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Radiation from fast charged particles in crystals: Unified quantal treatment
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We present a unified quantal treatment of the various types of radiation emitted by fast, charged,
spin- z or spinless particles which propagate at small angles relative to a set of principal atomic
planes or rows in a crystal. [Henceforth, direction(s) parallel or perpendicular ta these rows (planes)
will be referred to as longitudinal or transverse, respectively. ] We analyze the dependence of the
emission frequencies and rates on the energy and transverse momentum of the incident particle, dis-
tinguishing between two fundamental emission modes. One is the transverse mode (TM), which uni-
fies all radiative transitions that are characterized only by the projected potential (i.e., the periodic
transverse variation of the crystal potential), such as channeling, quasichanneling, and TM coherent
bremsstrahlung transitions. The other one is the longitudinal mode (LM), which includes all transi-
tions involving longitudinal momentum transfer to the lattice, with or without a simultaneous pro-
jected potential transition. Our treatment reduces the input needed for a comprehensive analysis of
both TM and LM emission spectra to the set of Bloch eigenfunctions and quasimomenta of the par-
ticle which are obtained on considering its interaction with the projected potential only. The result-
ing expressions for LM emission rates as a function of the frequency and direction of emission give
a considerably more complete and quantitatively correct characterization of this emission mode than
previous attempts. Contrary to previous works, we analyze explicitly the effects of quantum recoil
r~, which is the ratio of the photon energy to the incident particle energy. The case of r~ —1 [which
is applicable to LM emission from electrons and positrons (P particles) with energies as low as few
tens of MeV and to TM coherent bremsstrahlung from P particles with energies in the CieV range] is
shown to correspond to frequencies, linewidths, and directional distribution of the emission that
differ strongly from those obtained in the more familiar limit of rq=o. Quantum-recoil corrections
to emission frequencies given by extant theories are shown to be significant even for rq considerably
smaller than 1.

I. INTRODUCTION

The radiation generated by electrons and positrons with
kinetic energies ranging from about 50 keV up to a few
GeV (hereafter referred to as fast 13 particles) as they
propagate through crystals has been extensively investi-
gated in recent years. ' Most of the experimental and
theoretical work in this field has dealt with radiation from
relativistic particles injected into crystals at small angles
(up to a few degrees) with respect to a set of principal
atomic planes or rows (low-index symmetry planes or
axes). The spectrum of this radiation consists of a series
of peaks at x-ray or y-ray wavelengths superimposed on a
broad background. '

The "traditional" approach to the analysis of the spec-
trum of this radiation is based on the assumption that the
propagation of the emitting particle is virtually unaffected
by the variation of the potential parallel to the atomic
planes (rows). Consequently, the effective potential
governing the emission of this radiation is assumed to be
the projected potential obtainable on averaging the
crystal potential over the coordinates of these planes
(rows). The projected potential, which varies periodically
in the directions(s) transverse to the planes (rows), defines
the spectrum of transverse-energy states (or, classically,
the transverse trajectories) available to the particle. The
radiation spectrum is analyzed quantum mechanically by

considering separately the types of radiation described in
Table I, each resulting from transitions between
transverse-energy states of a particular dynamical regime
of the particle.

A number of works have drawn attention to phenomena
that are not taken into account by the prevailing models
mentioned in Table I.

(1) The assumption that the projected potential governs
the emission of radiation has been shown to ignore non-
negligible emission at wavelengths determined by the
longitudinal periodicity of the potential, i.e., its periodici-
ty in the planes (rows) along which the particles propa-
gate. This type of emission, hereafter referred to as
longitudinal-mode (LM) emission, has been predicted by
several authors to exist in various dynamical regimes
of P particles and has been recently detected by Spence
and co-workers, using electrons with kinetic energies of
40—120 keV. ' A general quantal procedure for the
evaluation of LM emission intensity has been formulated
by us. ' However, as yet the spectrum of this radiation
has not been well understood theoretically, as will be
shown here.

(2) Adishchev et al. have shown experimentally, using
highly relativistic electrons, that the spectrum of quasi-
charineling radiation (QCR) and coherent bremsstrahlung
(CB) as a function of the angle of incidence of the particle
with respect to a principal atomic row cannot be ade-
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quately described by existing analytical models. This has
led them to conclude, similarly to other authors'"' who
have noted the difficulties in interpreting certain spectral
features (cf. Table I), that a new, unified theoretical ap-
proach to the various types of emission is needed.

We present here a unified quantal treatment of all the
aforementioned types of radiation, which is based on their
common underlying mechanisms: (1) transitions between
bands of transverse energy belonging to any dynamical re-
gime of the particle and (2) momentum transfer to the
crystal given by fiK, where K is a reciprocal lattice vector
(RLV) having a component in the direction(s) of the
nearly-free-longitudinal propagation of the particle, which
is induced by the periodicity of the crystal potential in the
longitudinal direction(s). The first mechanism alone gives
rise to what will be termed transverse-mode (TM) emis-
sion, whereas the combination of both mechanisms pro-
duces what will be termed LM emission.

The present treatment is aimed at providing a prescrip-
tion for a comprehensive, detailed, and systematic map-
ping of the TM as well as of the LM emission spectra, as
a function of the particle energy, direction of incidence,
and direction of emission. The required input is the
transverse-energy spectrum and the set of the projected-
potential Bloch eigenfunctions. In subsequent parts of
this series, the present treatment will be applied to several
dynamical regimes of the particle, for which this input is
given analytically in a recent paper by Kurizki. The use
of this input entails the prediction of new spectral
features, notably features demonstrating the close connec-
tion of CB with QCR in transitions between unbound
transverse-energy states.

The predictions of the present treatment that are ap-
parent, even without considering specific particle regimes,
extend those of previous works mainly with regard to the
following issues.

(a) Our expressions for emission frequencies and rates
apply to all photon energies of interest, including energies
comparable to the initial particle energy, i.e., the large-
quantum-recoil limit, which has been insufficiently ex-
plored hitherto. This is especially important for the char-
acterization of the energetic LM emission spectrum
where the large quantum-recoil limit applies to emitting f3

particles with energies exceeding a few tens of MeV,
which are commonly utilized experimentally [the large-
quantum-recoil limit is presently achievable also for TM
CB and channeling radiation (CR)—cf. Sec. III]. In the
small-quantum-recoil limit, too, our expressions for the
emission frequencies yield features that have not been ac-
counted for thus far.

(b) Our expressions for LM emission rates employ
Bloch eigenfunctions that characterize a particle diffract-
ed in the full three-dimensionally periodic potential.
These eigenfunctions are calculated iteratively, starting
from the projected-potential eigenfunctions, using a gen-
eral procedure proposed in Ref. 39. We show here that
this procedure, when carried out to second iteration, gives
a more comprehensive and accurate characterization of
LM emission than previous treatments of longitudinal po-
tential periodicity effects.

Section II of this paper is devoted to the derivation of

the general formula for the single-photon emission rate
from a fast Dirac particle in a three-dimensronally period-
ic potential, taking account of quantum recoil and the
emission linewidth (caused either by the inelastic scatter-
ing of the particle or the finite crystal thickness). In Sec.
III we obtain and investighte two unified formulas for the
emission frequencies —one is suitable for negligible quan-
tum recoil and takes into account the refractivity of the
crystal medium, the other is appropriate for a sizeable
quantum recoil. In Sec. IV we obtain detailed expressions
for TM and LM emission rates as a function of the emis-
sion frequency and direction. Section V summarizes those
features of the radiation which emerge from the present
analysis.

II. PRINCIPLES OF EMISSION-RATE
CALCULATIONS

We consider the emission of a single photon by a fast-
charged particle in a crystal. This process constitutes the
main contribution to the small overall probability of pho-
ton emission at a given frequency by a negative particle,
with any energy between a few tens of keV and a few
GeV, traversing a crystal whose thickness is up to a few
tens of microns. ' The time-independent matrix element
for this process, in a first-order quantum-electrodynamics
(QED) perturbation treatment ' is proportional to

e j; r a*rdr,

where the integral extends over the crystal volume. e is
the particle charge, j;f(r) is the current for the transition
between the initial and final particle eigenstates i,f, and
a*(r) is the part of the photon wave function associated
with the photon creation operator.

The form of a*(r) in a crystal should, in principle, take
account of the finite crystal slab thickness, spatial disper-
sion due to crystal refractivity, and diffraction and ab-
sorption, ' ' and thus differ from a plane wave. We shall
restrict ourselves to isotropic crystals, where the velocity
of light c~ is independent of the direction of emission or
the polarization. In such crystals, the deviations of the
photon wave function from a plane wave will be shown
subsequently to have very little bearing upon the radiative
features in the important spectral regions, namely, x rays
and y rays. Accordingly, we shall assume that

a*(r) ~e '~'e',

q being the photon wave vector and e the polarization
unit vector.

As a first step in our unified treatment, we can now
write the following general expression for the emission
rate dW'(q) summed over photon polarization directions,
which is valid for all the types of radiative transitions
considered in Sec. I. This expression is derived using
basic QED formulas [Eqs. (19-1), (19-2), and (D-1) in Ref.
42, and Eq. (45.4) in Ref. 41]:
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=p, e (cq/c)q g gI';I'j
I qxj;i(q) I

where, for spin- —,
' particles (I3 particles, protons, muons),

0 o
j;r(q) = f dr e 'q' 4j (r) @j(r)

Ef +mc c (cT'p)

Ei +Pllc

(2)

Here, 0 and o. denote the 2&2 zero matrix and the three
2X2 Pauli matrices, respectively, @;(r) and 4j(r) are the
initial and final eigenstate spinors, E; and Ef are the ini-
tial and final particle energies, and p is the momentum
operator. In Eq. (1), dQ- is the solid angle element in the

q
direction of emission specified by unit vector q p, is the
density of the particle beam, V,~, is the crystal volume,
P; are the probabilities to populate initial Bloch eigen-
states i by the incident particle, taken to be a plane wave
with momentum Ako; and energy E;. The probabilities Pf
to obtain particle plane waves leaving the crystal with mo-
menta Rkof and energy

I —Pq

1 —&OI q 1 —Po'q

where

(6)

r & 1 —1/y.

130;
——tick(); /E; .

A factor similar to Eq. (6) has not been included in previ-
ous attempts to treat CR in the limit of significant rq
values. For rq «1, we recover the standard expression
for the emission rate. ' ' ' The standard expression be-
comes totally inappropriate for

Ej [(AckQf)——+m c ]'~ =E; A'cqq— (3)
where

are determined by matching them on the exit face of the
crystal with final Bloch eigenstates which contribute to
the emission of the photon with wave vector q. For each
koj, the factor (1 —Poj q) ', where

Poj ——(rickoj /Ej
arises from the final density-of-states factor as given by
Feynman [Eq. (D-1) in Ref. 42]. The discrete summation
over the possible outgoing particle momenta in Eq. (1) and
the applicability of Feynman's formula result from the
discrete nature of momentum exchange of the particle
with the crystal, and are contingent on the assumption
that momentum is conserved in the emission act (devia-
tions from momentum conservation will be discussed
later).

The factor (1—Poj q) ' can be recast in an approxi-
mate form, which accounts explicitly for the dependence
of the emission rate on the quantum recoil

rq ficqq/E; r——
and is valid for rq sufficiently below 1, so that the outgo-
ing particle is still fast (i.e., Poj is compai. able to 1):

y, =Z;/mc

i.e., for photons carrying away most of the particle ener-

gy, since Eq. (6) then implies that a strong quenching of
the emission rate takes place. The behavior very close to
rq ——1 —1/y; ()330f—0) will not be discussed here. It is
describable as an inverse photoelectron effect, because in
this case the particle, having lost almost all its kinetic en-
ergy to the photon, may become trapped in the crystal po-
tential.

Our investigation will henceforth focus on the evalua-
tion of

I~;t(q) I'—=
I qxj((q) I'

to which the emission rate for a given q is proportional.
Here, the overbar denotes averaging over initial spin po-
larizations and summation over final spin polarizations.
Employing the factorization of @(r) in Eq. (2) into a con-
stant spinor X and a Klein-Gordon eigenfunction f(r) of
the particle in the crystal potential, which is valid because
of the negligibility of spin-orbit coupling for fast-charged
particles in crystals, ' we obtain, after some manipula-
tions

Im, r(q) I'=
2 2

I'q

gf 2+(1+1/y; )'

2 .

2

M;t(q)+ (o x M;t(q) x;2 —7"q

(1+1/y;)' 2+
2—l' I

M;r I

—g cos Oj cos Oj'(M;r)j(Mr) j"
2

+ q, 2IM, , I' gIM„I,' g cos'(9, '+ g (M;i);
(2—rq) j J (+j) (j~j')

J~J

(10)
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Here,
1/21+1/y;

2

They have the Bloch form and are normalized to 1 in the
entire crystal. The quasimomentum AkI" j is determined
by the continuity requirement at the surface z = —I, /2 to
have the form

1+1/[y;(1 —rq )]
2

[these expressions for M;, M/ are obtained neglecting
V(r)/E;, V(r)/E/, where V(r) is the crystal potential],

~1 (")=@k,.&+k„y+k,(")z) . (18)

Because the longitudinal propagation of the particle is
nearly free, the set of quantum numbers In} labels the
eigenvalues of transverse energy eI") in the projected po-
tential'4 "

M;r(q)= J dre 'q'lt/(r) l/t;(r),
PIC P;

q= g cos6J j .

(12)

(13)

U(r, )=QU, e'"",
Ej

which are given by (cf. Ref. 39)

eI")=k,', +Sej"),

(19)

The part of
I
~;r(q)

I

that is proportional to
[2+ r /( 2 r)] . a—rises from the spin-invariant (SI) term
[X/M;r(q)X;], which requires X/ =P; and is the same for
spin- —, and spinless particles (e.g., charged pions). We can
rewrite it as follows:

2 2
I"q

I~r(q)
I
st= 2+

(1+1/y;)'

2

X[1—(q M;r) ], (14)

M;r being a unit vector along M;r. The part of ~;r(q) I

proportional to rg /(2 r~ ) results —from spin-photon cou-
ple. ng. It can be seen that in the large-quantum-recoil lim-
it, this part alters the dependence of the emission rate on

q compared with that given by Eq. (14). This effect, as
well as the comparison of Eq. (10) with currently used for-
mulas' will be further discussed in Sec. IV.

In discussing the character of the eigenfunctions f;(r),
lt/(r), which determine M;r(q), we shall distinguish be-
tween two generic geometries. Assuming that the surfaces
z =+I./2 of the crystal slab are perpendicular to a RLV
set g, z and parallel to a RLV set G=g~x+g~y, these
geometries are

rj =(x,y), koine
=ko, » I koj I

=
I
ko„x+ko y I

(15a)

i.e., propagation nearly along the crystal axis z, hereafter
referred to as the cross-grating geometry (CGG) (Ref. 34)
and

[ko —U(r)+ V' ]1/„(„)(r)=0,
where

(16)

'y(1 —1/y')'", U(.)= y V(.).0—

I&oii I

=—Iko z+koyy
I
» Ikon I

=—Iko
I

(15b)

i.e., propagation nearly along the crystal plane y -z, hereaf-
ter referred to as the systematic reflections geometry
(SRG).""

We neglect surface effects and ignore for the moment
inelastic scattering by crystalline degrees of freedom. The
Klein-Gordon eigenfunctions then satisfy, to first order in
V(r)/E (cf. Refs. 39 and 47—49),

fn) k2 (k(n) )2 k2 (k [n) )2
(20)

nk(i)( k (" I +,g ) r

crys g

the Fourier coefficients czI"'"~ being normalized by

y Ie("") I'=1.

(21)

(22)

On substituting Eq. (21) into Eq. (12), while still ignoring
inelastic scattering and the finiteness of the crystal slab,
we obtain

In the CGG these In } specify a two-dimensional band
structure, whereas in the SRG a single n labels each

d 35, 47 —49

The Bloch eigenfunctions (Bloch waves) of Eq. (16),
with U(r) replaced by the reduced projected potential
U(ri), are successfully used to analyze the observed dif-
fraction patterns of transversely bound (channeled) as well
as unbound /3 particles with energies between a few tens of
keV and a few MeV, in the SRG and the CGG.
These Bloch waves are also extensively used to evaluate
the spectral distribution of CR (only numerically, in quan-
titative treatments ' ) emitted by /3 particles with ener-

-. gies up to a few tens of MeV. When studying CR from /3

particles with higher energies, the bound Bloch waves are
replaced by single-channel (isolated-well) eigenfunc-
tions. ' "' ' For CB analysis, the form of quasifree
Bloch waves that is commonly used ' yields results
equivalent to the Born approximation' ' ' (see the criti-
cism in Sec. I).

Our approach is to retain the full three-dimensionally
periodic U(r) when calculating the Bloch eigenfunctions
of Eq. (16), since only these eigenfunctions can accurately
yield the M;r(q) for all types of radiation and allow their
unified description. The limitations of prevailing models
for each type of radiation (e.g. , the models for CR and CB
mentioned above) can be clearly inferred from such a
description (cf. Refs. 39 and 32). To show explicitly the
consequences of retaining the full U(r) in Eq. (16), we
Fourier decompose P„(„)(r) in terms of all RLV's g, in-

cluding RLV's with longitudinal components (gii&0):
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where

I, ,k,. I I n~, kI I

+QPs&s ' '
(&s+~ )*

I n,. j ( n~ I
X&(k; ' —k/ —K—q),

p

l~'f ('q)
I

—I~if (q) I Sf tio
(bK, )'+(bK, }'

where

For crystals with l. »1/p ' ' [which typically implies
In, k

L of at least a few microns (Ref. 56)], the decay factors
e

' ' of the Bloch waves in M;((q) cause the 5-
function limit of

l
M;r(q) l, and thus of

l
~;t(q), to be

re laced b a Lorentzian profile:

I n,. j
Qg (n I 11k'

Ps=
m&yr

(24)

In;, k, ~ I f n~, k~~ Iz=P +P (27)

and b,l(., is the deviation from momentum conservation in
the z direction:

X-X Xf In~) K
(25)

where [n/I, K extend over all values contributing to the
emission of a photon with wave vector q. In what fol-
lows, we shall consider crystals where this ideal 5-function
limit is to be replaced by a narrow line shape that does not
lead to a, significant overlap between matrix elements pro-
ducing q via different transitions, so that cross terms of
the form Mr '(q) M;*(' '(q) (where either K&K' or the
labels of the eigenstates i,f differ from those of i ',f') can
be disregarded when evaluating the emission rate. Then
the line shape can be accounted for by multiplying

(q) l
[cf. Eqs. (10) or (14)] obtained in the 5-

function limit by the line-shape factor squared.
It can be easily shown that the accepted treatment of

inelastic scattering in high-energy electron diffraction
(HEED) (in addition to the inclusion of thermal effects in
the Debye-Wailer factor ) by means of an optical poten-
tial U (r) ' entails the introduction of exponential de-
cay into the Bloch wave

kfnl kIn) + . In, k~f

Inkwhere the decay (absorption) coefficient )M
' is given, on

a first-order perturbative treatment of U (r), by
I

U r
)M

' =—I l gz(„)(r) l
dr .

2ko,

and PI is defined analogously. Here, K is a RLV
In

which determines the momentum A'K transferred to the
lattice in the emission act.

The distinction between the properties of the two fun-
damental emission modes, i.e., TM (associated with

K~~ ——0) and LM (associated with K~~&0) will be analyzed
in Secs. III and IV. Anticipating the results of this
analysis we note that the longitudinal Fourier coefficients,
i.e., those with (g+K)~~&0, which are responsible for LM
emission, are induced by the longitudinally varying part
of the potential U(r) —U(r) ); hence the importance of
keeping this part of the potential in a comprehensive
theory of the radiation. 5

The conservation of momentum implied by the 5 func-
tion in Eq. (23), together with energy conservation [Eq.
(3)], determine the allowed emission frequencies at a given

q (these will be analyzed in Sec. III). It also allows us to
make the following substitutions in Eq. (1):

(28)

K, and q, being the 5-function limit values. As noted by
Andersen et al. , in order to obtain the correct Lorentzi-
an linewidth bK„one should exclude from U (r) the con-
tributions of inelastic scatterers that cause small changes
in kInI, because these cannot produce sizeable deviations
from q. This can be achieved by taking account only of
scattering by (a) valence and atomic core electrons, using
the tight-binding model, and (b) phonons with wave vec-
tors outside the first Brillouin zone. We propose the use
of this procedure for the computation of spectral
linewidths, rather than the more accurate procedure
developed by Andersen et al. , because the former applies
to both LM and TM transitions and to all radiative re-
gimes [CR, QCR, TM CB, and pendulum radiation
(PR)], whereas the latter applies in its present form to CR
only.

The main shortcoming of the proposed phenomenologi-
cal procedure is that it can yield only the radiation inten-
sities within the spectral peaks (i.e., near the "5-function
limit" lines). Since this procedure yields only the total in-
tensity of the inelastically-scattered particle wave field
(the "absorbed" part of the Bloch waves) and not its
energy-momentum distribution, it cannot describe the
spectrum of the emission resulting from radiative transi-
tions of this wave field. This emission gives rise to the
spectral background between peaks and is commonly
termed incoherent bremsstrahlung. ' ' ' '

Inelastic scattering of the emitted photon, which has
been considered in the literature, ' ' will be neglected.
This is allowed since the mean absorption length of the
radiation at x-ray and y-ray frequencies, which are our
main concern, is 10 to 10 times larger than (p("'"})
(Ref. 15).

In crystals with large lateral extent whose thickness is
smaller than (p("'"}) ' (typically l. (1 tu, m), the conserva-
tion of momentum is violated in the z direction, predom-
inantly by the finiteness of I. The z component of the 5
function in Eq. (23) is then replaced by
sin(b, K, L 2/) (b/, K, I./2), and

r '2
(~) (~) 2 sin(b, K, l. /2)l~t (q) I'= l~r (q) lsf tio AE, I.f'2

(29)

where b,X, and q have the same meaning as in Eq. (28).
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III. EMISSION FREQUENCIES

A. A unified frequency formula

(30)

The combination of energy- and momentum-conservation conditions for absorption-free, infinite crystals [Eqs. (3) and
(23)], taken together with Eqs. (18) and (20), yield

2 2f [(k( i' il) k( f' fJ )
) (k( i' ij. ) k( f' fl) ( i il')(E

)
( f' f j)(E )]

(31)

0;r = pl))
— cK))+ [El () l ) —El (1 f )](K) Ii (i) (f)

2 2m/

(32a)

and

It is advantageous to rewrite Eq. (30) as follows

2
) xc)co=cqg = Air +Pi)) 'cq))—

1 rq /2 — 2my;

Here we have introduced the following abbreviations:

In, ,k,.~ I
P')) and PK)) being defined as in Eq. (24) (in what fol-

lows, P;)) will be shown to determine the Doppler upshift
factor for LM emission, whereas a previous attempt has
used Poi. ))

instead).
Equation (31) is still implicit, so far as the dependence

of co on K and the eigenstate parameters is concerned. Its
merit is that it provides a framework for the analysis of
all possible co in both the CGG and the SRG, i.e., it is
valid for all types of radiation, any value of rq, and of the
refraction index nq ——c/cq. It combines the two basic
mechanisms of radiative transitions, namely, longitudinal
momentum transfer to the lattice (the first term in 0 r ')

Ie, , k,. I (Ki()

(i) i' iL (f) f' fl
(32b)

and transverse-energy change (the second term in II'.z+').
It should be noted that momentum transfer to the lattice
in all three dimensions affects 0,'r ', as K accounts for
most (but not all) of the transverse-energy change causing
TM CB and QCR, as will be shown in subsequent parts of
this series.

The longitudinal momentum-transfer term in Q', r
' is of

the order of 10 keV/A' for all fast P-particle energies. The
transverse-energy-change term ranges from 10 eV/A to a
few keV/A for nonrelativistic /3 particles in all dynamical
regimes in the SRG or the CGG. For CR it decreases
with y;.' ' ' The same ratio between these two terms
holds for heavier fast particles. Hence, LM frequencies
are expected to be much higher than TM frequencies for
the same q and y; (Fig. 1).

In what follows, we shall first solve for co, taking ac-
count of crystal refractivity while ignoring rq, then we
shall obtain a solution for co considering the effects of rq
while keeping nq ——1. As will be shown, the domains of
validity of each of these solutions can be easily deter-
mined in every regime

B. Refractivity effects

FIG. 1. Modes of radiative transitions of a fast charged par-
ticle in a crystal. Solid arrows indicate photons emitted in
interband-TM-mode transitions (K~

~

——0), wiggly arrow indicates
a photon emitted in a combined interband-LM-mode transition
(K()&0).

In the optical range, we concentrate on emission fre-
quencies satisfying co «co~, co~ being the plasma frequen-
cy of the medium (typically, fez-10—20 eV). Then, re-
placing nq by a constant n & 1 for transparent media and
setting rq —0, we obtain from Eq. (31)

~(K)
CO (33)

1 —n P;)).q))

LM emission from fast-charged particles can occur at op-
tical frequencies only for particles heavier than the elec-
tron, e.g., muons, pions, and protons at nonrelativistic
energies, i.e., /3;)) « 1. Such small P;)) are usually
incompatible with the Cerenkov condition

1=n(P;)) —P~, ) q)),
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pK ~
being much smaller than p;~~ for any LM transi-

tion having a non-negligible probability (cf. Sec. IV).
Therefore, in the optical range, practically only TM emis-
sion can satisfy the Cerenkov condition and give rise to
the anomalous Doppler effect, i.e., to emission resulting
from transitions where e)' & eP. '

In the high-frequency ranges, where co is much larger
than co~ (far uv, x rays, and y rays), we shall use

nq n——„=1 —cop /2' (34)

II(K)+[(II(K))2 2 2(1 P [[ .~ )P (f .~ ])/2if — if p i II

' q II i II

' q
( K

I I

)

(35)

and ignore spatial dispersion corrections to n arising
from the interaction of the emitted radiation with the
periodic crystal potential. ' ' Such complications of
the treatment are unwarranted because the effect of spa-
tial dispersion is to allow emission at the same frequencies
as those of LM emission due to the longitudinal modula-
tion of 1(|z(„)(r)by the crystal potential, but with a proba-

bility smaller by several orders of magnitude than that of
the latter process (cf. Sec. IV).

On substituting Eq. (34) into Eq. (31), still assuming
rq=0, we obtain the following formula for high frequen-
cies in polarized media:

The branch u is limited in LM emission to
(co~/2cK)), i.e., it lies in the infrared and therefore its
propagation through the crystal cannot be described by
Eq. (34). Its only effect is to shift slightly downwards the
LM co+ (with respect to the values obtained for nq ——1).
In contrast, the co branch can be shown from Eq. (38) to
grow with y; for certain TM transitions, e.g. , CR (this
follows from the form of 0;r in this case ' ). It can then
coexist with the co+ branch at relativistic particle energies,
as well as shift the co+ values considerably downwards rel-
ative to their values at nq

——1.

C. Quantum-recoil effects

The effects of quantum recoil rq on the emission fre-
quencies have not been described explicitly hitherto. A
formula containing rq implicitly has been given for CR.

Solving Eq. (31), on taking account of rq while assum-
ing cq=c, we obtain

-(KII)
( 1 —P,.(( q((

—d )
CO=

q~
1/2

(39)

Here,

This equation implies that two emission frequencies may
coexist for the same transition and emission angle. It gen-
eralizes the equation obtained previously for CR in the
spectral region described by Eq. (34), in that it allows for
other types of radiation, including LM emission.

The requirement

qz
——sin 0

in the CGG,

q)
——sin Osin P

in the SRG, the polar axis being directed along z.
The term

(40a)

l

(40b)

Q(K) & ~2~ [( 1 P II q )P II'

q ])l 2 (36) I~l (Yi) ~J. (3 f)1(f) (f)
2m@; co

(41)

which must be satisfied in order that the roots of Eq. (35)
be real, is always obeyed by LM emission from fast P par-
ticles. In TM emission, forbidden emission angles or for-
bidden transitions (at a given emission angle) arise when
Eq. (36) is violated. The right-hand side of Eq. (36) at-
tains a maximum value of co~/v 2 when P;~~ q~~

———,', there-
by determining the most probable emission angle to be
forbidden for certain TM transitions. In contrast, within
the relativistic forward cone

~ q) ~
(1/y; (discussed in

Sec. IV), the right-hand side of Eq. (36) is -co&/y; and,
consequently, forbidden TM transitions are much less
likely.

In the common case where II;'r '&&co&/y; (which in-
cludes all LM transitions of relativistic particles), Eq. (35)
can be written approximately, for emission within the rel-
ativistic cone, as

d~=O . (42a)

(2) If jn~} per'tains to a band in the bound transverse-
energy region, then

+ [b e)/'( y; ) —b e)/'( y;( I —rq ))] ,
&s 2' y

(42b)

is a correction to A'0,'r '(y;)/E;, due to the recoil. We can
obtain d for several types of radiative transitions, by us-
ing the appropriate forms of e) (cf. Ref. 39 and Refs. 34
and 35), then employ it in deriving explicit solutions of
Eq. (39) for the following transitions.

(1) If [n~} pertains to a band lying high above the pro-
jected potential maxima, then

~(K)
if

+ —(KII)

where

co ~co& /20;r

(37)

(38)

where VBH is the barrier height of the projected potential
(i.e., the difference between its maximum and minimum)
and b,e j/' measures eP from the projected potential
minimum. For CR transitions that involve tn/} pertain-
ing to bands close to the projected potential minimum, the
second term in Eq. (42b) is much smaller than the first
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one. Hence, we may solve Eq. (39) iteratively in this case,
using d„=—VaH/E; in the first iteration. We then sub-
stitute the resulting co and rz into Eq. (42b) to obtain d,
which is then used to obtain the second-iteration solution
for co.

(3) For all LM transitions
~
d„~ &&Nl,'r '/Et —P» .

ll

Hence, a similar iterative solution of Eq. (39) may be ob-
tained in this case, using d„=0 in the first iteration.

An algebraic investigation of Eq. (39) has shown that
the upper-branch frequencies always exceed E; /A'. Hence,
they correspond to transitions from positive- to negative-
particle energies, i.e., transitions involving both particles
and antiparticles. ' This process is different from the
one considered here, namely, photon emission by a single
particle. Therefore, we shall identify co in what follows
with the lower branch of Eq. (39). We have verified that
these frequencies are always real and for Q,'r ' & 0, they are
always positive. In what follows we summarize the
behavior of co, as obtained from Eq. (39) in the first itera-
tion for several representative cases in the CGG.

1 1 1

2d„' 2[ d f'y,'

g2
+O(8") 1+

3
(45a)

The leading term here is

Q,,/ ~
d„~ -(E, /&)(m, ,/V, „)«E, /m,

'I

hence, no forbidden angles arise in this case. The corre-
sponding form of co at 1 »8 &

~

d
~

is

2Q;t(y;) 4
i d„,

i
4d

co~ 1—
g2 g2 g4

CR emission is allowed everywhere in the above range
(which implies

~

d
~

&& I/y;). At angles satisfying
~
d„~ )8, we obtain

, , + , +1 1 1 1

1. The range 2y;AQ, 'f '& E;

LM emission in this range is allowed only if X 1+
2(d [ 1 8&

g2 2g2

0 01+ + . (45b)

(2P )1/2

2y,' ' 16P' 'y,'
TM CB emission frequencies in the above range as-

sume the form

otherwise the requirement fed & E; —mc is violated. For
2y;p» »1, this condition amounts to the entire relativis-

tic forward cone (
~

8
~

& I/y; ) being forbidden. At angles
satisfying p» )8 &8;„, the frequency in this case is

found to be

r 2
kfq +O(8')
k;q

(46)

2. The range 2y;AQ, '-f '&&E;

and therefore are forbidden at small angles if
(kfi/k;i) ) 1 —1/y;.

E. g2
1+ , 1—

2y';p» 2P»

4
+O(8 /P» ) (44a)

In this range (more precisely, for y;AQt '&E;/8) we
may expand the square root in Eq. (39) (in powers of the
second term therein) thus obtaining (for the lower branch
of co)

whereas at larger angles, satisfying 1»8 )2p», co as-

sumes the form

2Q';f '(y;) 1, 2P»,

Q(K)( )

-(Kll)
1 —p f( ql( d

+O((AQ,'r '/E;) ) .

1— RQ r '(y;)qg
—(Kll)2E;(1—P;(( q((

—d„)

(47)

+O((P» /8 ) ) (44b)

Here, the leading term contains the effects of quantum
recoil only in d . The second term in the large
parentheses is a correction entirely due to quantum-recoil
effects. In the CGG, for 1 »8, 'the Doppler upshift fac-
tor in Eq. (47) assumes the following form:

1+2yP» 1 — + +y8 1—
g2 (i)

mc(1 —1/ )

To illustrate the behavior of e at 1))8 ln this range, we write the following results obtained from Eqs. (47) and (48).
For LM emission we find
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2y'n'"](y ) 4y'Px ~'

1+2y'Prc +y'~' 1+y'~' (49a)

and for CR we find

2y; 0;r(y; )

' 1+2y;VBH/rnc +y;8
fiQ;r(y; )

1 —4y.
I92

1+2y; Vr]H/mc +y;8
(49b)

Thus, in the large-recoil limit (corresponding to
2y; 0;'r ') E;), which has not been well understood hither-
to, the behavior of co (as a function of the emission angle,
y; and 0;f) can differ strongly from that obtained in the
more familiar small-recoil limit (y;Q r

' &&E;). However,
even in the latter limit our treatment yields significant
corrections to cu, as compared to solutions where recoil ef-
fects are disregarded.

In addition to accounting for the effects of rq, one must
include in Q';r '(y;) the effect of the "transverse recoil"
qi. The latter affects kf], as seen from the conservation-
of-momentum relation

kfg ——k;g —Kq —qq . (50)

llf kfg I (f)In turn, kfr affects er
' =ei ' used in 0,'r '(y;). The

transverse-recoil effect manifests the nondipolar nature of
most types of radiative transitions, as will be shown in
subsequent parts of this series. It has been considered be-
fore in the context of CR (Refs. 1—3) and TM CB. '

Here, we note that for LM emission this effect can be tak-
en into account iteratively: ~ is computed in the first
iteration using only the longitudinal part of 0';~ ', then
coq/c is inserted into Eq. (50) to determine kf]. The latter
sei'ves to calculate eIf' [and thus the full QI& '(y;)] to be
used in the second iteration.

D. Spectral linewidth computation

The deviation from momentum conservation in the z
direction, A'b. l]"., [Eq. (28)], which is allowed by inelastic
scattering or finite crystal thickness, simply adds on to the
5-function limit momentum transfer ]]rK, . Consequently,
b,E, causes the following deviation from the value of 0';r '

as given by Eq. (32):
(K )

b, A;g p;, ' c b,K, . (51)

This expression can be converted into a frequency devia-
tion b,co by using Eqs. (35) or (39) and thus allows one to

I

l

calculate the linewidth of any type of radiation for any
amount of quantum recoil. For example, the mean fre-
quency deviation b.m of the Lorentzian profile associated
with inelastic scattering in the case of Eq. (44a) is

p~
Act)

2]]r'y; P]r
(52a)

~|K](y )

-(Kll)

, -(K )
Pip;,

' chK,
qg (52b)

A similar connection between b,co and bJ, holds for the
linewidth profile caused by finite thickness [Eq. (29)].

IV. SPECTRAL LINE INTENSITIES

In this section we outline general procedures, valid for
all dynamical regimes of the particle in the CGG arid the
SRG, that allow the explicit evaluation of the emission
rate as a function of co and q, according to Eqs. (1) and
(10). The analysis in Sec. III has shown that LM transi-
tioris give rise to much higher co than TM transitions, for
given ko; and q. There is therefore a need to evaluate

(K. )
separately the transition matrix elements M]r

' (q) and
(KI I~0)

M;f (q) [Eq. (23)] associated with emission at TM and
LM frequencies, respectively.

The separate evaluation of these two types of transition
matrix elements is based on the possibility of decompos-
ing to a high accuracy (cf Ref. 39) each Bloch wave as
follows:

where b,K, is given by Eq. (27), whereas in the range of
validity of Eq. (47), it has the form

—(K )

p;, ' c~,
(Kll).

In,a~I

g]]„)(r)= ]&2 e w(n)] (rr)+Pe 5w(n z, (rr )
1 ikll «II 'hll «I

I

(hl.

~crys h
(53)

Here,

I n, kj ) i(kl+gJ ).«l
w(„)], (rr)=pc]] e

gj

is the projected potential eigenfunction, satisfying

(54)

In, k~j
[er +Vr —U(rr)]w(„)], (rr)=0,

and being normalized by
I

f «, ~w(. )g(rr)~ ~ ]],

(55)

(56)
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where A„ll is the area of the unit cell in the transverse
directions in the CGG, or the systematic-reflections cell
period in the SRG. The terms in the summation over hll
have the form

ihll rll (hll) ihll rll ~ In, kg I i(k~+g~) r~e 5LU(„k )(rJ)=e ~cg, +h e
gg

(57)

where the summation extends over all gz such that
gz+hlI are RLV's. These terms express the weak longitu-
dinal modulation of the Bloch wave caused by the longitu-
dinally varying part of the potential U(r) —U(rJ). Equa-
tion (23) shows that these terms are associated with LM

I

Here,

(q) T(K)+Q(K)+R(K) (58)

transitions, whereas TM transitions involve the w~„k I

only.
The procedure outlined in Ref. 39 allows us to evaluate

the 5wI„k I
from the projected potential eigenfunctionsII

In, k~jand eigenvalues w I„k I' and e&
' . Using this procedure,

we have obtained, as a result of a lengthy analysis summa-
rized in the Appendix, the following approximate form of
the LM transition matrix element:

(K)Tif
iA 1 —iq&.r&

drze wf Vq6w;
mCy. Q ll

cell

—+K
II I dr)e ' '[VJp k„(r) )]wf*;+o( K ( L(t' K„(rJ.)) ~

/I 1';),
mC p A 11

cell (59)

(K) 1 iq~ r~ ~
—(Kl

I

)

Q;f = —pK drLe wf 5w;
II g 11

cell

I

——gK pK dr)e ' '))) K (rJ)wf*w;+O(Xx pK ),
II II II I I

(60)

and

cell

(5e,"+6e(f))+pxlk —p;J (K.)+q&) wf w;
2mcp;

+i PKL—
u

2mcp.
+ 2 pf J wf VJ w; wf VJ wi

+ipK (V J LUf )W( + (VJ LUf ) (VJ Wi )
2plcp.

+Pi~[ g X
~~+g~~Xg~~ ~ j )) J. Ng~~ 0—g +K ) J- f

g (~0) cell
II

(61)

Here and hereafter we use the abbreviations

and

Wi =W(n;, k;L) ~ Wf =w(nf, kfL) ~ pi(( pi((/pi(( ~

r

gg

=g(V /V )e
gg

(62)

(63)

(64)

where g~ denotes the shortest nonzero RLV and gggll
serves as the perturbative expansion parameter in the cal-
culation of 6W (nI, )

from w(„k )
(cf. the Appendix). For

fast p particles, Xg can typically lie in the range between
gll

10 and 10 . For protons with kinetic energies up to a

few MeV, gg can exceed 1, in which case longitudinal
modulation effects cannot be analyzed by our method
(which is contingent on the assumption

~ gg && 1).
As shown in the Appendix, R,'f ' arises from terms in

6w that are of order XK,Xg Xg +K, whereas the com-
II' ll I

I+
ponents T,'f ' and Q', f

' arise from terms that are linear in
However, in R,'f ' these second-order terms in 7K

II

are multiplied by P;~~
—1, while the first-order terms in

in the other components are multiplied by much
smaller factors. Equations (59)—(61) show that R;'r ' is
comparable to the other two components, and for certain
values of the parameters it becomes the largest com-
ponent. The quasiclassical treatment of LM emission
from channeled particles in the CGG by Vedrinskii and
Mal shevskii does not contain a term equivalent to
R~~r, nor can this term be obtained from Buxton's for-
mula for the longitudinal modulation of Bloch waves (this
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iA
X — 't)'i +p;)) w;(r) ) . (65)

mey;

Using an identity noted by Bird and Buxton, Eq. (65) can
be rewritten as follows:

(K~)
ipi~~

Mjr
' (q) = (Mjr '

)i +
f1(Ei —E)+q ) ) /2 m

'cy;
Inspection of the above expressions for LM and TM

transition matrix elements reveals the absence of generally
valid selection rules on the values of [n; j —[nf j. In TM
emission, dipole selection rules are relaxed by nondipolar

(66)

formula is accurate to first order in gK ). The use of
these treatments therefore significantly underestimates the
LM emission rate, especially in cases (discussed below)
where the contribution of Rr ' to

I ~;f(q)
I

is the lead-
ing one.

The TM transition matrix element, which is obtained
from Eq. (23) on using Eqs. (50), (53) and (54) and disre-
garding the small 6w contributions, has a much simpler
form than its LM counterpart:

(Ki ) —iq&. r&
M;r (q) = drie ' 'wf*(r) )~ cell cell

effects incurred by q) and by the fact that w; (or wf) has
no strict parity with respect to ri unless k;i (or kf)) is a
half integer times g~ (i.e., Bragg incidence or. exit ' ).
In LM emission, the nondipolar character is stronger than
in TM emission, since

I q) I
in the former is much larger

than in the latter (at a given emission angle). If the func-
tion P K (r) ) lacks definite parity, then no selection rules

Ir

can be imposed at all on LM transitions, as is obvious
from Eqs. (59)—(61). Finally, even if we can ignore non-
dipolar effects caused by qi (this can be done at

I qi I
«1/y, ', where

I qi I «K~() and consider a definite
parity of (t) & (ri), the selection rules are relaxed by

l I (K)the fact that R f
' always permits both odd and even

[n j —[nf j values.
We proceed to analyze the angular dependence of the

emission rate associated with a particular [n; j ~[nf j,K
transition, restricting ourselves to exnission in the x-z
plane, i.e., to P =0 (the polar axis directed along z).

(1) In the limit of small quantum recoil (rq «1), this
angular dependence, as implied by Eq. (1), is given by

p)(8)/c (1—Pp, cos8)

multiplied by Eq. (14). The resulting expression for TM
emission, obtained using Eq. (66), is

IM;r ' (q) I st
——

I

(M~r~' )„
Ic (1 —Pp, cos8) ' c (1—Pp, cos8)

cos 0+4 Icy; p)(8)
fi cq

sin 8

E —E' + sm 6
co (8)

2
cq

. 2 (P;„+P;,sinz8)

me+i p)(8)

Cq ~(i) ~(f)+ ~ 2gp)'(8)
2

Cq

sin 8cos8P;, (67)

Here, co(8) is given in the optical range by Eq. (32) and either by Eq. (35) (if 1 —nq »rq) or by Eq. (47) (in the opposite
limit) in the range p) & p)». For low y;, the angular emission intensity distribution given by Eq. (67) is broad and compli-
cated. For y; » 1, on the other hand, it is strongly concentrated within the relativistic forward cone

I
8

I
& 1/y;, owin~

to the factor (1—pp, cos8) ' multiplied by the Doppler upshift of p)(8). At small emission- angles, neglecting co sin 8/cq
compared to e)' —e~f) and retaining only the leading term in Eq. (47), Eq. (67) reduces approximately to

gyes(i)(

) e(f)( ) )
8+ 8

(p +p
(K )

Zmy;c(1 —P;,cos8 —d )(1—Pp, cos8) ' "
(1—P,,cos8 —d„)2 ' "

1 —P;,cos8 —d„

(6g)

It is seen that, in the case. where p;» is comparable with p;, (which can occur in the SRG), the emission distribution about
the z axis is broader than in the case p;»=0 (which'is compatible with the CGG).

The corresponding expressions for LM emission [obtained using Eqs. (59)—(61)] are

(q)Isi= (cos 8I(»'r )
I

+ I(Qir )»+(&'r )» I
+sin 8I(Q'r ) +(»'rc 1 —picos8 c(1—P(),cos8)

——,'sin28[T,"r '[(Q,'f '), +(R r '), ]'+c.c. j ) (69a)

in the SRG, arid
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(cos 8(T)f )~+(T)f ')»+sin 8
~
(QIt '), +(R,'t '),

~

——,
'

sin28I (T,'t ')„[(Q,'t '), +(R,'t '), ]*+c.c. I )
c 1 —„cos8

(69b)

in the CGG. As seen from Eqs. (69), treatments ignoring Rt ' (see above) substantially underestimate the LM emission
rate (a) at large angles, particularly at 8-n/2 (this angular region is important at nonrelativistic particle energies, when
the directional distribution of the radiation is broad) and (b) within the forward cone, for relativistic particles in the SRG
[because the (R t ')» contribution is then important], whenever

(R( )() (T( )( (q(

(2) In the limit of /arge quantum recoil {rz & 1), the expressions (67) and {69)must be modified for spin- —, particles by
using Eq. (10) instead of Eq. (14). The angular-dependence expression [as obtained from Eqs. (1), (6), and (14)] is then

[1+ /1'~'(1 re)] re (K) z1+ /m', t '/s,+, fM,'t '
/

(70)
c (1—130,cos8) 1+1/y; 2(2 —r~ ) 2(2 —r )

co(8) being given by the lower branch of Eq. (39) [or, de-
pending on the type of radiation, by one of the equations
(44)—(46)]. It is seen that the term proportional to r~,
which arises in part from spin-photon coupling, assigns
uniform weight to all Cartesian components of
M;'t '. Consequently, the contribution of (M;'t '))) [of
(M,'t ')zz in the CGG] to the emission at small 8 becomes
important in the large rq limit, for TM as well as LM
transitions [provided these 8 are allowed —cf. Eq. (43)].
In particular, (R,'t '), strongly contributes to LM emis-
sion in the CGG for rq & 1.

The expressions obtained above for the angular depen-
dence of TM emission [Eqs. (67), (68), and (70)] are
equivalent to the ones derived in Ref. 1, except for the
overa11 1 —rq factor that has not been included in the
latter [cf. Eq. (6)]. Here these expressions have been given
in an explicit form that permits a detailed comparison
with LM emission at a given angle 0.

The evaluation of the total emission rate at given co and

q involves the summation of
~

M t '(q)
~

weighted by
P;PI„') [cf. Eqs. (1) and (25)]. The P; are given, to a good

Elf

approximation, by [cf. Eqs. (53) and (54)]

I

ble by choosing substantially different
( P;» (, [ P;, [

(e.g. ,

] P;» [
& 5

[ P;, [ ), so that the frequency of a spectral hne
associated with a low-index K~I will nearly coincide only
with frequencies of lines pertaining to high-index KI~.
The latter lines are, however, usually much weaker than
the former, since the squared amplitude of p K, (r~) [cf.

Il

Eq. (63)] is much smaller than that of p K (r) ) if
Ref. 47), so that [cf. Eqs. (59)—(61)]

The near degeneracy between different K~~'s can then be
disregarded.

A single Kz commonly contributes to the emission at
co(q), if II t

' strongly depends on K~ (e.g. , in TM CB ' ').
In contrast, LM or TM emission from channeled parti-
cles, whose II;t is nearly independent of K) (cf. Refs. 39
and 1, 6, and 9), contains contributions from all the K)
for which

(K~) ]P(„') = drze " ' ' wf(rz)f Q ll
cell

cell

( nf, k.
q
—

qq
—Kq )=

I
co (73)

(71)

The significant P; determine the In; ] bands contributing
to LM as well as TM emission. For each such In; I, the
value of QIt

' associated with co(q) [cf. Eqs. (31) and (32)]
determines the set of contributing I nf kf J ] K.

For LM emission in the CGG, a unique value of
K)) ——I(:,z is associated with co(q) (since P;,cK, is then the
predominant term in 0;'t '). In contrast, in the SRG one
must allow for possible degeneracy among several K~~,
which contribute to the same 0,'~ ' if

P,» K»+P;, K,=P~» K»+P;, .K,' . (72)

Hence, in order to ensure that LM transitions in the SRG
give rise to distinct spectral peaks, the near-degeneracy
condition of Eq. (72) should be avoided as much as possi-

are significant. When summing

(Ki) (K)~+Ki)
P(„') ~mt

over Kq, to obtain the total LM emission rate, we must
take account of the fact that R,'~ ' depends on Kz in all
dynamical regimes of the particle, whereas the other com-
ponents of both TM and LM transition matrix elements
may be nearly independent of Kl, as in the channeling re-

gime [this follows from the form of w(„)(rj ) and eI") in
this regime' ' ].

The observability (or detectability) of a spectral peak at
one of the frequencies discussed here depends on its
"signal-to-noise" ratio (S/N)(co), namely, the ratio of its
emission rate to that of incoherent bremsstrahlung
dW~„, ((o). Since dW, „,((o) ~co ' (Refs. 4 and 6), from
Eqs. (1) and (14) we find (assuming r~ &&1)
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(S/N)(coLM, q)

(S/N)(coTM, q)

coLM d~(coLM q)

ATM dW(coTM, q)

~LM i f,K

i fK]

(74)

The ratio given by Eq. (74) is also the ratio between the
amounts of power emitted in the two modes in the same
direction:

I(coLM q)

I(ATM, q)

~LM d~(~LM k)

d8'(coTM, q)

(S/N)(coLM q)

(S/N)(co TM, q)

(75)

Our classical analysis of LM and TM emission from
channeled positrons in the CGG (Ref. 25) has shown that
this ratio can be —l. As seen from Eq. (1), ficodW does
not depend explicitly on A. Hence, this classical result,
which implies that LM emission is as detectable as TM
emission, may be expected to hold quantum mechanically
too. However, it is planned to be shown in subsequent pa-
pers that, in certain cases, LM emission is more intense
than what is predicted classically and as a result is then
more detectable than TM emission. This finding is in ac-
cordance with recent experimental results.

V. DISCUSSION

In this paper we have presented a unified quantal treat-
ment of all types of radiation (CR, TM CB, QCR, PR
and LM emission —cf. Sec. I) emitted as fast charged par-
ticles traverse crystals at small angles relative to atomic
rows (the CGG) or planes (the SRG). This treatment con-
sists in the description of the entire spectrum of this radi-
ation by formulas that allow for the full three-
dimensional periodicity of the crystal potential and are
applicable to energies of all photons [cf. Eqs. (1), (6), (10),
and (39)]. These include photon energies comparable to
the initial particle energy, a case that has been insuffi-
ciently studied hitherto, although it is realizable experi-
mentally. The formulas presented here take account of
the essential feature of the investigated radiation, namely,
the possibility of momentum transfer AK to the lattice in
all three dimensions (LM emission —if K has a longitudi-
nal component, TM emission if K is purely transverse) in
conjunction with transitions between bands of transverse
energy [cf. Eqs. (10), (23), and (32)]. The generality of
these formulas allows us to use them in a systematic,
comprehensive analysis of the emission spectrum, as a
function of the parameters of the incident particle and the
direction of emission.

In the following we survey the main topics elucidated
by the present treatment.

(A) Our analysis of the allowed emission frequencies
has yielded expressions that are valid for all types of TM
and LM radiative transitions in (1) the optical range, with
the refractivity index exceeding 1; (2) the range co & co& (co&

being the plasma frequency of the medium), with the re-
fractivity index given by Eq. (34); and (3) the range where
the quantum recoil rz fm——/E; (E; being the initial parti-
cle energy) becomes appreciable. In case (2) we have dis-
cussed the forbidden emission angles for TM transitions
due to refractivity effects [Eq. (36)] and the shifts of LM
and TM frequencies caused by these effects [Eqs. (35) and
(37)]. In case (3) (Sec. III C) the large-quantum-recoil lim-
it ( r~ & 1) has been shown to correspond to nearly forward
emission at frequencies that differ strongly from those ob-
tained in the more familiar small-recoil limit. Forbidden
emission angles for LM and TM CB transitions, associat-
ed with photon energies above the initial kinetic energy of
the particle, have been identified [Eqs. (43) and (46)]. In
the limit r~ && 1, our analysis has revealed quantum-recoil
corrections [Eqs. (47)—(49)] to the frequencies given by
extant theories.

(B) Expressions for spectral linewidths incurred by in-
elastic scattering of the particle [Eqs. (26) and (27)] or fin-
ite crystal thickness [Eq. (29)] have been presented in a
form appropriate for all types of radiative transitions and
any quantum recoil [Eqs. (52)] (whereas the previous ex-
tensive investigation of this problem has concentrated on
CR in the limit r~ && 1).

(C) LM transition matrix elements have been found to
include a significant component (the leading component
in some cases) R,"t ', which is proportional to the longitu-
dinal velocity P;~~ [Eq. (61)]. This component has not
been taken into account in a previous analysis of LM
emission from channeled particles, nor can it be ob-
tained using an extant treatment of longitudinal potential
periodicity effects. The 'existence of R,'f ' has been
shown to relax the selection rules on the allowed differ-
ences between initial and final band indices [n; I

—[nf I in
LM emission.

(D) Expressions allowing comparison of the directional
distribution of TM emission with that of LM emission
have been derived, for the small-recoil limit r~ && 1 [Eqs.
(67)—(69)] as well as for the large-recoil limit rz &1. In
the latter, spin-photon coupling can strongly affect the
directional distribution of emission from spin- —, particles
[Eq. (70)]. In both limits, it has been shown that the LM
emission rate in certain directions q may be severely un-
derestimated if R,'t ' is not taken into account.

(E) An expression for the relative detectabilities of LM
and TM spectral lines (determined by the ratios of their
respective emission rates to that of incoherent bremsstrah-
lung) has been given [Eq. (74)]. This expression, which
coincides with the ratio

[dI (coLM, q) /d 0-]/[dI (coTM, q) /d 0-]
(dI/dQ- being the differential emitted power), has been

q
previously shown classically to be —1 for channeled posi-
trons.

In subsequent parts of this series, the present treatment
will be used to investigate, for each of the aforementioned
types of radiation, spectral features imposed. by the trans-
verse or the longitudinal potential periodicity which are
not describable analytically by the prevailing models.
These investigations will concentrate on particles in the
SRG. For such particles, analytical forms of the project-
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ed potential eigenfunctions and eigenvalues (transverse-
energy bands), which constitute the required input for
both TM and LM emission calculations (cf. Sec. IV and
the Appendix), can be obtained using the Hill's equation
treatment presented in Ref. 39. In contrast, the standard
many-beam treatment ' '"" and the KKR treatment (ap-
propriate in the CGG, Ref. 67) can yield this input only
numerically for )33 particles above 10 MeV and all heavy
fast particles.
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+O(xhllKh'xhll'xh Kh) . (A 1)

Here the P's and X's are defined in Eqs. (63) and (64). The
fn, k~ Jfactor xb

' is given by

[cf. Eqs. (53) and (57)] or their Fourier coefficients
ch g +g . Such expressions are derived in Ref. 39, using

s~+SII
an iterative procedure which yields, on performing two
iterations,

fn, k~[ fn, k~J
'

fn, k~ j
cb ' ———Xz gP, (c, +5c, '

)h —Sj sy gy
sg

(n, k~) [n, k~ j—xii icb gp gc ih —gj g+
gy

(n, k~ j
+xb g X (t'i i gp c

hll h —gj SJh'
sj

(hl I~0)

APPENDIX: EVALUATION OF LM TRANSITION
MATRIX ELEMENTS

fnk~J ]

koll. hll

(n, k~ j
I
&y f n, k 2+ei —(ki+ h), (A2)

oII

The evaluation of LM transition matrix elements re-
quires explicit expressions for the longitudinal-modulation
terms

exp( ih)( r(~)5tu („i,, ) (ri )

f n, k~)
and typically satisfies

I
xb

'
I

&
I Xb, I

. The corrections
(n, k~) (n, k, )5c, to the transverse Fourier coefficients c, ' of the
sg sj

projected potential eigenfunctions are found from

jn, k~ ) (n, k~) (n, k~ ) (n, k j fn, k )[~J (ki+gJ ) ](5cg +cg )= g U, —g Xbgp, „U,, (5c, +c ', )+O(x&xbaii)

(A3)

Q '=gP "( '' )',
g

(K) (i) (f)Rif =pl)~ g Cg (cg+K )

s

(A5)

To the lowest admissible accuracy, T,'t ' and Q,'t
' include

only contributions of order IX& I
from the expansion

given by Eq. (Al):

g

+O(,X,)],

(n, k, )
where e q

' are transverse-energy' eigenvalues corrected
for the longitudinal variation of the potential.

The terms comprising the LM transition matrix ele-
(KII~O)

ment M;t (q) in Eq. (58) originate from its decompo-
sition into transverse and longitudinal components, on us-
ing Eq. (23) and setting

s
(A4)

Sj g~~0

+O(icg, xg )] . (A8)

To the same accuracy, one must take account of contribu-
tions of order

I
XK Kg I I X~~)x), I

to R t
' (the contribu-

tions of order
I Xz

I
to R(t ' can be easily shown

to uanish), because typically

I Pg I, I &i)- I I &&[ b„ (A9)

The lengthy but straightforward evaluation of R,'t ',

taking account of the above contributions, shows that the
sum of all 5cs ' contributions is

The remaining contributions to R,'f ' yield

(i)( )e y 5 (i)( )e] ()
gj -Sl-K gj. Si Sl-SJ -K gl gl

sJ gj

(A 10)
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gg gy gy
—gy

gJ gg

g I I I

'gll~ ' gy gy

p;t+ ps,
2

The factors Ic' ', are derived from the expressions for (les '+K)' and Ics' K [cf. Eq. (A2)]. They have the form
gg~gy gg+ gy—

(K) A(et" +eII' —k;t —kft ) Kt pK K

r

p t+ps, g',

2 '+(PIIPK„)q. /( —Pll qll) + .K PK, + (A12)

where kf~ is found from Eq. (50) on using the first-iteration value of coq/c [cf. discussion following Eq. (50)].
The above expressions for the components of the LM transition matrix element can be evaluated using the cs coeffi-

gg

cients of the projected-potential eigenfunctions, which are available either analytically or numerically. These expressions
assume a more transparent form in the coordinate representation. The transformation to this representation is effected
using the following identities:

gl gg

i g g (k;g+gt)$, ~cs'(c', ')*=I drte ' 'P K (rt)[w' '(rt)]*Vtw "(r,),
gJ g~

0

i g g—(kft+gj )P, Kcs'(c', ')*=f dr~e ' 'P K (r~)I Vt[w' '(rt)]" j w "(rt),
gJ gg

X rf (k t+gJ)P ' . Kcs (c ' ) J ndrJe y —K(~(rt )w (rj )VJw(rt)
gJ g~

(A13)

(A15)

(A16)

gg g~

K (rt)([Vt(w' ')*] (Vtw")+ikft [(w' ')'V~w "]—ik;t [Vt(w' ')']w" +k;t.kft(w'f))*w" j,cell II

(A17)

sz sg sy sI +s(( sg —sg —&—&s((+&()&
[X X c", (c'f', )*P, P, , ]

(g ~0) gl gl
II

gl
I

The expressions (A7), (A8), and (Al 1) can be easily transformed into Eqs. (59)—(61) by using the above identities.
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