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We calculate the influence of localization on the upper critical field, H, 2(T), of strongly disor-
dered superconductors in three dimensions. The present work expands upon our previous paper [L.
Coffey, K. A. Muttalib, and K. Levin, Phys. Rev. Lett. 52, 783 (1984)] on this topic. It is our con-
clusion that studying these field-dependent effects may be the "cleanest" way to analyze the inter-
play of superconductivity and localization phenomena. Our approach is based on the exact impurity
eigenstate method which has been used previously to examine both (zero-field) normal-state and su-
perconducting properties of strongly disordered materials. This approach has the advantage over di-
agrammatic schemes of being nonperturbative in the disorder although it is fundamentally
phenomenological in nature. The most striking qualitative effect of extreme disorder is an enhance-
ment of H, 2(T) relative to the standard Werthamer, Helfand, and Hohenberg curve. This occurs at
low temperatures corresponding to the high-field suppression of localization. This enhancement has
been observed in recent experiments on transition-metal-based alloys. In Our approach localization
effects in H, z(T) arise mainly from the field dependence of the Coulomb pseudopotential p . The
changes with H in the density of states and electron-phonon interaction are found to be relatively
less important. The pseudopotential depends on the field-dependent particle-hole function g~(rr;co)
which is closely related to the density-density correlation function. This same function arises in all
exact impurity eigenstate calculations for normal as well as superconducting properties. For weak
disorder the Fourier transform g~(q,'co) =D~q /(co +DHq ) where DH is the diffusion constant at
finite H. Localization effects are assumed to enter gH(rr';co) and thus p via the scale-dependent
diffusion coefficient. Here DH is modeled by analogy with scaling laws in the zero-field case. With
the application of a high magnetic field these localization effects are suppressed and as a result the
Coulomb pseudopotential is reduced. The reduction of localization effects in p* at high H and the
consequent enhancement of H, 2(T) at low T are closely related to the behavior of the negative mag-
netoresistance. This negative magnetoresistance reflects the same field-induced suppression of local-
ization as does the enhancement of H, 2(T). Therefore an important test of our theory will be a
study of systematic correlations in these two phenomena.

I. INTRODUCTION

Recent investigations of the critical temperatures (T, )

and the upper critical fields ' [H, 2(T)) of superconduc-
tors with high normal-state resistivities (pz) measured just
above T, have revealed interesting behavior. Measure-
ments of H, z(T) in amorphous transition-metal-based al-
loys and similar materials differ significantly from the re-
sults predicted by the standard theory of H, 2(T)
developed by Werthamer, Helfand, and Hohenberg
(WHH) and others. ' For these highly disordered materi-
als with p~ ranging from 120 to 200 pAcm, the upper
critical field H, 2(T) is frequently enhanced above the
WHH result at low T. In similar systems, such as highly
disordered 2 15 compounds and rare-earth ternary
borides, it has also been observed' that T, is unusually
sensitive to further disorder.

The possibility that spatial inhomogeneities produce an
enhancement in H, 2 has been raised by Carter et al.
However, it is claimed on the basis of x-ray diffraction
and high-resolution transmission microscopy that the
samples studied in Ref. 2 are single-phase amorphous.
Additional evidence for this are the single very sharp

transitions [b,T, &0.05 K] observed for these samples.
However it should be pointed out that in the class of
transition-metal alloys studied in Ref. 2 there is strong
evidence for inhomogeneity effects' which are known to
perturb the superconducting properties. These inhomo-
geneities are generally found to lead to broader transitions
(AT, )0.2). The situation as regards the degree of homo-
geneity and its role in the superconductivity in the sam-
ples of Ref. 2 is thus somewhat controversial. Tenhover
et al. have observed a systematic correlation between the
observed enhancements of H, 2(T) and the values of p~.
In view of these correlations, these authors suggested that
the deviations of H, 2(T) from the standar. d theory arise
from incipient localization effects in these highly disor-
dered materials. It has been argued that localization ef-
fects should be evident at resistivities higher than
=150 pA cm.

In a previous paper by the present authors, these inci-
pient localization effects on H, 2(T) were studied theoreti-
cally. The purpose of this paper is to expand upon our
earlier rather brief description. We show that the devia-
tions from the standard theory observed in recent experi-
ments can be semiquantitatively explained by considering
the interaction of magnetic fields and localization phe-
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nomena.
The interaction of localization effects and superconduc-

tivity in T, and H, 2(T) has been studied diagrammatical-
ly in two dimensions by Takagi and Kuroda' and by
Fukuyama and eo-workers. "' More recently Fukuyama
et a/. ' have extended this work to. three dimensions.
These studies however are valid in the weak scattering re-
gime only (EFw» 1) where Ez is the Fermi level and r is
the elastic scattering time. In this diagrammatic ap-
proach the influence of weak localization on supercon-
ducting properties manifests itself through density of
states effects as well as a renormalization of the Coulomb
interaction or pseudopotential. Both of these effects ori-
ginate in first order Coulomb corrections to the particle-
particle propagator which determines the superconducting
instability. The important corrections to T, and H, 2(T)
arise from the interaction of impurity scattering and the
Coulomb interaction and occur in both self-energy and
vertex corrections. The former lead to density-of-states
corrections and the latter to an enhancement of the
Coulomb interaction between Cooper pair electrons.

By contrast our work is based on the exact impurity
eigenstate approach which is thus nonperturbative in the
disorder. This approach was applied at H =0 by Abra-
hams, Anderson, Lee, and Ramakrishnan' (AALR) to
examine the one electron self-energy arising from
Coulomb interactions in the normal state. Subsequently
this method was used by Anderson, Muttalib, and Ramak-
rishnan' (AMR) to study the critical temperatures of
strongly disordered superconductors. Using the localiza-
tion derived enhancement of the Coulomb pseudopotential
these authors could explain the unusual sensitivity of the
superconducting transition temperatures of A 15 com-
pounds and the ternary borides to the normal-state resis-
tivity.

The exact eigenstate method has a number of advan-
tages over diagrammatic approaches. Because it is not
perturbative it allows one to examine the limit of strong
disorder which is of particular interest in three dimen-
sions. In addition it is simple and intuitive and does not
involve diagrams more complex than those of Hartree-
Fock theory. Where comparisons have been made, ' both
approaches are found to lead to essentially identical re-
sults.

In our exact impurity eigenstate method we find an
enhancement of H, i(T) above the standard theoretical
prediction. This derives from the fact that the application
of a magnetic field to the superconductor weakens the ef-
fects of localization and thus reduces the Coulomb pseu-
dopotential p*. This in turn strengthens the supercon-
ducting properties of the material and thus leads to an
enhanced H, 2(T). The enhancement grows as the tem-
perature decreases and as larger and larger fields can be
applied to the superconductor without driving it into the
normal phase. Within our framework density of states
and electron phonon effects are found to be considerably
less sensitive to the magnetic field and thus are neglected
in the calculation of H, 2.

Within the present theoretical approach it is clear that
the magnitude of the localization induced enhancement in
H, 2(T) is closely correlated with the negative magne-

toresistance pz(H). ' The latter arises in strongly disor-
dered materials as a consequence of the suppression of lo-
calization effects by the applied magnetic field. This
correlation between p~(H) and H, 2 should have experi-
mental consequences when more systematic studies are
undertaken. While it cannot be claimed that in all disor-
dered systems observed enhancements from the WHH
curve are attributable to localization effects, the extent to
which localization plays a role in H, 2(T) can be ascer-
tained by studying these correlations.

Since our paper on this work was published, there have
been a number of theoretical studies' ' of disorder ef-
fects on H, 2 in three-dimensional systems. These other
approaches reach the same conclusion: that incipient lo-
calization effects will lead to enhancements in H, 2(T) rel-
ative to the results of conventional theory. In the di-
agrammatic calculation of Ref. (13) the behavior of H, 2 is
dominated by dynamical screening effects. The authors in
Ref. (13) also find corrections to the slope at T, relative
to the WHH expression which is in contrast to the results
found here. Our results (and a variety of experiments)
suggest that this slope at T, coincides with the WHH re-
sult. Our conclusion derives from the weak field depen-
dence in small fields of the magnetoresistance
p~(H)=H . For these low H, localization effects are
essentially unperturbed by the field. It should be pointed
out that Ref. 13 represents the first attempt to deal with
dynamical Coulomb effects on superconductivity. These
effects, which may lead to significant pair breaking are ig-
nored in the present work.

In Ref. 18 the effects of anomalous diffusion on the
particle-particle propagator were considered very close to
the mobility edge. These authors also presented predic-
tions for anomalous behav'ior in H, q. However, it should
be noted that the work of Kapitulnik and Kotliar' is
rather complementary to the present work since Coulom-
bic interactions which we focus on are ignored in Ref. 18.
These authors proposed that close to the mobility edge the
dominant length scale should depend on frequency as

in three dimensions. We note that this frequency
length scale is included naturally in our model. This will
be discussed in detail in Sec. IV A, where it is shown that,
away from the mobility edge and when Coulomb effects
are ignored, the present theory and that of Ref. 18 are
essentially equivalent. It should also be observed that in
the vicinity of the mobility edge the magnetic length be-
comes smaller than the sealing length. In this limit there
may be difficulties in calculating H, 2 which arise from
uncertainties in characterizing the localization transition
in the presence of strong magnetic fields. At present there
is no satisfactory theory of these magnetic-field-
localization effects.

It should be noted that we and these previous calcula-
tions' ' ' have not addressed the important contribu-
tion of spin orbit coupling to H, 2(T). These effects are
particularly complex because large spin-orbit scattering
will destroy localization phenomena. Because of this
complexity and because the main conclusions of this work
address a predicted correlation between the negative mag-
netoresistance and the enhancement in H, 2, we will not
consider spin-orbit effects. If spin-orbit scattering is suf-
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ficiently strong to destroy the negative magnetoresistance
then it is clear that any enhancement in H, z(T) cannot be
attributed to incipient localization. When, however, a
negative magnetoresistance is observed with behavior as
expected from localization theory, then our work suggests
an enhancement in H, z( T) should also be evident.

and a is the electron creation operator corresponding to
the mth exact eigenstate. Thus in the exact impurity
eigenstate basis, the Coulomb interaction is

V ff = f d rd r'$1*(r)()r)* (r') V'(r —r')P„(r')((t)~ (r) . (2.4)

In this basis the one-electron Cireen's function for the
nth energy state is defined as

II. REVIEW OF EXACT IMPURITY
EIGENSTATE APPROACH G (n, t —t') = —i (w [a„(t)a„(t')]), (2.5)

The exact eigenstate approach is based on one electron
exact eigenstates P„(r) in the absence of electron-electron
interactions. In a magnetic field, these field-dependent
wave functions satisfy the Schrodinger equation

I eA
p — P„(r)+ V(r)P„(r) =e„P„(r) (2.1)

2&i C

where V(r) represents the potential due to nonmagnetic
impurity scattering. This approach has been used previ-
ously' in characterizing perturbatively the interaction of
the Coulomb repulsion and impurity scattering. The
Coulomb interaction in second-quantized form,

H'= f d rd r%t(r)+t(r')V'(r —r')(II(r')+(r), (2.2)

can be transformed to

X(rn) =ke T g g L~«~(q) V'(q)G(n, Q),
n qQ

where T is the temperature and

L „„(q)=f d r f d r'e'q"

(2.6)

(2.7)

Equation (2.6) is impurity averaged over all impurity
configurations according to

( X)=E( IN))(rQ 5(—E E)X(m)) .
n

(2.8)

where ~ is the time-ordering operator. When dynamical
screening effects are not included in V, the normal-state
self-energy is independent of frequency and is given in
Haitree-Fock theory by

X P„(r')Pz(r) at a a„az, (2.3)

where the one-electron field operator 0' (r) =g~a~ P~ (r)

In Eq. (2.8), Xo is the single-particle density of states per
spin at the Fermi level and for convenience the volume is
set equal to 1.0. The symbol ( ) represents impurity
averaging. Furthermore, it is assumed in Eq. (2.6) that
LgE«gg)(q) and G(n, Q) are impurity averaged separately.
Therefore, the normal-state self-energy can be written as

1X(E)=kgT f dg f d rd r')r'(r r') +5(E —E)5(g—r„)()'(—r)()„(r)d„"(r')5 (r')) .
0 mn

(2.9)

This self-energy is seen to depend on the field-
dependent correlation function

5(rgH(r, r', E—g)=(+5(r —E)5(g—r„)()"(r)
mn

x()„(r)()„'(r')5 (r')) . (2.10)

AALR (who considered only the zero-field limit) pointed
out' that this function is closely connected to the
density-density correlation function,

A (rr', t t ') = t [p(r, t),p(r', t') ] ) —.
In the presence of translational symmetry this may be

transformed as follows

Do is the weak scattering zero-field diffusion coefficient.
Thus density fluctuations are characterized by a diffusive
behavior in a highly disordered system.

A similar exact eigenfunction approach was used by
AMR (Ref. 15) to derive the superconducting gap or
"off-diagonal" self-energy at H =0. This can be evalu-
ated in the exact impurity eigenstate basis in analo-

gy with the normal state self-energy. The superconduct-
ing order parameter F(r, r'; t t ') is defined by-

i (M[(I', (r, t)—'I(ir', t')] ). In frequency space this param-
eter is written as

F(r, r', to)= —k&T g f d r&d rzG(r, rz, co)G(r', r~, —co)

A(q, to)=Nato f gH(rr';go)e' " "d rd r'. (2.1 1)
XF(r&, rz, co')A, (r„rz, (o —co'),

The functional form of gH is determined by the way in
which electronic density fluctuations behave in a disor-
dered medium. The essential physical assumption of
AALR was that gjt 0(q, co) =Doq /[(Doq ) + co ], where

(2.12)

where A, (r&, rz, go —(o') represents the net attractive interac-
tion between Cooper pair electrons. In Eq. (2.12), the
Green's function
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G(r;r';co) = g P„"(r')$„(r)G(n, co)

is the Fourier transform of —i(M[%,(r, t)+,+(r', t')]).
The total superconducting gap, which is the sum of the
phonon and Coulomb contributions, is given by

b, (r, r', co)= g A,(r, r';co —co')E(r, r';co')

k~TQ f d rid r2G(r, ri,'co')G(r', r2', co'—)

X A(r, r';co —co'}h(ri, rp', co') .

quency cutoff.
By exact analogy with Eq. (2.8) the impurity-averaged

gap parameter at energy E is defined by

(2.17)

In the spirit of the normal-state calculation of AALR it
is assumed in Eq. (2.15) that 6 and the two Green's
functions are averaged separately. The averaged Coulomb
gap can be written as

&E=NokgTQ f de rd r'V'(r r')g~—(rr', E g)

(2.13)
x G(g;~)G(g; —~)~q(~), (2.18)

&'(r, r') = g ctp„(r)P„(r')6'„, - (2.14)

where P„(r) and P„-(r) represent the two time-reversed
states n and n, forming the Cooper pair. Equation (2.13}
readily yields the exact impurity eigenstate representation
of the Coulomb contribution to the gap,

kg Tg QQ-„„~G(—m, co')G(m, —co')6 (co'),

(2.15)

where the renormalized Coulomb interaction is given by

Q„-„~&=f d rd r'V'(r —r')P„(r)(t)„"(r')P (r')P (r).

(2.16)

In our approach the Coulomb repulsion is represented by
a static interaction potential so that the Coulomb contri-
bution to the gap parameter has no frequency co depen-
dence. The total gap on the right-hand side of Eq. (2.15),
in general, has a frequency dependence arising from the
electron-phonon interaction, which usually enters as a fre-

A critical assumption of the T, calculation of AMR is
that localization effects, stemming from the high level of
disorder, enter the electron-phonon and Coulomb contri-
butions to the gap in different ways. Schmidt'9 and sub-
sequently hfuttalib considered the role of strong disorder
in the electron-phonon coupling. It was shown in Ref. 20
that the constraint of charge neutrality results in the elim-
ination of particle-hole diffusiori renormalizations [which
enter through g~ 0 (rr', t —t')] in the electron-phonon
coupling. By contrast this particle-hole diffusion renor-
malization dominates the Coulomb contribution to the
gap. For this reason we, as do AMR and Refs. 10—13,
will ignore localization corrections to the electron-phonon
interaction. It should, however, be noted that the scale
dependence of the diffusion coefficient ' and anharmonic
effects may alter the electron-phonon interaction in the
limit of strong disorder. These effects have not been
treated in sufficient detail to determine their importance
for the present calculation.

The Coulomb contribution to the gap parameter in
coordinate space can be written in terms of exact impurity
eigensiates as

where

xp„(r')()(e„—E)5(c—E )),
and we have used the time-reversal operator to rewrite P—
in terms of P~.

In setting up the gap equation, it has been assuxned that
two time-reversed eigenstates can both be represented by
diagonal Green's functions. As will be discussed in more
detail below, the assumption that (t„and P„- are simul
taneously eigenstates of the magnetic-field-dependent
Hamiltonian [Eq. (2.1)], is a reasonable approximation
only in the semiclassical limit.

It should be noted that the correlation function
gH(rr', E —g) which appears in superconducting proper-
ties also arises in the expression for the normal-state self-
energy-given in Eq. (2.9). Because it depends on the dif-
fusion coefficient, g~(rr', E—g) will naturally incorporate
localization effects arising from strong disorder. Further-
more, since in general P„(r) depends on the magnetic
field, g (Hrr;E —g) will also contain information concern-
ing the interplay of localization and magnetic fields.

The calculations, summarized above (for the case
H =0), of AALR and AMR are closely analogous. In the
Nambu matrix formulation of superconductivity these
two theories can be viewed as corresponding to different
components of the matrix self-energy. It is clear, howev-
er, that a more complete and systematic treatment of the
interplay of Coulomb interactions and disorder should in-
volve a coupling between the two equations. This cou-
pling yields a density of states correction to the supercon-
ducting gap equation which was not included by AMR.
A more detailed discussion of the exact eigenstate fully
coupled Eliashberg-like equations with dynamical screen-
ing is discussed in Ref. 22. We note that for the purposes
of the present calculation the field dependence of the den-
sity of states is weak for the range of fields appropriate to
most experiments. Furthermore in calculating the
Coulomb pseudopotential (M~ the density-of-states factors
roughly cancel out. However it is not clear that the field
dependence- of the density of states is entirely negligible
for the phonon coupling constant. Because of uncertain-
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uncertainties in treating localization effects in the electron
phonon interaction we have ignored any field-dependent
effects in this term. However, it should be noted that the
density-of-states prefactor in the phonon coupling con-
stant will lead to an enhancement in H, 2 at high H or low
T. This will add to the effects we focus on below which
arise from the Coulomb pseudopotential.

III. DERIVATION OF H, 2(T) EQUATION

In the exact eigenstate basis the equation for the super-
conducting gap can be seen to depend on (e„—e„-): the
difference in energies of time reversed states. In the pres-
ence of a time-reversal symmetry-breaking perturbation,
such as magnetic field, (e„—e„) is nonzero. The energy
splitting of the time-reversed states is equivalent to the
pair breaking parameter generally called p. In this exact
eigenfunction basis it is easy to see why pair breaking
arises whenever there exists a term in the Hamiltonian
which is non-time-reversal invariant.

In the presence of a time-reversal symmetry-breaking
perturbation H', the energy difference of the two time-
reversed states can be calculated in terms of the commuta-
tor [H', K], where K is the time-reversal operator. In
the case or orbital coupling with the applied field,

4E ———Xpkg T

xg de rd r'V'(r r'—)g~(rr', E g)—b,&(co)

(i co —g )( i—co g—+psgnco )

(3.3)

We now introduce the Coulomb pseudopotential in or-
der to combine hE with the phonon contribution L@ to
the total gap b@(co)=&@"(co)+ hz. In Eq. (3.3) the sum
over co is broken into two parts coming from

~

co
~

&coD
and co~ &

~

co
~

&EF. In the latter, the total gap parameter
4~(co) is equivalent to b~ since at frequencies greater
than co~ the phonon contribution vanishes. Furthermore
the pairbreaking parameter which appears in the denomi-
nator of Eq. (3.3) can be neglected in this frequency range
since it is relatively small compared to coa. Letting
EF~~ in the second part of the sum over co, we may
then use the identity

(& co —g)( —i co —g)

e(g —~ )

2$ keT
(3.4)

The Coulomb contribution to the gap equation can now be
written as

f d(Q(E —g)hg ——Np V' f gII(rr, E g)F(g), —
[H', K]= (p A+ A p)K .

l7ZC
(3.1) (3.5)

When strong disorder is present, the quantity multiplying
K on the right-hand side in Eq. (3.1) can be treated semi-
classically as a c number. This semiclassical approxima-
tion also implicitly ignores effects arising from the Lan-
dau diamagnetic term e /(2mc )3 which can be justi-
fied in the presence of strong disorder. Using the usual
quantum mechanical evaluation of the electromagnetic in-
teraction one obtains

( —e/(2mc)(p A+ A.p) )= (n+ I/2)fico, ,

where co, is the cyclotron frequency eH/mc. Diffusion
effects can be incorporated into the evaluation of the com-
mutator [H', K] by replacing A'/2m by the diffusion coef-
ficient DH/i. This transcription can be understood as
arising from the difference between the Schrodinger equa-
tion and the diffusion equation. It is necessary in order
for the time dependence of the motion to be exponentially
damped as e ' rather than varying as e' '. With this
substitution into the ground-state electromagnetic energy
level one finds the usual result for the pair breaking pa-
rameter p=i2D~eH/e. Note that p which is purely
imaginary can be interpreted as a type of lifetime for the
Cooper pair.

Because p is imaginary, it follows from the general ana-
lytic structure for the Green's function that G~(co) is
given in terms of the energy g as

G~(co) = (i co g+psgnco)— (3.2)

Here it is assumed that GC(co) derives from an impurity
average of the exact eigenstates Gc(co) and G~(co) corre-
sponds to the associated time-reversed state. Inserting
this result into Eq. (2.18), it follows that

where

coD b,g(co)
F(g) = keT—

p (&co —g)( Eco g+p—sgnco—)

and

(3.6)

NpgH(rr;E g) V'e(g coD )— —
Q(E —g) =

2
(3.7)

In Eqs. (3.5) and (3.7) we have used the fact that V'(r —r')
is a screened Coulomb potential. This can be approximat-
ed by V'5(r —r') in order to set r=r' in these equations.

The Coulomb pseudopotential is defined by

AE= P* E — F d (3.8)

where gH(E —g):g~(rr, E—g) f—or notational simplicity.
In Eq. (3.9) the integral must depend on (E g) only so-
that for convenience g can be set equal to zero every-
where. Furthermore, the remaining energy dependence of
p*(E) for E &coD can be neglected in our weak-coupling
approximation. This is justified since p* is directly relat-
ed to g~(E) which, as will be discussed in detail below, is
approximately independent of E in this energy range.
Thus we can evaluate Eq. (3.9) at E=O. We define
p~=—p*(0) as follows:

Therefore, using Eqs. (3.5)—(3.7), the equation for p" is
written

p *(E—g) =Np V'gH (E —g)

—f d g'Np V', , (3.9)
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E~
1+&o~' g~ . 3.1O

Using Eq. (3.10) and performing the g integral in Eq.
(3.8), 6' can be written as

Np V'gran(0)
~F 'dg'1+XOV', gH

COg)

[ ~2n+1
~
+(p/i/4mT)]

(3.11)

Finally, adding the phonon contribution to 6' one obtains
the final equation for H, 2(T),

1.14AcoD
1=(A,~"—p~) ln +0'

kt3T 2

1 AD~H, 2

2 2gpke T (3.12)

where we have written the pair-breaking parameter in
terms of the unit of flux Pp

——hc/2e.
In the absence of localization effects Eq. (3.12) is identi-

cal to the standard equation ' for H, 2(T). In strongly
disordered superconductors, localization effects and their
interaction with the applied magnetic field are built into
it as well as into the general diffusion coefficient DH,
which appears in the pair-breaking parameter. In the lim-
it H =0 Eq. (3.12) together with Eq. (3.10) reduce to the
AMR result for T, .

In Ref. 9 we used Eq. (3.12) to calculate the properties
of the upper critical field in strongly disordered supercon-
ductors. However it should be pointed out that Ref. 9
contained an error so that p* appearing in this equation
was not defined correctly as in Eq. (3.10). This error did
not lead to any qualitative effects, however.

It is important to stress that although, in the absence of
localization the exact eigenfunction basis leads to the stan-
dard equation for H, 2, this is not particularly obvious
a priori. In this basis we perform the impurity averaging
and introduce a factorization scheme in a way which ap-
pears to be different from the conventional coordinate
space derivation of Eq. (3.12). I ocalization effects can be
introduced in this coordinate space approach by including
an additional class of vertex corrections. In this way the
Coulomb interaction is effectively renormalized by two
vertex factors which are equivalent to the function gH de-
fined earlier. However to make contact with the results of
the present theory one cannot use the standard delta func-
tion model for this renormalized Coulomb interaction:
A(r&, r2)-5(r, r2) since, t—his removes the possibility of
introducing diffusion corrections into H, 2. In summary,
it should be stressed that all the effects of localization that
we consider enter through the important correlation func-
tion gH which has a q (and co) dependence which is not
accurately m.odeled by the standard delta function as-
sumption.

IV. NUMERICAL RESULTS

D(L)=Dpi, /L, 1, &L &L,

D(L) =Dpi, /L„L, & L. .

(4.2)

(4.3)

Here l, is the elastic mean free path. L, is the localiza-
tion length. This length in turn is determined by the rela-
tion L, /1, =p~/p„where p, is a critical resistivity above
which localization phenomena should be apparent and p&
is the characteristic normal-state resistivity. Using Eqs.
(4.2) and (4.3) and the particle-conservation condition,

g rt r=1, (4.4)

this scale dependence can be incorporated phenomenologi-
cally into g(r, t). It follows that for r=0,

(0 ) 1
1.75 f +~ cos(cot)

(EF~) ~ t

1.15(a)' " cos(cot)
(E ~) (gg t 3/2 (4.5)

where a is (p~/p, )'=(L, /1, )' and 7 is the usual elastic
scattering time.

We emphasize here that the frequency length scale
1~/1, =(to&), discussed in Ref. 18, occurs naturally in

—1 /3 ~

this model. To see this we note that an approximate solu-
solution to the integral in Eq. (4.5) is

g(0, co)=1+ ln(a +cow),
C

(EFr)
(4.6)

A. Localization effects in the correlation
function g~(r, r', co)

The function gH(r, r';to) enters the final expression for
H, 3(T) [Eq. (3.12)] through the Coulomb pseudopotential
p~. In zero field, this function can be rather well charac-
terized. For short times t &r the correlation function
gtt p(r, r't)=g(r r', t—) has a free-particle form while for
t&r it is diffusive. In the presence of strong disorder,
diffusive behavior is modeled by a scale-dependent dif-
fusion coefficient. From the continuity equation and the
constitutive relation the Fourier transform of the
particle-hole correlation function has the form

Npg(q, to) = D (q, co)q (4.1)
co +[D(q, co)q ]2

Therefore in the limit in which D depends on q and to,
g(r; t ) will be modified . from its usual form

2
3/p —r /4DO t

(4wDpt ) e, appropriate for the weak-scattering
limit. Here Dp 2EFr/3m-—.

In the scaling theory of localization ' in zero field the
conductivity o has an anomalous 1/L dependence in three
dimensions at short length scales (or equivalently short
times). From the Einstein relation tr=e NpD, it follows
that this scale dependence will also be present in the dif-
fusion coefficient. These ideas have been incorporated by
AMR into a simple model for the zero-field diffusion
coefficient:
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for co&~ ' and where C is a constant of order unity.
Thus the parameter (ct~) ' defines a character frequency
which is determined by the disorder. The function g (O, co)
becomes appreciably frequency dependent only for fre-
quencies which are high compared to this characteristic
frequency. We can rewrite the logarithm in Eq. (4.6) as

ln(u '+cor)=ln[(l, /L, ) +cog]=in(l, /L)

where L, is the minimum of L, and the frequency length
scale l„, and we define

l /l, =(cor)

Note that for the attractive phonon interaction, as long as
(av) ' is less than the Debye frequency coD, l„ is an ir-
relevant length scale. For a reasonable choice of parame-
ters, assuming EF~-O(1) it follows that l~ is irrelevant
for the phonon interaction whenever L, /l, =p&/p, is less
than about five. This is in contrast to the situation for the
Coulomb piece in which l plays a key role, and which
has no counterpart in Ref. 18 (where Coulomb interac-
tions are not treated). This intermediate-disorder regime
(p~/p, &5) appears to be characteristic of the systems
studied here. In this limit, and when Coulomb effects are
ignored the sole effect of disorder is to renormalize the
diffusion coefficient by a frequency-independent parame-
ter and we therefore find that the present theory coincides
with that of Ref. 18. These scaling effects in D, however,
lead to no changes in the reduced critical field

h, z( T) =H, z( T)/[T, (dH, 2/d T)]z.

relative to the universal WHH curve at T =0 and T =T, .
Therefore the rescaling of the diffusion constant due to
localization effects cannot be invoked to explain observed
enhancements in h, 2 which occur, for example, at T =0.

In the high-disorder regime (p&/p, &5) considered in
Ref. 18, it is clear that the present theory may breakdown
for a number of reasons. Among these is our neglect of
any scale dependence in the pair-breaking parameter p
which from Ref. 18 appears to be of some importance.

Yoshika et al. and Ting have extended the diagram-
matic derivation of scaling of the diffusion coefficient by

DH(L)=Dol /L, l &L &L (H)

DH(L) =Dol, /L, (H), L, (H) &L .

We estimate the scaling length by assuming that

L, (H) pic (H)

l,

(4.7)

(4.8)

(4.9)

Here ptc(H )is the no'rmal-state magnetoresistance. This
model is a natural extension of the zero-field model in
Eqs. (4.2) and (4.3).

The resistance pic(H) and hence the scaling length
L, (H) decreases upon applying a magnetic field resulting
in a reduction of the anomalous (1/L)-dependent regime
in Eq. (4.7) and an increase in the macroscopic diffusion
Eq. (4.8). The magnitude of p&(H) or negative magne-
toresistance can be calculated quantitatively by following
Kawabata' who notes that the conductivity o(H, co) is
determined dominantly by the particle-particle correlation
function gg(r, r';co) as follows:

cr(H, co) —cr(H =O, co) = I gg(r, r;co)d'r .cr(H =0)

(4.10)

In the absence of localization, an exact solution for
gH(r, r';co) can be obtained by noting that it satisfies the
Schrodinger equation for a particle of mass 1/2DH and
charge 2e in a magnetic field for imaginary times. For
the magnetic field in the z direction, the Fourier
transform gH (r, r '; t ) is given by

Vollhardt and Wolfe to the non-zero-field case. The ap-
plication of a field results in a coupled set of equations
which when solved yield the finite field diffusion coeffi-
cient. This coupling refiects the fact that at H&0 the
particle-hole and particIe-particle channels are distinct but
interrelated. We have numerically solved these equations
to gain insight into the scaling properties of the diffusion
coefficient at finite H; Based on the behavior at H =0
and this numerical work we suggest a simple field depen-
dent scaling model for the diffusion coefficient of the
form

1 1 2

QII (t) 4Dt tanh(coH t /2) /(cat t /2)
(4.11)

where

QIt(t) =(4nDt) i sinh(coIIt/2)/(coHt/2),

and coIt ——(4DeH)/hc. Use of this exact solution improves
upon a truncation approximation used by Kawabata' and
leads to a slightly larger (in magnitude) negative magne-
toresistance.

Multiplying Eq. (4.10) by p, and using Eq. (4.9) and its
zero-field counterpart gives

l, l, l, gg(r, r;co)d r
L (H) L, L,

(4.12)

In a strong magnetic field, Eq. (4.12) yields a v H mag-
netic field dependence for L, (H) ' given by

l,
L, (H) I, lg,

(4.13)

where lI, &Pic/eH and the coefficient o——f proportionality
is approximately unity. It should be noted that in
Kawabata's approximate calculation this coefficient
would be -0.2. In a weak magnetic field [L,(H')] ' ac-
quires an H dependence given by
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l,
L, (H)

l, I,

L, ll,
(4.14)

Here the coefficient of proportionality is approximately
(l;/l, ) . The inelastic mean free path l; arises upon re-
placing co in Eq. (4.12) by the corresponding inelastic life-
time 1/r; T.he inelastic mean free path is generally as-
sumed' to behave as T in three dimensions.

It should be stressed that while there is some evidence
for scaling behavior in D~ there is no satisfactory calcula-
tion of gH(q, co) in the presence of both a field and strong
disorder. Houghton et al. have calculated g~(q, co) in a
nonzero field in the weak scattering limit. They find that
g~(q, co) is given by Eq. (4.1) with an effective field-
dependent diffusion coefficient DH which is independent
of q and co. Localization effects, arising from the maxi-
mally crossed diagrams, were not considered in Ref. 27
and their inclusion would complicate the analysis.

Because in the presence of a field there is a coupling
between the particle-hole and the particle-particle chan-
nels, this suggests that not all field effects are accommo-
dated by a field-dependent diffusion coefficient inserted
into Eq. (4.1). This particle-particle effects lead to phase
coherence phenomena such as the Aharonov-Bohm ef-
fect. In the absence of localization one can compare the
particle-particle and particle-hole correlation functions as
a function of frequency and field. For reasonable values
of H they are found to be essentially identical except for
frequencies co&10 coD. Since this represents a narrow
range of frequencies relative to those important to super-
conductivity it may be argued that for our purposes we

can ignore these phase coherence effects in gH(r, r', co) in
computing Hc z.

Therefore, in the absence of any more complete theory,
we adopt the simplest possible model for the particle-hole
correlation function by substituting an effective field-
dependent diffusion coefficient DH(q, co) into the canoni-
cal zero-field form for g~(q, co), Eq. (4.1). We thus as-
sume that in the presence of localization effects,

D~(q, co)q'
&OgH(q ~)=

co +(DH(q, co)q )
(4.15)

where DH(q, co) is determined by Eqs. (4.7) and (4.8).
The incorporation into g~(r, r';co) of the interplay of lo-

calization effects and the magnetic field causes p* to de-
crease monotonically with the application of a magnetic
field. As a consequence H, 2(T) is enhanced. The magni-
tude of the reduction in p, ~ is determined by that of the
negative magnetoresistance which is reflected in the field-
dependent scaling length L,(H). Therefore a close con-
nection exists between the enhancement of H, 2( T) and the
normal-state negative magnetoresistance. Finally, it
should be noted that we use throughout the macroscopic
diffusion coefficient defined by Eq. (4.8) in the pair-
breaking parameter in Eq. (3.12). This pair-breaking pa-
rameter corresponds to a small energy or frequency scale
and thus to long time scales.

B. Upper critical field slope [dH, i(T)/dT] near T,

It is relatively straightforward to obtain an exact ex-
pression for the slope of H, 2 near T„corresponding to
the limit H~O. From Eq. (3.12) it follows that

dH, 2

dT T

( mph

C 1.14iricoD 3DH g(2)A'

BH kg T, 2$okg T,

(4.16)

where g(2) is the Riemann zeta function. The behavior of
Qp, ~/dH in Eq. (4.16) is determined by the field depen-
dence of L,(H) which was discussed in Sec. III. In a
weak magnetic field, [L,(H)] ' varies as H, as shown in

Eq. (4.14). As a consequence, the derivative of g~(r, r', co),
with respect to H, vanishes as H approaches zero. Thus
Bp*/c)H vanishes in this limit also.

Therefore near T„dH, z(T)/dT approaches the WHH
result for the upper-critical-field slope, which is given by

'dH, 2( T) —24oka

d T r, 3D~g(2)A
(4.17)

More generally, whenever [L,(H)] has an H' 'depen-
dence with e greater than zero in a weak magnetic field,
c)p*/BH will approach zero as H approaches zero, so that
the slope of the upper-critical-field curve will coincide
with that deduced from conventional theory. This result
can be verified experimentally, as will be discussed in the
next section.

C. Comparison with experiments

The results of Eq. (3.12) can be plotted in the reduced
units h, 2( T)=H, z( T)/[ T, (dH, 2/d T) ]T . In these units
the WHH theory reduces to a universal curve which is in-
dicated in Fig. l. In our theory the same physical mecha-
nism that leads to an enhancement in H, 2(T) also causes
the upper critical field in reduced units to be enhanced
over the universal WHH curve. It should be pointed out
that in these reduced units, if p* effects are ignored, there
can be no deviation from the universal curve at T =0 and
T=T, (arising solely from a rescaling of the diffusion
coefficient). Hence, plotting h, 2 represents a particularly
convenient way of exhibiting localization effects which
arise from contributions other than a rescaling in DH.
The curves labeled 2—D shown in Fig. 1 correspond to
increasing degrees of disorder. For definiteness we chose
V"=0.59, cog)/Ep ——10, Epv. =1.0, and Og) ——300 K.
These are fairly typical numbers for strongly disordered
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FIQ. 1. Calculated temperature dependence of the upper crit-
ical field (in reduced units) for various p~/p, =3.0 (3) and 4.0
(B), and in the inset p~/p, =5.0 (C), 5.5 (D), and 6.0 (E). The
standard dirty superconductor result (labeled WHH) and experi-
mental data (circles) from Ref. 2 are shown for comparison.

transition-metal alloys such as amorphous MoRe. With
this parametrization we find that the' curve labeled 3 cor-
responds to a sample with H, 2(0) = 185 kG and
DH ——0.38 cm sec ' at H=O which appears appropriate
for MoRe. The data for MoRe of Ref. 2 are indicated in
Fig. 1 by the open circles, While our calculations are not
sufficiently accurate to be compared quantitatively with
experiment, it is clear from the figure that the theoretical
behavior is in reasonable qualitative accord with the re-
sults of Ref. 2. Furthermore, effects from inhomo-
geneities cannot be entirely ruled out.

Although the T=O and T=T, limits are unaffected,
the intermediate-temperature dependence of H, 2(T) de-
pends on the inelastic mean free path l; which enters the
definition of L, (H) in Eq. (4.9). We chose

l; =5X 10 l, /(T/T, ) so that the intermediate points in
curve A were reasonably close to the MoRe data of Ref. 2.
From numerical studies we have concluded that the mag-
nitude of the inelastic mean free path relative to the other
length scales l„ lt„and L, (H) determines the extent of
the upward curvature in the H, 2 curve. The smaller the
ratio of l;/l, the more pronounced the upward curvature.
This upward curvature is most apparent in curve E of
Fig. 1. Some evidence for this anomalous curvature has
been reported in Mo7qSi25.

We have found that a nonzero (l;) ' weakens localiza-
tion and thus reduces the enhancing effect of the applied
magnetic field on the final H, 2(T) curve. If l; is compar-
able to l~ this reduction in the enhancement will be most
noticeable. However as the temperature drops, inelastic
scattering freezes out since l; grows to infinity. Because
l; is then an irrelevant length scale at very low tempera-
tures the magnetic field regains the full effect of weaking
localization.

An important feature of the experimental results as well
as of our theory (see Sec. IV. B) is that the H, q curve fol-
lows the WHH result in a region around T, . The experi-
mental verification of this predicted behavior serves to
reinforce our ansatz that relates L, (H) to the magne-
toresistance.

For completeness it should be noted that there are high-
ly disordered Zr-based alloys ' with resistivities of the or-
der 170 to 190 pAcm which show no evidence for an
enhancement of the upper critical field. The Zr-based
amorphous alloys have positive magnetoresistances.
Spin-orbit effects are important in these systems. These
and the presence of magnetic elements, such as Ni and
Co, in these compounds may diminish the effect of locali-
zation. One cannot claim that the experimental results of
Hake and collaborators on ZrNi, ZrCo, etc., are neces-
sarily inconsistent with the predictions of the present
theory. Further experiments which conclusively deter-
mine the extent to which localization plays a role in these
Zr-based alloys are clearly needed.
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