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This Brief Report extends and complements the work of March and Paranjape IPhys. Rev. B 30, 3131
(1984)] on the interaction between metallic systems, in various ways. Their analysis for jellium half-spaces,

using the linearized Thomas-Fermi approximation, is generalized in the case of film geometries. This is

essential in order to account for the intrinsic instability of jellium. Comparison of our results with exact
(nonlinear) Thomas-Fermi results reveals successes and failures of the linearized Thomas-Fermi approxi-

mation. It is also pointed out that the generalization of the work of March and Paranjape in the case of ar-

bitrary densities is provided by a known exact formula for the force between jellium films, at small separa-
tion.

March and Paranjape' have recently studied the force
f(z), between jellium half-spaces a small distance z apart,
using a linearized Thomas-Fermi approximation for the
electrons at high densities. Their aim was to suggest a rela-
tionship between a linear term in z in their expression for
the force between jellium systems and the elastic-cleavage
force in real metals,

f,&„„.,(z) = —Az, for z 0

This elastic force plays an important role in a universal
model for the surface energy of metals proposed recently by
Kohn and Yaniv, following earlier work by Zaremba.

Here, we first generalize the model of March and Paran-
jape in the case of macroscopic jellium films bounded by
vacuum. This is essential in order to recover the actual
nonzero value of f(0+) responsible for the well-known in-
stability of bulk jellium, This limiting force at vanishing
separation, which is just the bulk electronic pressure, is
indeed related to surface properties of jellium through the
exact sum rule~ 5 ( —e = electron charge)

f(O+) =p= —ep, a V, (2)

instead of Eq. (2). This shows that linearization of the
Thomas-Fermi theory does not provide an internally con-
sistent treatment of the limiting force f(z 0+).s In this
connection, it is comforting to note that the nonlinear
Thomas-Fermi theory for an isolated planar jellium surface7
is compatible with Eq. (1). This is demonstrated by recal-
ling the exact Thomas-Fermi expression for the electrostatic
potential in the vacuum region of a jellium half-space con-

where pp is the uniform jellium density and 5 V is the elec-
trostatic potential at the edge of a jellium half-space in vacu-
um relative to its bulk value. In contrast to this, the
analysis of March and Paranjape yields f(0+) =0 because
their model does not incorporate the effect of external boun-
daries of a jellium system in which a narrow planar vacuum
gap of width z has been created.

By applying the linearized Thomas-Fermi approximation
of Ref. 1 in the case of macroscopic films we obtain

fined to the region x & 0:7

( )
400eF

e(x/Z + c)' (4)

where c = ~(15)34, X = (3n/8kF) t 2, and aF and kF are the

Fermi energy and the Fermi wave vector, respectively.
Here the potential deep inside the metal has been taken to
be V( —~) = e 'eF. From these results one obtains

5 V= V(0) —V( —~) = —~e tap

and by recalling the familiar expression for the pressure at
high densities, p = ~ppai;, one finds that Eq. (2) is identical-

ly verified in this case.
The main interest of March and Paranjape lies in the

evaluation of the linear term in z in the expression for the
force at small separation, using the linearized Thomas-
Fermi approximation. This term is, however, given exactly
at arbitrary density by

f(z) = p —az+

dka=2e2p" '

k2a (k)

(5a)

(sb)

1a = ayF —~pp6Fq (6)

which coincides with the result obtained by March and
Paranjape using the linearized Thomas-Fermi model. Here
q

' is the Thomas-Fermi screening length given by

6m ppe
q =

The Eq. (6) will be rederived below in the case of film
geometries, again by using linearized Thomas-Fermi theory.

The attractive nature of the extra force —az, which arises
when a jellium system is cleaved along a plane and the two
parts are pulled slightly apart, is understandable: this physi-
cal operation leads to a readjustment of the electron distri-

where e(k) is the static-bulk dielectric function. By insert-
ing the Thomas-Fermi expression, a(k) = 1+q2k z, valid at
high densities, we obtain
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r

d V(x) —4me [ps —p(x) ], regions 1, 3

4n ep(x), regions 2, 4, S

(ga)
(gb)

p(x) = po 1+ V(x)3e
26F

The potential and its first derivative are required to be con-

bution towards lower densities and thus to a lowering of the
electronic pressure in the vicinity of the cleavage plane.
This fact, as well as the initial linear variation of f(z), is
the basis for the conjecture by March and Paranjape of the
existence of a relation between the linear term in Eq. (Sa)
and the elastic-cleavage force (1) in real solids, in spite of
the intrinsic instability of jellium expressed by the repulsive
force f'(0+) = p.

In the remainder of this paper, we sketch our derivation
of f(z) for two identical-macroscopic jellium films separated
by a small distance z. The two interacting films, which are
unbounded in the y and z directions, are represented
schematically in Fig. 1. In the linearized Thomas-Fermi ap-
proximation the electrostatic potential V(x) and the elec-
tron density p(x), are related by the equations FIG. 1. Sho~ing regions 1 and 3 occupied by jellium films, a dis-

tance z apart, placed in vacuum.

tinuous at the edges of the various regions of Fig. 1, and
V(x) is required to decay exponentially beyond the
exterior-film boundaries at x= +L. The details of the cal-
culation of V(x) are similar to those given in Ref. 1 for jel-
lium half-spaces. For brevity's sake we only list the final
solutions in regions 2, 3, and 5. These are

26@ [1+(e-s —e &'~') cosh(qx)], ——~x~-
3e 2 2

(10a)

F eq(x-L) + e —qL+ 2 sinh ~ e —qx,
(10b)

r

26 p" 1+ sinh ~ —sinh(qL) e ~", x~ L3e 2
(loc)

dVf(z) = —eps„' dx (1la)

Finally, the force per unit area exerted by one jellium film
on the other is simply4'0

leads to

f(z) =Tpoep[e "+e-'L(e r~ 2e &'~')]— (13a)

= —e po [5V —5 V(z) ] (1lb)
= ~p[1 —qz+ O(z )], qz « 1, qL » 1 (13b)

~here

d V= V(L) —V, (12a)

av(z)= V —' —V,
2

(12b)

are the electrostatic potentials at the jellium edges relative to
the potential V, in the bulk region deep inside each film.
Since the film thicknesses are macroscopic there is no elec-
trostatic coupling between the dipole layers near x = z/2 and
x = L, so that 5 V is given by Eq. (2). On the other hand,
the explicit evaluation of the force (lla), using Eq. (10b),

where p is the high-density electronic pressure. The signifi-
cance of the two terms in Eq. (13b) and their comparison
with the exact result, Eqs. (Sa) and (Sb), has been fully dis-
cussed above. In particular, the coefficient of the linear
term coincides with the exact result of Eq. (6).

Finally, we recall that while the validity of (6) is restricted
to high densities, the behavior of a at arbitrary density could
be obtained from Eqs. (Sa) and (Sb). Therefore, if one ac-
cepts the argument of March and Paranjape' concerning the
relation between a and the parameter A, describing the elas-
tic force at short distances in real metals, one could use
these expressions to discuss the form of A over the entire
density range.
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