd(E+) makes Mzd and

Hfdf the dominating matrix elements. Since at the same
time the d state density is large, (I ) will be dominated
by these d states through pd and df scattering. When
eventually the 5f band becomes occupied in Pa the corre-
sponding negative logarithmic derivative D~(EF) makes
the df matrix element vanish and the fg matrix element
grow. At the same time the relative d state density de-
creases. As a result pd and df scattering becomes less im-
portant and instead the fg contribution grows due to the
sharp increase in the f state density and to a small but sig-
nificant g state density.

B. Comparison with empirical values

In Table II we have listed the experimental data
which are relevant in the discussion of the electron-
phonon coupling of the actinide metals. From the ob-
served electronic specific-heat coefficients y and the
empirical A, values given in the table one may, in principle,
obtain an estimate of the unenhanced or bare energy-band
state density at the Fermi level by the relation
yo=y/(1+A, ). yo may then in the proper units be com-
pared to the calculated total state density -listed in Table I.
With the present data this procedure is only meaningful in
the case of Th, where we have both an empirical iL value
and a calculated state density obtained for the crystal
structure of the low-temperature phase. We find the
empirical bare state density to be 15.3 states/atom Ry,
which is in reasonable agreement with the calculated value
of 19.5 hsted in Table I.

The calculated electron-phonon coupling parameter g
shown in the lower panel of Fig. 7 is obtained as the prod-
uct of the total state density in Fig. 2 and the average
electron-phonon parameter (I ) in Fig. 6 [cf. Eq. (9)].
Therefore g depends upon the crystal structure assumed
in the self-consistent calculation of the state density and is
therefore only strictly valid for the fcc phase.

Since it is the electron-phonon coupling parameter A,

which directly enters the expression (1) for the transition
temperature, we have chosen to compare the theoretical
and experimental values of this parameter. Hence, we
must obtain a theoretical k by dividing q with the empiri-
cally determined phonon force constant M(co ). The re-
sult of this procedure is shown in the upper panel of Fig.
7 and compared with the empirical A, values for those five
actinide metals for which a T, is known or may be extra-
polated. In this comparison one should note that the
theoretical calculations are based upon the fcc structure
and a rather crude approximation for the electron-phonon
coupling, while the experimental phonon frequencies must
be estimated from the Debye temperature. Furthermore,
the transition temperatures for Np and Pu are values ex-
trapolated from alloy data. In view of these shortcomings
the agreement between theory and experiment may be
considered satisfactory.

It follows from both theory and experiment that the
high transition temperatures which one might have hoped
to have in the actinide metals have not materialized. On
the other hand, the 5f states have not destroyed supercon-
ductivity completely; rather the light actinides are super-
conductors with a low electron-phonon coupling parame-
ter A, and and correspondingly low transition tempera-
tures. The highest theoretical A, value is found in Ac, and
Eq. (1) leads to an estimated T, of 9 K close to the value
predicted by Johansson and Rosengren. A most desir-
able confirmation of the trend exhibited by the calculated
X values would be the discovery of a high T, in Ac.

TABLE II. Empirical quantities related to the actinide metals. The average phonon frequency (co ) has been obtained from the
Debye temperature by means of Eq. (11), and the electron-phonon parameter A, has been estimated from the superconducting transi-
tion temperature by means of Eq. (1) with p =0.13. (orth denotes orthorhombic; monclin denotes monoclinic. )

Low-temperature
phase

S (a.u. )

QD (K)
M(co') (eV/A')
'1, (K)
~emp

y,„p(mJ/mol K)

Fr

bCC

5.9
(39)'
0.287

(42)'

Ra

4.7897
(89)'

1.514

Ac

fcc

3.9500
(124)'
2.952

(9.6)'

Th

fcc

3.7557
160b

5.024
1.4~

0.540
4.08"

Pa

bct

3.4299
185'

6.686
0 43"
0.424

5.0'

orth

3.2210
248

12.381
0.45'
0.410
9.14'

Np

3.1395
259'

13.445
(0.03)'
0.312
13.7

PU

monoclin

3.1813
206'
8.685

(0.001)"
0.262

25.0"

'Estimated values; see Ref. 22.
"See Ref. 23.
'See Ref. 24.
dSee Ref. 25.
'See Ref. 26.
See Ref. 27.

~See Ref. 31.

"See Ref. 32.
'See Ref. 33.
'Extrapolated; see Ref. 34.
"Extrapolated; see Ref. 35.
'See Ref. 28.

See Ref. 29.
"See Ref. 30.
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culated the electron-phonon coupling parameters in Th
under compression.

1. Electron-phonon parameters

From the results shown in Fig. 8(d) it is seen that the
parameter (I ) increases rapidly with decreasing volume
mainly because of the pd contribution, whereas the df
contribution which is so important in the d transition
metals remains almost independent of volume, and hence
becomes relatively unimportant at high pressures. Since
the relative state densities [Eq. (4)] change comparatively
little in the volume range covered in Fig. 8, the volume
dependence of (I ) i i+ &

is essentially that of the corre-
sponding matrix elements which we shall now discuss.

The logarithmic derivatives which enter the expression
(8) for the matrix elements may be parametrized as fol-
lows:

Fr Ra Ac Th Pa U Np Pu

FIG. 7. Comparison between the theoretical and the empiri-

cal electron-phonon coupling constants. The empirical values

for k are derived from the measured T, by means of Eq. (1) us-

ing a fixed p* equal to 0.13 (triangles) or a p determined by

Eq. (10) (solid circles). In the lower panel is shown the theoreti-
cal Hopfield parameter g and the experimental estimates of
M (co').

V. PRESSURE DEPENDENCE
OF THE ELECTRON-PHONON COUPLING

S
Di(E) =I (E ——Vi)

2l +3

pI+ ~S
2

Di+t(E) = —l —2—
2

(E —Ci+i ),
(13)

in terms of the band c'enters Ci, the square-well pseudopo-
tentials Vi, which for free electrons coincide with the uni-
form potential, and the corresponding band masses pi and

Thereby we obtain the following approximate expres-
sion for the electron-phonon matrix elements

T

~IS pI+)S2 2

Ml, I + I (f l 0'I + 1 2(2l +3) (EF V,)—
In his study of the 4d metals Butler found that the

average electron-phonon coupling parameter (I ) varied
linearly with f~lAO, where ff is the relative f state densi-
ty defined in Eq. (4) and Ao is the equilibrium volume of
the metal, and he traced this somewhat unexpected depen-
dence upon ff and volume to the dominating df contribu-
tion in the sum (3). Although Butler only established the
volume and ff dependence on (I ) for the 4d metals at
their equilibrium volumes, calculations on Y show that
(I ) of an individual 4d metal under compression exhibit
a similar linear behavior, and the reason is again that the
df contribution dominates the sum (3). In contrast, the
electron-phonon parameter (I ) for the actinides is never
dominated by the df contribution (cf. Fig. 6), and one
would not expect to find, and indeed one does not, such a
simple relation for these metals.

A. Thorium

Fertig et al. found in their measurements that the su-
perconducting transition temperature in Th exhibited a
rather unusual pressure dependence in the range from 0 to
18 GPa, and they attributed this behavior to either a
phase change or a pressure-induced change of the topolo-

gy of the Fermi surface. Since Bellussi et al. found no
phase transitions in Th at pressures up to 30 GPa, this
anomalous behavior is now expected to be of electronic
origin. To substantiate this claim we have therefore cal-

&& (EF Ci+ i)+ [EF—V(S)]S—

(14)
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FIG. 8. Volume dependence of the parameters which deter-
mine the electronic contribution to A, in Th. Panel (a) shows the
square-well pseudopotentials VI, the energy-band centers CI, the
Fermi level EF, and the exchange-correlation potential V(S) at
the atomic sphere radius; (b) shows the s, p, d, f, and g project-
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evaluated at the Fermi level; (c) shows the individual l, l +1 ma-
trix elements; and (d) shows the total (I ) labeled t decomposed
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bohrs is indicated at the top of the figure.
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which may be used to explain the volume dependence seen
in Fig. 8(c).

In Eq. (14) the partial-wave amplitudes Pi increase
slightly under compression due to the increased overlap,
and the band masses which are of the order of unity, ex-
cept p~ and ~~, which are of the order of 10, decrease
slightly for the same reason. The remaining parameters
that enter Eq (.14) are shown in Fig. 8(a), where it follows
that the potential term [EF V(S—)]S increases under
compression. Since this term is common to all matrix ele-
ments, deviations from an increasing trend is governed by
the position of the Fermi level relative to CI arid Vg as ex-
press'ed by the first term in the large parentheses of Eq.
(14).

All the band energies shown in Fig. 8(a) rise faster
under compression than the Fermi level except V~. The
reason is that the 7s and 7p band states must be orthogo-
nal to the relatively large 6s and 6P cores and therefore
must increase their kinetic energy, whereas the 6d and 5f
bands are in the process of being occupied. With this in
mind it is easy to see that the first term in the large
parentheses of Eq. (14) will reinforce the increasing trend
of the second term in all but the df matrix element.
Hence, the volume independence of the df matrix element
and the corresponding contribution to (I )is a conse-
quence of the simultaneous occupation of the 6d and 5f
bands.

As expected, the state density [Fig. 8(b)] decreases as
the compression increases the overlap between neighbors
and broadens the energy bands. In addition, it exhibits an

anomaly at 5=3.63 a.u. , i.e., around 0j'Qo ——0.90, associ-
ated with a pressure-induced change in the topology of the
Fermi surface in the form of the appearance of a new hole
pocket along the LMU symmetry direction. As a result,
g obtained by multiplying (I ) from Fig. 8(d) with the
total state density from Fig. 8(b) [cf. Eq. (9)] and plotted
in Fig. 9(a) exhibits anomalous behavior in the relative
volume range from 0.9 to 0.85 corresponding to the calcu-
lated LMTO pressure range of 5 to 10 CrPa. As Fig. 9(b)
shows, the measured T, also exhibits an anomaly in this
range, and one may suspect that these two anomalies are
connected.

Co -B(P)n' ', (15)

where 0 is the atomic volume and B(P) is the bulk
modulus at the pressure corresponding to Q. Hence, we
have assumed that the long-wavelength phonons may
represent the whole phonon spectrum.

The pressure dependence of the bulk modulus which
enters Eq. (15) may be obtained directly from the calculat-
ed equation of state, and the result is shown in Fig. 10. It

2. Comparison with experiment

In order to shed light on the origin of the anomaly in
the measured pressure dependence of T, we have used
Eqs. (1) and (2) to estimate T, from the calculated g
values. To do this we have taken the volume dependence
of the phonon frequencies to be given by
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tal g in (a) by means of the LMTO equation of state while the
thin solid curve are obtained from q by equations of state with
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may be seen that the pressure dependence of 8 is essen-
tially that of the d contribution, and that this in turn
comes from the change in d occupation. Hence, as long
as s electrons are transferred into the d band, B exhibits a
relative softening which is terminated when dndld lnQ
becomes small, and the s electrons instead flow into the f
band.

At the equilibrium volume Qo, . 8'=dB/dP is calculat-
ed to be 4.4, which compares well with the "best" experi-
mental value of 4.2 given by Bellussi and Benedict. By
Q/Qo ——0.9, 8' has fallen to 0.7, whereupon it rises again.
The change in slope in 8 at Q/Qo ——0.86 is connected
with the change in the topology of the Fermi surface,
which also creates the anomalous behavior in q [cf. Fig.
9(a)]. It should be noted that the effect of these variations
in B and B' on the calculated equation of state is too
small to be seen.

The superconducting transition temperature calculated
for Th is compared to the pressure experiments of Fertig
et al. in Fig. 9(a). As may be seen, the agreement be-
tween theory and experiment is far from perfect. One
should, however, bear in mind that T, depends strongly
on k through the exponential in Eq. (1), and hence on the
calculated g, Fig. 9(b), and the assumptions made for the
volume dependence of the phonon frequencies which enter
Eqs. (2) and (11). To judge this sensitivity we have, in ad-
dition to the calculation based on the LMTO bulk
modulus, included estimates of T, using a bulk modulus
with a pressure-independent B'. The comparison shows
that, given the calculated r)-versus-volume curve of Fig.
9(b) and the assumption (15) for the phonon frequencies,
the bulk modulus must vary with volume approximately
in the manner of the LMTO bulk modulus shown in Fig.
10(b). That is, it must start out with 8' larger than 2 in
order to turn the increase in g into a decrease in T„then
it must become relatively soft with B' less than 2 in order
to produce a minimum in T„and finally it must settle
with B' approximately equal to 2 in order to produce an
almost pressure independent T, .

If we accept that the LMTO calculation describes the
trends in the measured T, -versus-pressure curve, we may
reach the following conclusions as to the reasons for these
trends. First, the initial decrease in T, under compression
is caused by the competition between the increasing pho-
non force constant in the denominator of Eq. (2) and the
increasing electronic contribution in the numerator. In
this pressure range the phonon frequencies are influenced
by the relative softening of the equation of state caused by
the s-to- d transition. Second, the anomaly around
Q/Qo ——0.88 is caused by the change in the topology of
the Fermi surface which signals the termination of the s
to-d transition and which also creates the maximum in
the calculated g. Finally, the nearly-pressure-independent
part of the T, curve is caused by the competition between
the increase in the electronic q and the increase in the
phonon force constant which follows from the changeover
from an s-to-d transition to an s to ftransition. --

B. Uranium

Smith and Fisher measured the superconducting tran-
sition temperature of single-crystal uranium under pres-
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FIG. 11. Volume dependence of the parameters which deter-
mine the electronic contribution to A, in U. (a} shows the
square-well pseudopotentials Vj, the energy-band centers CI, the
Fermi level EF, and the exchange-correlation potential V(S} at
the atomic sphere radius; (b) shows the s, p, d, f, and g project-
ed state densities as well as the total state density, labeled t,
evaluated at the Fermi level; (c) shows the individual I, l + 1 ma-
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sure and assigned the anomalies in their T, -pressure curve
to the first-order phase transitions observed at zero pres-
sure. Hence, in this case, the measured pressure variation
of T, to 2.4 GPa is most certainly influenced by phase
transitions, and the calculation of the electron-phonon
coupling of U in an assumed fcc phase is therefore only of
exploratory nature, in that it may suggest the underlying
trends in the absence of any phase changes.

From the results in Fig. 11 it is seen that the volume
dependence of the parameters which determine the elec-
tronic contribution to the electron-phonon coupling in U
is very similar to that found earlier in Th. Thus the ma-
trix elements, Fig. 11(c), rise rapidly under compression
owing to the increase of the potential term in Eq. (14), and
the state density decreases rapidly due to the increased
overlap and exhibits an anomaly caused by a pressure-
induced change in the topology of the Fermi surface. The
main differences are caused by the occupation of the 5f
band, which leads to the f dominance in the state density,
Fig. 11(b), to the vanishing of the df matrix element and
the corresponding df contribution to (I ), and to the fact
that the average parameter (I ) is now dominated by the
fg contribution.

In the calculation of the transition temperature the in-
crease in the parameter g seen in Fig. 12(a) is counteract-
ed by a similar increase in the phonon frequencies [cf.
Eqs. (1) and (2)], and hence the calculated T, depends
critically upon the assumptions made for the volume
dependence of the phonon frequencies. To reduce the in-
fluence of pressure-induced changes in the Fermi surface
of the assumed fcc phase the phonon frequencies have
been estimated by means of Eq. (15) in conjunction with a
bulk modulus obtained under the assumption that
8'=dB/dP is a constant. For this constant we have used
the value 3.9 obtained from the LMTO equation of state,
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VI. CONCLUSION

We have used the rigid-atomic-sphere approximation in
conjunction with the Gaspari-Gyorffy formulation of the
theory of electron-phonon interaction to estimate the
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an intermediate value of 5.0, and the value 8.4 obtained
from the polynomial fit to the experimental equation of
state. 4'

In Fig. 12(b) we have plotted the calculated T, for U
together with the experimental data of Maple and
Wohllenben, which are similar to the single-crystal
data but go to higher pressures. In the comparison of
these results one should note that down to at least
0/Qc ——0.98 the variation in the measured T, is influ-
enced by phase changes, and that the calculated T,
through rl reflects the properties of the assumed fcc phase
and not those of the actual a phase. With this in mind,
one may perhaps conclude that the pressure dependence of
T, in the absence of phase transitions may be described by
using 8'=8.4, i.e., by means of the experimental rather
than the calculated equation of state. However, to reach
any solid conclusions one needs a better theory for the
pressure dependence of the phonon contribution to A, and
self-consistent calculations of the pressure-dependence of
g in the a phase.

electron-phonon parameter X for the light actinide metals
from self-consistent energy-band calculations. As a func-
tion of atomic number, A, is found to attain its maximum
value in Ac, and we predict a superconducting transition
temperature of 9 K for this element. In those actinides
where the transition temperature is either measured or es-
timated, i.e., Th through Pu, the calculated A, is found to
be within a factor of 2 of experiment, which is the accura-
cy found in similar studies of the transition metals.

In the angular-momentum decomposition we find that
the variation of A, with atomic number clearly reflects the
changes, which occur in the electronic structure of the ac-
tinide metals, from a 6d-dominated behavior in Ra, Ac,
and Th to a 5f-dominated situation in Pa, U, Np, and Pu.
Thus, the electron-phonon coupling in Fr through Th is
dominated by the pd and df scattering, while the coupling
in the heavier actinides is dominated by the dp and fg
scattering. It is particularly noteworthy that the df con-
tribution, which is so important in the d transition metals,
has vanished in Pa and the heavier actinides because the
6d and the 5f band are simultaneously occupied.

We have estimated the electron-phonon coupling in Th
and U under pressure, and find that the electronic contri-
bution in the form of the Hopfield parameter g increases
rapidly with increasing compression. In addition, we have
estimated the pressure dependence of the phonon contri-
bution to A, by means of a simple model which relates the
phonon frequencies to the pressure-dependent bulk
modulus. Based on these estimates we have attempted to
calculate the pressure variation of the superconducting
transition temperature in Th and U. Since Th does not
show any phase transitions up to at least 30 GPa, the
comparison between the measured and the calculated T,
indicates that the unusual pressure variation of T, in Th
is caused by the pressure-induced termination of the s-to-
d transition and that the anomaly at a compression of 0.9
is connected with the appearance of a new piece of Fermi
surface. In U the pressure variation of T, is influenced
by several phase transitions, and the calculation of T,
under pressure only indicates the trend in the absence of
these phase transitions. However, to predict accurately
T, for both Th and U one needs a better theory for the
phonon contribution to the electron-phonon coupling and
complete self-consistent calculations for U in the a-U
structure.
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