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Orthogonalized-moments method
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I propose a method to compute the local density of electronic states in disordered systems. The method
makes use of a particular form of the generalized moments of Lambin and Gaspard. It leads to an exact
derivation of orthogonalized moments which are simply related to the coefficients of the continued-fraction
representation of the density of states. It is numerically stable and analytically equivalent to the recursion
method of Haydock.

I. INTRODUCTION

R (z) = (0 ((z —M) '~O) = gi=0 z

with the power moments p,;= (O(~'~O), and the expan-
sion holds if (z( ) (~A ((. To calculate the LDOS at
z = E —i ~, one needs the analytic continuation inside the
circle of radius ((4'((. This can be achieved by expanding
the resolvent R (z ) in a continued fraction of the J form4'
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Several real-space techniques have been developed to cal-
culate the local density of electronic states. The recursion
method of Haydock' is known to be numerically stable.
The recursion coefficients are intrinsically nonlinear func-
tions of the local density of states (LDOS), so they do not
have simple averaging properties. The generalized-moments
method of Lambin and Gaspard~ sought to combine the ad-
vantages of the moment method in averaging over confi-
gurations with the numerical stability of the recursion
method. In practice, their method involves an iterative pro-
cedure which leads also to numerical instabilities. In fact, it
is impossible to keep the linearity of the moments in the
LDOS and to retain the numerical stability.

The orthogonalized-moments method makes use of a par-
ticular form of the generalized moments2 that is numerically
stable. The linearity of the moments in the LDOS is, lost,
but, since this procedure leads in a numerically stable way
to the recursion coefficients, small changes in the moments
do not lead to large changes in the computed
LDOS—unlike the standard-moments method' using Hank-
el determinants. The final averaging of the LDOS is there-
fore numerically better convergent.

The principles and main formulas of the continued-
fraction method are briefly reviewed. Consider a one-

'

electron tight-binding Hamiltonian P'. The LDOS on the lo-
cal orbital ~O) is

n (E) = (O(8(E —A )(0) = —lim ImR (z)(, =z1

0+

The resolvent R (z ) can be written as

with a;, b;, real and b; positive. The relation between the
moments and the coefficients of the continued fraction is
given by ratios of Hankel determinants 6; and 6;.2 The ele-
ments of these Hankel matrices 0;,0; are the power mo-
ments. ~ In practice, the computation of the determinants
requires many operations and the calculation is ill condi-
tioned.

II. GENERALIZED-MOMENTS METHOD

dE n (E)p, (E)pi(E) = n, ,iv;, ;

Then one can conclude (i)

p;+~(E) =Ep;(E) —c;+~p;(E) —dp; q(E)

for i ~1, p ~=0, po= 1, c; and d; real. (ii) The recurrence
coefficients (c;,d;} are given by the J-fraction coefficients of
the resolvent R (z ) corresponding to n (E ). Thus,

c;=a; and d;=b; (2)

If one could construct the polynomial sequence (p; (E)} to
be orthogonal to the a priori unknown LDOS n (E), one
would have solved the problem: The polynomial sequence
(p& (E )} is uniquely determined by its sequence of re-
currence coefficients (c;,d;} and these are just the desired
continued-fraction coefficients (a;,b; } due to (2) .

The authors showed how to get rid of the calculation of
the Hankel determinants 6;, 4;. They introduced Gram ma-
trices 6; and G; whose elements are generalized moments

In the generalized-moments method one defines polyno-
mial moments, which theoretically are linear on the LDOS
like the power moments, but are better conditioned than the
latter. The method suggested by Lambin and Gaspard'
essentially makes use of the following theorem.

Let n (E) be an arbitrary density. Thus, n (E) is a posi-
tive real function, and there exist values a & 0 and y &
such that n(E) &y exp( —a(E(). Under these conditions
one can construct a set of orthogonal polynomials
p;(E) = X,'=OA;, E' of degree i with A„= 1 uniquely.

Starting from such a polynomial sequence one can denote
the generalized moments by

p oo

v;i = J dE n (E)p;(E)p, (E)
Theorem. If a sequence of polynomials (p;(E)} is orthog-

onal with respect to a LDOS n (E), i.e. ,
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instead of power moments, but their determinants are equal
to the determinants of the Hankel matrices. In the orthogo-
nal case the Gram matrix G; turns out to be diagonal and
G; to be tridiagonal. This gives a stable method to calculate
the corresponding determinants 6; and 5;. They found2

als:
1

vo 0 0
0 v1 0

G;= 0 0

j.
ai — Vi —l,i —1~i

with i «2, a1= p1, and

-3+
Vi —l,i —1,

(3)

thus 5;= fJ', =Q vg,

VI'

bi= Vi, i

Vi —1,i —1

with i «1 (4)
C1VO V1

The 5j are calculated by use of a three-term recurrence re-
lation which involves the input coefficients {c~,d~, . . . ,
c~+~,d&+~}. I would like to stress that formulas (3) and (4)
are valid only if one knows already the po1ynornial sequence
{p;(E)}which is orthogonal on the unknown LDOS.

Lambin and Gaspard, however, used formulas (3) and
(4) with a sequence of input coefficients, or, equivalently, a
sequence of polynomials {p (E)},which are not orthogonal
on n(E). In fact, they calculated

C2V1

V2 .
Vj

djVj —1

Cj+1Vj dj+1Vj
VJ+1

Ci +1vi

vs= J dE n (E)p (E)pJ (E) . . (5)

Thus, v,j&0 for i &j, and obviously the inaccuracy of using
(5) is crucially dependent on their choice of {c,d }. It is, in
fact, an uncontrolled approximation, and they give no gen-
eral rules for the choice of the input coefficients.

They wrote that {p (E)} must be taken "close enough"
to the polynomial sequence {p;(E)}orthogonal on n (E).
So, one could think of an iteration procedure where one
starts with {c t",d ' } and calculates {c 2,d t' } by use of
(3) and (4), and so on. Then "orthogonality" would be in-
dicated when c ~' —c ~' '~ & e; and d ~' —d ' ' ( q; for
sufficiently small e; and q;. However, this iteration pro-
cedure can be numerically unstable, for example, in the
problem of the calculation of the LDOS in a randomly sub-
stituted alloy.

vi= ' dEn(E)p;2(E)E (8)

from (6)-(8) one gets

v1 0

V1 V2

V2 V2

The off-diagonal elements for G; and G; are zero.
I want to show now that it is indeed possible to construct

a sequence of polynomials {p;(E )} which is orthogonal to an
a priori unknown LDOS. The point is that (3) contains the
input coefficients {c,d } implicitly by the three-term re-
currence relation for 4;. But it is possible to derive another
three-term recurrence relation for 5, , where {c,d, '} do not
appear. If one introduces

III. ORTHOGONALIZED-MOMENTS METHOD

The use of generalized moments and its success in getting
rid of the calculation of determinants lies essentially in a
simplification of the structure of the underlying Hankel ma-
trices. The elements of the Gram matrices G; and. Gi are
defined by

(Gi), , = J dE n (E)p, (E)p, (E) = v, ,i

2 (9)

But from (3) and (9) one gets

leading to a different three-term recurrence relation for 6;,
namely,

(G;), , =„dEn (E)p, (E)Ep, (E )
a;= Vi —1—

Vi-1~ -3+
Vi —1 i

Vi —1

Vi —1

(10)

with 0 ~ s, t ~ i. It is easy to show2 that

detG; = 6; and detG; = 5;

As I will consider the orthogonal case from now on, let me
simplify the notation of v;j.'

The Gram matrices have a much simpler structure than the
Hankel matrices due to the orthogonality of the polynomi-

Equation (10) together with (4) determines a calculational
procedure that gives the exact values of the higher coeffi-
cients a;, b; just from the power moments pj,j ~ i. The al-
gorithm is as follows:

Vip~ ~a+i Vi+1

&i pi + 1 +i + 2

mb
b

Vi
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by use of

v; = X I& o lp; (~) IJ &
I'

~

J

v, = X &0 lp;(~) li& &/lwli& &alp;(~) IO& ~

and

P]' Pg'

a;+)= —,b; =

p, 1(E)=Ep, (E) —a; 1p;(E) —bp; (E)
To start the procedure one needs as input p1(E) and vo.

But F0=1 and

p1(E) =E —a1=E —&OIA lo&

In the Appendix the stability of this algorithm will be dis-
cussed in connection with the recursion method. '

Another way to look at this orthogonalized-moments
method takes the recursion relation directly into account.
The scalar product is denoted by

(p; p, ) =& dE n (E)p;(E)p, (E)

Orthogonality means, due to (1) and (2),

E/t

FIG. 1. LDOS calculated by the use of 12 exact moments with a
square-root terminator taking into account undamped oscillations of
the asymptotic coefficients.

p;+1(E) = Ep (E) a;+tp (E—) —»p; 1(E), -
or, equivalently,

Ep; 1(E)=p (E-) + asap 1(E)+ b -1p z(E)--
From (11), orthogonality gives

b (p; 1 p; 1) = (p; 1 Ep ) = (Ep; 1 p )

and from (12) it gives

b;(p; 1p;-1)=(p;-p, ),
thus, b; = v; /v; 1. Similarly,

a;(p -1 p -1)= (p -1.Ep; 1) . -
so a;=v; 1/v;

(12)

centered around the origin and to square-root divergences at
+h. In the presence of an energy gap undamped oscilla-

tions of the coefficients occur. To test the method I calcu-
lated 12 exact moments and truncated the expansion by use
of a square-root terminator which takes these oscillations
into account

lim a; = a + Sa ( —1)', lim b; = b

R„(z)= 1 b

z —a —Sa —z —a +Sa —bR (z)

R (z) = z —a +Sa1

2b

i/z

+i 4b z —a +5a —(z —a+ha)'
z —a —5a

IV. APPLICATION

In the following I examine a model of a three-
dimensional ordered alloy and apply the orthogonalized-
moments method to calculate the LDOS n ' (E) and the to-
tal DOS N(E) = 1/Xg, nt" (E). Consider a simple cubic
(sc) lattice with alternating A and 8 sites which form two in-
terpenetrating fec lattices. A model Hamiltonian for such a
system is

~= g [e(k) pc~ pc~+6 pc~ gc„+~]
k, cr

with c~ as electron creation operator, 24 as the on-site en-
ergy shift between A and B sites,

t (k) = 2r (cosk» + cosky +cosk»)

with t as the hopping matrix element between nearest neigh-
bors and ~= n. (1, 1, 1). Diagonalization yields

~= g ~(k)ck ck, ~(k) =sgn[e(k)]46'+e'(k)
k, a

This lpads to a total DOS with an energy gap of width 2h

—2 -3 0 8 2 4 6

E/t

FIG. 2. Exact total DOS for the sc lattice in the presence of a
gap. The dotted curve is the approximation by use of the
orthogonalized-moments method.
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Figure 1 shows the LDOS and Fig. 2 the total DOS. Also,
Fig. 2 makes clear that the use of the orthogonalized-
moments method reflects all important features of W (E).

V. CONCLUSIONS

In this paper I have presented a simple and exact pro-
cedure to go from the power moments to the coefficients of
the continued-fraction representation of the resolvent. This
procedure was found to be numerically stable. The
orthogonalized-moments method makes explicit the link
between the moments method and the recursion method,
which has been an important problem (e.g. , the comments
by We aire' ). It is equivalent to generating a set of orthogo-
nal but not orthonormal basis vectors using the recursion
method.
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APPENDIX

This Appendix is devoted to the analytic equivalence of
the orthogonalized-moments method and the recursion
method. The recursion method has been extensively dis-
cussed by Haydock. ' %ithin this scheme the LDOS for a
basis orbital luo) = lO) is determined by a sequence of en-
vironments described by orthonormal states lu, ), where
lu;) is a linear combination of basis orbitals li). The lu;)
must satisfy the condition that

~l~) =~ l~) +8+tltt;+g) +flu, )),
where ~is the Hamiltonian of the model. The parameters
A; and B; describe the coupling of each environment to it-
self and its neighbors. Such a semi-infinite chain model is
equivalent to expressing the matrix of P as a tridiagonal
matrix. One therefore can calculate the zero-zero element
of the inverse of the matrix (4 —E I ) easily and one gets a
J-fraction expansion for the resolvent. The corresponding
coefficients are just the chain parameters. ' Looking at

eigenstates of a chain

0 X P, lu, ) =E g P, lu, ),
i =0 i =0

one finds a three-term recurrence relation for the {P,j:
EP; = A;P; +B;+iP;+(+B;P;

P, (E)= O, P, (E)—= I .

So, in both methods the fundamental concept is that of the
polynomials determined by a three-term recurrence relation.
For the chain, the polynomials are orthonormal and

B2 B2
R(E)=

z —A0 z —Ai z —A2

8;+&Pt+&(E) = (E —3;)P;(E)—BP, i(E)

dE n (E)P;(E)P,(E) = g;,

w;=&~;l~l~, &, B, , =l(w —w, )lu, &
—B, lu;-i&l .

In the case of the orthogonalized moments the polynomials
are orthogonal but not orthonormal. In this case

1 b) b2R(z) =
Z —a~ Z —a2 Z —a3

p.+1(E)= (E —a +1)p (E) —b p 1(E)-
~ ~ .~

Jf dE n (E)p; (E)p, (E)= g;,,v;

&i —1
Qi =

&i —1

b;=—
&i —1

The construction of a chain model is based on a starting
vector luo) upon which one repeatedly operates with P.
Since the chain model is just the representation of ~ in
terms of a different basis, one can relate the moments to
the chain parameters. The recursion method is analytically
equivalent to computing orthogonalized moments.

This also makes clear that the stability of the orthog-
onalized-moments method is the same as that of the recur-
sion method, which has been discussed previously. '

It is convenient to make the eigenstates have coefficient 1

on luo). This makes the (P;) a unique set of polynomials in

E,

8;+iP;+i(E) = (E —A;)P;(E) —BP; g(E)
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