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At room temperature, the mercury chains in Hg3 zAsF6 exhibit phonons characteristic of a one-
dimensional lattice. We calculate the screening of the Hg ion-ion interaction in a single chain by electrons
moving in a cylindrical potential of finite radius, within the random-phase approximation. The resulting
Bohm-Staver-type expression for the phonon veiocity is (Z2mNz/M)V, )' 2vF, where Z is the Hg ionic
charge and Nq (JV, ) is the number of ions (electrons) per unit length. Use of the Tomonaga-Luttinger
solution for the electronic response function (keeping only the small-momentum scattering processes) just
renormalizes the Fermi velocity in this expression.

A striking feature of the x-ray and neutron scattering
studies of mercury-chain, compounds like' Hg3 qAsF6 is the
existence of intense sheets of diffuse scattering correspond-
ing to two perpendicular arrays of one-dimensional (1D)
scatterers at room temperature. This scattering is due to
chains of Hg atoms which lie in "channels" created by the
body-centered tetragonal structure of the host AsF6 anions.
The intensity of these sheets is virtually uniform, indicating
no phase correlation in atomic positions between the chains.
The Hg-Hg intrachain distance (d

~~

= a/3 —8 = 2.67 A ) is
found to be incommensurate with the host-lattice parameter
a along the chain direction, indicating that the interactions
with the host AsF6 lattice are weak. Rasavi, Datars, Char-
tier, and Gillespie used a free-electron dispersion relation
for a Fermi-surface model of the chain lattice and obtained
excellent agreement with the cross-sectional areas measured
in the de Haas-van Alphen effect. Thus, the electronic
states are well described' by 1D plane-wave states with en-
ergy e(k) =t2k2/2m parallel to the chain axis. At room
temperatures, then, both the ions and the electrons of the
Hg chains behave as one-dimensional entities, essentially in-
dependent of other Hg chains as well as of the host lattice.
As the temperature approaches 120 K, the perpendicular ar-
rays order to produce a 3D structure, 2 but our present dis-
cussion will be restricted to the high-temperature phase.

Hg-chain compounds at room temperature thus are quite
different from almost all other quasi-one-dimensional met-
als, where the electrons are best described in the tight-
binding approximation and the ions are part of a three-
dimensional lattice. 4 6 Hg chains are a beautiful example of
a one-dimensional two-component electron-ion plasma. In
this paper, we apply the standard random-phase approxima-
tion (RPA) theory to a two-component plasma7 restricted to
a cylindrical potential and use the results to evaluate the
long-wavelength phonon velocity in a single Hg chain. To
deal with the long-range Coulomb screening in a well-
defined way, it is crucial to work with a chain of finite ra-
dius ro. ~ The phonon velocity is found to be given by a

Bohm-Staver-type expression. Using available data, ' this
formula gives c~D = 2.9 & 10 m/s in comparison with
(4.4 + 0.8) & 103 m/s obtained from neutron scattering
data. ' We also use our model to discuss the electron-
phonon matrix element and the phonon dispersion relation
at large momentum —2k~, where one expects phonon
softening. 4 5

As mentioned, the electrons and ions in a given Hg chain
are viewed as a two-component plasma confined to a
cylindrical potential well (of radius ro) along the x axis. We
treat the electron-electron, ion-electron, and ion-ion
Coulomb interactions within the standard RPA. The cou-
pled mean-field equations of motion are a straightforward
generalization of those for a single-component electron gas
in a cylindrical potential. We assume that both electrons
and ions are in their ground state as far as their transverse
motion is concerned. Thus, the density response functions
have the form

XtJ(p, —p', ~) = ft(pt) fJ(pt)X, J(p„ to)

Here X&& is the correlation function involving the densities
p, (r) and pJ(r) where i and j represent the species involved
(electrons and ions). The form factors ft(pt) arise from
the localized ground-state orbitals for transverse motion.
For our present purposes, it is sufficient to use the Gauss-
ian approximation, in which case

2 2/4
ft(pt) = e "' (2)

x, , (p„, ~) [1—Z'u(p„)x,', (p„,~) j
Xe,e px to

1 —Z'u (p„)xg', t, Z'u (p„)x,'t u (p„)x,—,
(3)

for both electrons and ions. Finally, XtJ (p„, to) is the
response function for a purely one-dimensional two-
component plasma.

Within the standard mean-field approximation (MFA)
one finds, after a little calculation,
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where

~(p ) = g lf(pg)l'
p~ Px+Pj

(4)

1 —u(p„)X,', (p„,m)
(5)

Xroq and Xo, are ihe noninteracting one-dimensional
response functions of the ions and electrons, respectively.
XII(p„, cu) and Xi, (p„,~) have the same poles as X,,(p„, co)
in (3), and thus need not be written down. We observe
that the structure of the 1D X,,(p„,~) in (5) is precisely
the same as the familiar expression in 3D metals, apart
from the fact that the effective Coulomb potentials involve
form factors [see (4)]. It is in these form factors that the
finite chain radius enters. One easily verifies that

V= LAq is the total volume, and X,, (p„, cu) is the one-
dimensional electron response function which includes only
electron-electron interactions. In the RPA the latter is

where we have used (5) in the last step. In the frequency
range (8), we can use the static approximation to the 1D
Lindhard function

—lim X,', (p„, o) =0) = =W(ee)2
P„-0 '

mh VF
(14)

where X(e+) is the density of states for a 1D electron gas.
In the long-wavelength limit p„ro (( 1 (since ro —1-2 A,

this condition is equivalent to p„(( kp); u(p„) diverges as
lln(p„ro) l, and hence (13) reduces to

(15)

The effective screened ion-ion interaction is given by
U(p„) = Z'/W( eq) for p„0. The phonon velocity is thus
given by

i/2

p2]. 2 /2
u (p„)= e e " 0 E (p r$ /2)

= 2e l ln (p„ro) l +; p„ro (( I,

or, equivalently,
r 1/2

Z2m &r
M N,

UF

1- Z'u (p„)X,', (p„,o) )

(7)

The phonon modes correspond to frequencies in the regime

&ZPx && ~ && &FPx (8)

where 61 is an average ionic speed. In this regime we can
use the high-frequency approximation

2

Xl.i(px ~) =
2

~ &»IP»~sex .
Mo)2 '

It is useful to introduce the high-frequency (unscreened)
collective mode in a 1D ion plasma (moving in a uniform
negative background)

where Et(x) is the exponential integral. If we set ro 0
[in which'case lf(pq) l'=1], u(p„) in (4) diverges and is
not well defined.

The collective modes of this two-component system are
given by the solutions of

We observe that the logarithmic factor dependent on ro can-
cels out of the numerator and denominator of (13).

In the specific case of Hg3 qAsF6, it is known experimen-
tally' that N, =1.65N and kF=0.97 A . In Table I, we
give the predicted values of cto using (16) as well as avail-
able experimental data from neutron scattering. 'o No ul-
trasonic data are available for Hg3 ~AsF6. For comparison
we show the analogous results for bulk mercury (Z=2) us-
ing the Bohm-Staver expression (see p. 240 of Ref. 7)

r g/2

C3D +FZ pl

3 M (17)

together with experimental values obtained from neutron'
scattering" and ultrasonic' data.

We can use our model to discuss the electron-phonon in-
teraction in a finite-radius chain. In standard notation, we
have7

(18)

where p(p„) is the electronic density operator, 0 (p„) is the
normal mode coordinate, and V'(p„) is the electron-phonon

Z2N
&2p((p ) =— ' u(p„)p' . (10)

Using the fact that

02
Z 8 (pz)XII(pz, ~) = TABLE I. Longitudinal sound velocities in Hg (in units of 10

mts).

(7) can be written as

Theoretical
Neutron scattering

data Ultrasonic data'

In turn, using (10) and (5), an alternate form is
C1D

2.9
(kF ——0.97 A-') 4.4 + 0.8'

o)'= n2p, (p„)[1+u(p„)x...(p„,~) l

02'((p„)
1 —u(p )x,',,(p, ~)

2.1 .
(kF ——1.37 A-')

'Reference 12.

2.45 {0, 0, 1)'
1.92 {1,0, 0)'

Reference 10.

1.76 {0,0, 1)
1.80 (1,0, 0)

'Reference 11.
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—,
'

I V'(&2p„) I' = Q~p((p„) u (p„) (21)

Consequently, the phonon dispersion relation in (13) can be
written in the form

'= n'„, (p„) + ~l V'(&2p„) I'x, ,(p„, ) . (22)

In the limit p„r, «1 (i.e. , p„(& k~), (19) simplifies to

V'(p„) = Z ' ip„2e'Iln(p„ro) I+ (23)

and in this case (22) is equivalent to

to'= 02pi(p„) + I V'(p„) I'x, , (p„, co) (24)

This type of expression is often written down in analogy to
the 3D result7 when discussing the softening of the phonon
frequency at p„= 2kF due to the Peierls instability. Howev-
er, the above calculation shows that (24) is not valid at large
values of p„ in metallic chains when the electrons are
described in the nearly-free-electron approximation (plane
waves) as in Hg chains. [The tight-binding limit is a
different story. In that case, of course, V'(p„) is not given
by (19)]. The p„rc(& 1 results in (6) and (23) have been
briefly noted by Levin, Mills, and Cunningham. 9' Howev-

er, in discussing the phonon softening at p„= 2kf they used
(24) rather than the correct RPA expression (22) for this
model.

In place of the simple RPA expression (5) for the elec-
tronic response function, we may generalize the analysis to
deal with the Tomonaga-Luttinger model. """Keeping

matrix element. Calculation gives

i/2

(19)
M Ag p„2+ pj2

We note that this involves f(pt), while u(p„) in (4) in-

volves If(pt) I2. However, using the fact that in our
Gaussian approximation If (pz ) I =f (J2pz), one has

$/2

V'(J2p„) = Z ' ip„u(p„)
2

(20)

and thus

only the small-momentum forward-scattering processes (g2
and g4 in the usual notation) one has'

N (eF)v tp„(I + g4 —g2)
~' —uh '[(1+g4)' —8)]

(25)

~here

g4 YN(eF)[g40+ u(px)] g40+ u(px)

gz= ~N(eF) [g2o+ u(p. )]=g2c+ u(p. ) .
(26)

Here we have separated out the long-range Coulomb contri-
bution (4) to g2 and g4. '4 For frequencies in the region (8),
we can again use the static approximation to (25):

-x„(p„, to = 0) = N(ep. )
1 + g4p + g2p+ 2 u (p„)

(27)

Using this in (12), the phonons are given by to = ctop„, with

1/2

C1D = (1+ g40+ 820) &F
' Z2m NI

e
(28)
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in the limit p„rq((1 [where u(p„) is large]. The extra fac-
tor (I+g4p+g2p) is a typical renormalization factor that
arises when dealing with a 1D interacting Fermi gas. '

In a separate paper'6 we discuss the electronic response
function of an array of coupled chains. This can be used to
show that the screening of the Hg ion-ion interaction in a
given chain (which we have calculated in this paper) is not
affected much by the electrons in other chains. A remaining
problem is to obtain the long-wavelength screening of the
Coulomb interaction between ions on different chains. Such
results would provide microscopic estimates of the effective
ion-ion interaction needed in theories of the phonon
dynamics of the coupled Hg-chain system. ' '
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