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Relaxation of the rocksalt (001) surface: Alkali halides, MgO, and Pbs
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We evaluate the static relaxation of the (001) face of rocksalt-structured ionic crystals, using shell
models. The results for moderately polarizable compounds, namely, the alkali halides and MgO, are
in qualitative agreement withI those of earlier calculations but overall somewhat smaller. PbS is
treated as an example of highly polarizable substances close to an instability. The results for PbS
show a larger and deeper penetrating relaxation than in the case of the alkali halides. Preliminary
results for PbTe, which has a large (T-dependent) anion polarizability, show a precursor of a total
crystal reconstruction. It is conjectured that in such cases the lowered symmetry at the surface can
act as a trigger for'a structural phase transition.

I. INTRODUCTION

During the past decade substantial progress was made
by Chen et al. ' and Benedek et al. in the theoretical and
numerical description of the surface dynamics of the un-
relaxed (001) faces of the rocks alt-structured alkali
halides. More recently, by carrying through substantial
improvements in He-surface scattering techniques, Brus-
deylins et al. have been able to study the surface dynam-
ics of the alkali halides in considerable detail; they were
the first to determine complete surface-phonon dispersion
curves in certain directions of the Brillouin zone. The
overall and, in many cases, detailed good agreement of
these theoretical and experimental results seems to indi-
cate that relaxation has a minimal effect on the surface
dynamics of the alkali halides. A similar conclusion for
MgO had been arrived at by comparing the calculated re-
sult of Ref. 1 with the neutron scattering measurements of
Rieder and Horl. In order to understand the reason for
this overall agreement, it seemed worthwhile to carry out
a systematic study of both the static relaxation of the
(001) surfaces of these alkali halides, and of the dynamics
of these relaxed surfaces, using the same interaction
models for both statics and dynamics. An earlier attempt
of this kind by Chen and de Wette seemed to indicate
that shell models derived to describe bulk dynamics did
not lead to convergent results when used in a surface-
relaxation calculation. Since that study was not quite in-
dependent (it relied in part on results of Ref. 8), it seemed
worthwhile to carry out a new and totally independent re-
laxation calculation for the rocksalt (001) surface.

An important additional motivation for a systematic
study of surface relaxation in conjunction with surface
dynamics is the increasing interest in and importance of
the surface properties of strongly polarizable systems-
e.g., those exhibiting phonon anomalies in the bulk —such
as the metal oxides, ferroelectrics, and transition-metal
compounds.

An interesting aspect of surface studies in these cases is
the stringent test of the particle-interaction models that
can result from the lowered symmetry at the surface. For

instance, certain cancellations between short-range and
Coulomb forces that are present in the bulk are absent at
the surface, and the adjustments needed to achieve a new
equilibrium configuration may reveal shortcomings in the
model which are masked in the bulk as a result of symme-
try. Such effects may be particularly important in re-
gimes close to a structural or dynamic instability; in fact,
the presence of the surface may trigger the transition to
the new state.

However for the alkali halides a number of theoretical
studies ' ' during the past 25 years had shown that the
relaxations of the (001) faces of these rocksalt-structured
crystals are quite small. Unfortunately, there has not been
a direct experimental confirmation of these findings, so
that the recent surface-dynamical results are the only (in-
direct) experimental confirmation available at the present
time.

In this paper we discuss the determination of relaxed
particle positions at and near the (001) face of rocksalt-
structured crystals, using particle-interaction models (such
as shell models) already available for the bulk to describe
electronic polarizabilities, deformation, repulsion, etc. Be-
cause of the symmetry of the (001) face the surface unit
cell will remain unchanged, i.e., we will encounter relaxa-
tion and rumpling, but no reconstruction. The relaxation
calculation is carried out for slab-shaped rocksalt-
structured crystals bounded by two parallel (001) faces,
with no restriction on the thickness of the 'slab, nor on the
number of layers which are allowed to relax.

In Sec. II we present a description of the relaxation cal-
culation, including the changes that need to be made in
the treatment of the Coulomb and short-range forces.
The method allows for variations in the shell-model pa-
rameters as functions of distance from the surface. In
Sec. III we present results for the alkali halides and MgO,
using bulk shell models, and for PbS as an example of a
highly polarizable system close to a structural instability.

II. MODEL AND METHOD
At present a parameter-free description of the surface

structure and the dynamical behavior of ionic crystals
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from first principles is not feasible. We therefore use shell
models to determine both the surface structure and the
dynamics. The success achieved with shell models in
describing bulk dynamics can probably be attributed to
the fact that the equations of motion derived from first
principles and those obtained with shell models have very'
similar structures. Shell models take into account short-
range overlap forces, long-range Coulomb interactions,
and the most important aspects of the displacement-
induced deformations of the electronic charge density.
The parameters of shell models which are used to describe
bulk-phonon dispersion curves of alkali halides have
well-defined physical meaning, and are related in a unique
way to the elastic constants C,z, the dielectric constants cp
and e„, the polarizabilities a;, and the reststrahlen fre-
quency coTQ(r).

Surface relaxation is the result of the imbalance of the
forces acting on the ionic cores and shells, when the near-
surface ions are in their unrelaxed bulk positions. This
imbalance can give rise to very large net forces, but very
small shifts in the positions can lead to dramatic reduc-
tions in the net forces (especially in alkali halides). Since
these effects concern a balancing of short-range and
Coulomb forces, it is of particular importance that both
kinds of forces are evaluated to high accuracy.

The present relaxation calculations were carried out
with the bulk shell models, which were used by Chen
et al. ' to study the surface dynamics of the unrelaxed
rocksalt (001) surfaces of seven alkali halides. It turns out
that the relaxations are small and that these shell models
are adequate to describe the surface dynamics of the alkali
halides. However, for more polarizable substances such as
PbS and PbTe the surface introduces a much larger per-
turbation, and significant modifications or additions (e.g.,
anharmonic interactions) to the bulk shell models may be
needed in order to treat the surface relaxation. We will
come back to these points later.

Since the long-range Coulomb interactions and short-
range repulsive interactions require different treatment,
we consider them separately.

For simplicity, we will refer to the cores and shells of
the ions as independent "particles. " Thus, the 2D unit
cell of the (001) plane of a rocksalt-structured crystal con-
tains four particles (two ions), which are allowed to relax
by different amounts. These relaxations will be different
for different layers, and for the alkali halides they should
rapidly tend to zero with increasing distance from the sur-
face.

The Coulomb forces on a given particle i are obtained
as the derivatives of the total Coulomb potential energy of
particle i,

where the summation is over all other particles (cores and
shells) in the lattice; Q;, QJ are the charges and r;, rj the
positions of particles I, and j.

The Coulomb sums which we have to consider are of
two types.

Type 1. A sum describing the Coulomb force in the z
direction on a particle in a given layer, due to the particles
in a different layer; this is an interlayer force. Since in
each given layer the particles relax differently, the basic
sum is a 2D sum, describing the force due to a plane of
like charges (i.e., all the particles of a given kind in a
plane properly compensated by a compensating back-
ground) on a particle located a z distance of approximate-
ly one or a multiple of the interplanar distance rp away
from it.

Type 2. A sum describing the Coulomb force in the z
direction on a particle due to the other particles, which in
the unrelaxed case lie in the same plane; i.e., the sum de-
scribes an intvalayer force. The basic sum is a 2D sum,
describing the force due to a plane of like charges (with
compensating background) on a particle located a z dis-
tance away from it, where z is of the order of the relaxa-
tion displacements (i.e., z «ro).

zo g Field point

A. Coulomb interactions / ~ /

Since in predominantly ionic crystals two-body pair po-
tentials (short-range and Coulomb) dominate, there exists
no direct mechanism to alter the two-dimensional (2D)
symmetry of the surface planes. Hence, surface-related
shifts in shell and core positions are restricted to the z
direction (relaxation, rumpling) and the symmetry in the
x-y planes is maintained, i.e., the 2D unit cell is un-
changed. However, cores and shells of ions in the same
plane parallel to the surface (i.e., having the same z coor-
dinate in the bulk) will, in principle, relax by different
amounts. To allow for this, an extended treatment of the
Coulomb interactions is required; it needs to be accurate
because of the delicate balance' between Coulomb and
short-range forces, and computationally fast because of its
repeated use in the iteration procedure. Both require-
ments are fulfilled by a 2D summation procedure based
on the Ewald method.

~ l] + l 2 1s even

o ll + l2 is odd

FIG. 1. 2D square lattice with nearest-neighbor distance ro,
lattice points have coordinates x =lIro, y =l2ro. Solid circles
indicate the points for which l~+ l& is even; open circles indicate
the points for which l ~ + l2 is odd.
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Of both types of sums we have two kinds, namely one
in which the field point lies above the origin of the 2D
square lattice, and the other in which the field point lies
above the center of a square (cf. Fig. 1). The square lat-
tice that is summed over in each of these sums has lattice
distance v 2rp, where rp is the in-planar nearest-neighbor
distance. Using as summation indices 1, and 12 (with
values 0, +1,+2, . . . ), such that 1lrp and 12rp give the x
and y coordinates of a point in the 2D lattice of positive
or negative charges, the sum of the first kind is summed
over points, for which 11+12 is even, whereas for the sum
of the second kind 1&+12 is odd.

Type lsum -(interlayer sum). This sum describes the z
component of the electric field (which, because of symme-

try, is the only nonzero component) at a point which lies a
distance zp away from a planar 2D square lattice of like
charges with lattice distance V 2rp .We find the electric
field as —8/Bz of the potential in the field point zp, due
to such a lattice. However, since the potential itself
diverges, we have to subtract the effect of a compensating
2D background in evaluating the potential. The effect of
this background is automatically cancelled when the four
contributions to the electric field at the field point, result-
ing from the four different particles associated with this
crystal plane, are added, because of the charge neutrality
of the unit cell. The z component of the electric field at
zp due to one of these lattices, when occupied by charges
Q, and including the background, is

@8,0 Q az
1 1 ds~ de

t +1 [(rpll) +(rpl2) +z ]'~ 2rp (s„+s~+z )'~

(even, odd) z zO

The summation is over ll and l2 with the condition that ll+l2 is either even or odd; the density of the uniform compen-
sating background is Q(—2rp) '. In Appendix A we derive for E„ the rapidly converging expressions

Zp

, g' +"(V1V2)exp —v 2~ (Vl+S '»'"
ro I p rp

(2a)

2
g' 6"(A,»A, 2)exP —1r

2rp rp
(2b)

F'(i 1 c 2)=i,

6'(Al, A2)=1+( —1) '

6'(A, l, A2)=( —1) '+( —1) ' .

(3a)

(3b)

The equivalent expressions (2a) and (2b) are both given
here, because, while we used (2a) in this relaxation study,
the notation of (2b) corresponds to the one used by Chen

The sums g'&, z and g'2 2 are both over a 2D square

lattice with lattice distance 1; the prime means that the
origins (pl ——p2 ——0 and A, l

——A2 ——0, respectively) are ex-
cluded from the summation. Further,

I

et al. ' in their surface-dynamical studies.
Type 2sum (intr-alayer sum). The basic expression is

again Eq. (1), but in this case z is the difference of the re-
laxation displacements of two particles which, in the unre-
laxed case, lie in the same plane. Thus z is at least smaller
and in most cases much smaller than rp,' for such z
values, expressions (2a) and (2b) are not rapidly converg-
ing. We follow a different approach.

As indicated above, we have four particles (cores and
shells of positive and negative ions) in the 2D unit cell;
they are numbered such that 1 and 2 belong to one ion,
and 3 and 4 to the other ion. Let these particles have
charges Q; (i = 1, . . . , 4) (core and shell charges), and
suppose that in a given relaxation iteration they have dis-
placements z; with respect to the unrelaxed plane. Then
the potential at the position of particle 1 is

r0 1 +1 (l1+l2) [l1 +l2+(z2 —zl ) Iro]
(even)

1 3 4

I +1 [ll +l2+(z3 z ) carol [l 1 +l2+(z4 zl ) ~r0]
{odd)

(4)

The first term is the potential at the position 1 due to the other particles 1 in the same plane. This term will not contri-
bute to the electric force on particle 1, but it has to be included in order for Vl to be finite (Q, +Q2+Q3+Q4 ——0). In
the contributions of both Ql and Q2, we have to exclude ll ——l2 ——0, for Ql for obvious reasons, and for Q2 because the
dipole on the ion, formed by particles 1 and 2, is considered with the short-range interactions. The z component of the
electric field at the position for particle 1 is
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8V1

Bz]
Q2, (Z2 Z])/'ro Q3 (z3 Z])/' 0

ro 1, +1 [l]+lz+(z2 —zl ) I ro 1 r0 I +1 [l]+12+(z3 zl ) Iro]
(even) (odd)

Q4 (z4 —z]) /ro

ro 1, +1, [I']+Is+( 4 ]—)'/' o1'"
(odd)

(5)

We see that (5) contains summands of the form 5;l(l]+l2+6;), where 5; =(z; —z])jro (i =2,3,4) is always & 1 and
in most cases && 1. Because of this we use in (5), the Taylor expansion,

5; 5;
(I'+ &'+&')'" (&'+&')'" (l'+ &')'" (&'+&')'" (I'+&')'"

315 g9 693 g]] 3003 g&3
128 i 256 & 1024

((2+I2)11/2 ((2+I2)13/2 (I2+(2)]5/2

We can now write for (5),

2 e 3 3 e 15 5 e 35 7 e 3]5 9 e 693 3003 ]3
('I52S3/2 T|]2S5/2+ 8 ~2S7/2 ]6 |]2S9/2+ ]2]] ~2S]1/2 256 ~2 S]3/2+ ]o24 52 S15/2

ro

2 [ (Q353+ Q454)S3/2 —
2 (Q3533+ Q4]54)S5/2+ —, (Q3 3+Q454)S7/2

ro

]6 (Q353+ Q4~4)S9/2 + ]2]] (Q3 ~3+Q4~4)S]]/2

693 i1 ] j o 3003 f3 13 0
2s6 (Q3~3 +Q4~4 )S]3/2+ ]024 (Q3(33 +Q4~4 )S15/2 j ~

where core displacement,

(]t]+l2 )
(even, odd)

The sums can be evaluated once and for all, so that the
expression for E&, is simply a power expansion in the
5 s. For small a ( 2, —', ) the convergence of S~ is rather
slow for direct computer summation. In Table I we list
values which were obtained with the incomplete gamma-
function method of Nijboer and de Wette "We

n. ote here
that Benson, Balk, and White have discussed the evalua-
tion of these and other 2D lattice sums by essentially the
same method. Both sets of results for the same sums
(S', a = —,', —', ,

—', ) are in complete agreement.
We now have expressions for the interlayer and in-

tralayer contributions of the electric field at the position
of a particle; these, when taken together with the short-
range forces, allow us to evaluate the total force on a par-
ticle (core or shell) at each step of the relaxation pro-
cedure.

V (I ] 12)= V,.(
I
r] —r2 I

) = V-(r) (10)

The second derivatives of this potential with respect to the
relative displacement x=u~ —u2 are

TABLE I. Values of the 20 lattice sums S"given in Eq. (8).

S'

kq
~cs =

2

where m =r, —r, is the relative shell-core displacement.
It is customary (cf. Woods et al. '

) to define the con-
stants of interactions (b) and (c) in terms of overlap poten-
tials such as, for example, V„(r],r2), which arises from
the overlap of the wave functions of the ions located at
the positions r& and r2.

Let us for the moment assume that this potential is a
two-body central potential, i.e.,

B. Short-range interactions

In principle, we consider short-range interactions be-
tween (a) the core and shell on the same ion, (b) shell-shell
(ss), core-shell (cs), and core-core (cc) interactions between
first and second neighbors. Not all of these interactions
are taken into account in each case, but interactions (a)
and (b) (ss) are always considered.

In alkali halides the intraionic core-shell interaction can
usually be described by a potential quadratic in the shell-

5
2

3
2

9
2

11
2

13
2
15
2

9.033 622

5.090 258

4.423 118

4.191268

4.091 587

4.044 922

4.022 266

16.517 32

23.704 59

45.618 75

90.646 30

181.0725

362.0596

724.0857
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8 V„
Bx Bx)

B V$$ X/XJ 1 8 V$$ X/XJ
2 +- ~ ~

/~2 p2 p QpN ~ p2

where the indices i and j label the Cartesian components.
The longitudinal and transverse force constants A j2

and 8/2 are the second derivatives of the interaction po-
tential taken parallel and perpendicular to the line which
connects the interacting ions. For a two-body central po-
tential these force constants are related to the first and
second derivatives of the interaction potential by

e

2P'o

a'v
2Br

I

8 V
Bi" r =r2

(12)

and

r

B
2~o r=r

eq

(13)

where r,q is the equilibrium distance between the interact-
ing ions (r,q =rp for nearest neighbors and r,q=W2rp for
second neighbors). Thus the coupling constants A and 8
which are usually determined by a least-squares fit to the
measured phonon dispersion curves determine in a unique
way the second and first derivatives of a two-body central
potential. For a more general potential, Eq. (13) is no
longer valid. In such a case the transverse force constant
B has to be decomposed into a central part B„„,for
which Eq. (13) still holds and a noncentral part 8„„„„

Bcent +Bn-cent (14)

%'e use the static equilibrium condition to decompose B
into its central and its noncentral parts. The requirement
that the derivative of the total potential with respect to
the isotropic deformation of the lattice (i.e., with respect
to the lattice constant a =2rp) has to vanish for a given
equilibrium crystal structure leads to the relation

1 8 V+ a v++
+2

Pp BP „—„W2l'p BP r =~2rp

+2 1 BV
M2r p Br r =~2rp

1 e 2A~Z
2P' o

(15)

where n~ is the Madelung constant and Z is the ionic
charge. In Eq. (15) interactions up to second-nearest
neighbors have been taken into account. Substituting Eq.
(13) into Eq. (15) and keeping in mind that the central-
potential part of the transverse force constant is now
called Bcent yields

Bcent + 2Bcent +2Bcent =
3 MZ

We note (cf. Table II) that the second-neighbor force con-
stants 8++ and 8 are roughly an order of magnitude
smaller than the nearest-neighbor force constants B+
We will therefore only make a very small error if we as-
sume that the second-neighbor interactions are purely cen-
tral, i.e., B,+,„+, =B++ and B,,„,=B,where B++ and
8 are the transverse force constants obtained from

shell-model fits to the measured phonon dispersion
curves. We can now determine 8,+,„, from Eq. (16) and
calculate the noncentral part according to Eq. (14).

In order to carry out the relaxation calculation we need
to know the short-range forces, not only at the static
equilibrium positions, but also as a function of the inter-
particle distances, i.e., we must determine the short-range
potentials of which they are first derivatives. The shell-
model parameters are usually obtained from a fit to the
phonon dispersion curves, which are measured under
specific thermodynamic conditions, i.e., at a given density.
Thus, the shell model gives us the second derivatives of a
yet unknown potential at one specific density, while we
need the first derivatives of that potential as functions of
density.

For the ionic crystals with rocksalt structure studied in
this paper, we approximate the short-range potentials by
Born-Mayer potentials of the form

V( r ) =a exp( br ) . — (17)

The potential parameters a and b of these two-body cen-
tral potentials can be obtained from the force constants A

and 8„„,using Eqs. (12) and (13) [in Eq. (13), 8 has to be
replaced by 8„„,]. Having determined the Born-Mayer
potentials V+(r), V++(r), and V (r), we have the
necessary tools to calculate the short-range forces as func-
tions of the interionic distances. At this stage we would
like to stress the following points.

(1) The procedure outlined above implies that in our re-
laxation calculation we neglect all noncentral interactions;
the reason is that no potential for such interactions has
been given up until now.

(2) If we had used the total 8+ instead of 8,+,„, to
construct a nearest-neighbor Born-Mayer potential V+
then the crystal (at its bulk nearest-neighbor distance)
would not have been in an equilibrium configuration com-
patible with this potential. This would mean that the ex-
isting equilibrium would somehow have to be maintained
by an external pressure (positive or negative). This would
have no special consequences as long as only the bulk is
considered, because as a result of bulk symmetry the
forces on a particle cancel each other in the bulk. Howev-
er, the presence of a surface destroys the bulk symmetry,
and the incompability of the bulk lattice distance with the
nearest-neighbor short-range potential would manifest it-
self. In particular, if no external pressure would be ap-
plied to maintain the bulk nearest-neighbor distance in the
interior of the crystal, the crystal would attempt to find a
new bulk nearest-neighbor distance as soon as it is allowed
to relax, which would give rise to a nonconverging relaxa-
tion, i.e., to relaxation shifts which do not diminish away
from the surface. (This, in fact, appears to have been the
cause of the nonconverging relaxation reported in Ref. 5.)

(3) We can summarize by reiterating that we have
avoided these unphysical effects by determining the
nearest-neighbor Born-Mayer potential in a way which is
consistent with the bulk equilibrium'condition (14). The
noncentral force constant 8+,,„, cannot be further used,
since there is no potential known for it, and hence no way
to determine the forces resulting from it. The magnitude
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of B„+,,„, [as given by (16)] as compared to B,+,„, is a mea-
sure for the error which is made in this way.

F,(Irj j)=F,(Irj j)+Dz . (19)

F, has the dimension of 4 times the number of layers in
the slab that are allowed to relax: there are two ions per
layer in the unit cell, and two particles (core, shell) per
ion. We try to arrive at a set of positions Ir~ j such that
F,(Irj j)=0. Thus the displacement vector z leading to
this configuration follows from

z= —D 'F, ([rjj) . (20)

Since (19) is a truncated expansion, we need an iteration
procedure to approach the configuration Irz j for which
F, vanishes. However, from a numerical point of view it
is not worthwhile to go beyond the linear term in (19),
and, in any event, for the weakly polarizable systems like
the alkali halides and MgO, about four iteration steps are
sufficient to obtain the relaxed configuration. The latter
is considered to have been reached when the forces I", are
of the order or smaller than 10 in units in which B„„,
ranges between 0.5 and 10. In such a configuration the
effect of any residual unbalanced forces on the dynamics
of the slab will be totally negligible.

The question as to how many layers should be involved
in a relaxation calculation is determined by the following
consideration: It is found that the innermost layer that is
relaxed, i.e., the layer adjacent to the bulk, always has a
relaxation that adjusts itself to the unrelaxed bulk. This
effect should not influence the relaxation of the outermost
layer, which it would if too few layers were allowed to re-
lax. Thus, the criterion that a sufficient number of layers
are allowed to relax is that the top-layer relaxation is not
significantly changed when an additional layer is involved
in the relaxation. In view of this consideration, a one-
layer relaxation is never sufficient to obtain a realistic re-
sult.

The relaxation procedure of strongly polarizable sub-
stances such as PbTe is considerably more complex. Be-
cause of the incipient instability, one cannot relax all
layers simultaneously, but has to start with relaxing one
single layer, then use the relaxed configuration of this one
layer as the starting configuration for the relaxation of

C. Relaxation procedure

Starting from the unrelaxed bulk positions, the relaxed
positions of the cores and shells (particles) in the slab are
found as those positions for which the total forces on the
particle vanish. These final relaxed positions are obtained
as follows: The total force in the z direction on a particle
I,, I",, is a function of the positions r~ of all the other par-
ticles in the slab. We use the expansion

r

F.'(Ir, j ) =F,'(Ir,'j )+ g
~ . Bzj 0

where the set trj j gives the starting positions of the parti-
cles in each step of the iteration (k is the unit vector in
the z direction). We can write (18) in matrix notation as
follows:

two layers, and so forth. The total number of layers to be
involved has to be carefully judged. For instance, for a
given number of layers, one may obtain what appears as a
converging (diminishing) relaxation, but then, when add-
ing more layers, the relaxation shifts may be large again.
Involving still more layers, this whole pattern may repeat
itself. What one may be seeing in such a case is a pre-
cursor of a structural transition starting at the surface,
but which is not able to persist into the bulk, because the
thermodynamic conditions for a bulk transition are al-
most, but not fully, satisfied.

The occurrence of these near-transition-like configura-
tional changes emphasizes the great importance of a very
carefully executed relaxation calculation. In this connec-
tion the procedure of accurately evaluating the forces (i.e.,
the gradients of the total multidimensional potential-
energy function) at each step of the iteration is a far more
sensitive procedure than seeking a minimum of the poten-
tial energy by a finite-step procedure. Since in the latter
case one would be seeking the minimum of a (in general)
shallow potential-energy valley, the step size cannot be
made too small, or the potential differences become of the
order of the rounding errors of the computer Bu.t for an
adequate step size the potential gradients are not suffi-
ciently accurately known, so that one runs the risk of con-
tinually missing the true minimum of the function. Thus,
in general, in a problem in which the forces can be accu-
rately evaluated, as in the present case, it is a far better
procedure to seek a configuration of vanishing forces than
to minimize the potential-energy function. It is a1so im-
portant to continue the iterations until the residual forces
have fallen below a specified limit. In this connection we
consider a one-step determination of the relaxed positions,
as, for instance, was carried out by Welton-Cook and
Prutton, as rather inadequate.

We will see that the relaxations obtained in this work
are in most cases smaller than those obtained in other re-
laxation studies. This may, in part, be the result of the
very sensitive relaxation procedure employed here.

EEE. RESULTS AND DESCUSSEON

A. Alkali halides and magnesium oxide

In Table II we list the equilibrium configurations for
four-layer relaxation calculations (n = 1, . . . , 4). The
quantities z,+, z,+, z, , and z, are, respectively, the shifts
the z direction of the positive core and shell, and the nega-
tive core and shell from their bulk positions, in units of
the bulk nearest-neighbor distance ro (outward shifts are
positive, inward shifts negative). Since in all cases the
positive and negative cores relax by different amounts, the
relaxed surface is rumpled. The quantity —,

' (z++z, )

gives the average relaxation of the ions in the planar unit
cell, and hence it is a measure of the average shift of the
plane; z, —z, is the difference in relaxation of the posi-
tive and negative cores, and hence it is a measure of the
rumpling. Furthermore,

p+ ——Y'+(z+ —z~+), p = Y' (z, —z, )

are the surface-induced dipole moments of the positive
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TABLE III. Shell-model parameters for the alkah halides and MgO from various sources. (RT denotes room temperature. )

A+
B+-
B+
A++
B++
A

B
z

X+
F+
X
'Y

k+
k

Units'

e /2u
e /2u
e /2u
e /2u
e /2u
e2/2u
e /2u

- e
A

e /u
e /v

LiD"

6.146
—0.748

(0.656)
0
0

—0.400
0.253
0.878
0
0

1.566
0.363
2.035
300

0
0.878
0.312

—1.190

10.590

LiF'

7.739
—0.874

(0.2122)
—0.317

0.051
1.030

—0.056
0.970
0.1011

—0.027
0.7292
0.1460
2.013
290

—0.406
1.376
0.864

—1.834
299.27

69.276'

NaFd

9.26
—0.77

(0.148)
0
0
0.34

—0.02
0.907
0.27
0.01
0.70
0.116
2.312
RT

Derived quantities
9.343

—8.436
0.979

—1.886
6505.2

117.765

10.264
—0.971

(0.115)
—0.427

0.022
0.597

—0.025
0.968
0.493

—0.035
2.601
0.194
2.820
RT

—1.647
2.615
1.520

—2.488
613.50
98.406

Nacl"

9.77
(—0.86)

0.055
—0.006

0.004
0.56

—0.006
0.890
0.18

—0.031
2.35
0.131
2.80
80

—0.175
1.065
2.400

—3.290
268.19
193.91

NaBr~

10.91
—0.88

(0.194)
0
0
0
0

0.96
0.64

—0.13
3.62
0.16
2.989
295

0.117
0.843
2.916

—3.876
50.215

212.52

Nar"

9.94
(—0.8668)
—0.026

0
0

0.618
—0.041

0.890
1.98

—0.112
4.34
0.136
3.211
100

—1.301
2.191
3.062

—3.952
152.30
230.30

'Here, u =2ro is the volume of the bulk unit cell; ro is the bulk nearest-neighbor distance.
J. L. Verble, J. L. Warren, and J. L. Yarnell, Phys. Rev. 16S, 980 (1968), model IV. The value given for a in the paper is not in

units of 10 cm', but in units of v

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, Phys. Rev. 168, 970 (1968), model I.
dW. J. L. Buyers, Phys. Rev. 153, 923 (1967), model VI.
'R. E. Schmunk and D. R. Winder, J. Phys. Chem. Solids 31, 131 (1970), model II.
G. Raunio and S. Rolandson, Phys. Rev. B 2, 2098 (1970); 6, 2511(E) (1972), model 2.

gJ. S. Reid, T. Smith, and W. J. L. Buyers, Phys. Rev. B 1, 1833 (1970), model V.
"R.A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B.Woods, Phys. Rev. 131, 1030 (1963), model VI.
'W. Buhrer, Phys. Status Solidi 41, 789 (1970), model IV.
'G. Dolling, R. A. Cowley, C. Schittenhelm, and I. M. Thorson, Phys. Rev. 147, 577 (1966), model IEE.
"S.Rolandson and G. Raunio, J. Phys. C 4, 958 (1971),model IV.
'G. Raunio and S. Rolandson, Phys. Status Solidi 40, 749 (1970), model 2.

M. J. L. Sangster, G. Peckham, and D. M. Saunderson, J. Phys. C 3, 1026 (1970), model B.

and negative ions in the successive layers. Finally, we list
the average fractional change in distance between the nth
and (n+1)th layer,

dn =
2 (zc +zc )n T(zc +zc )n+1

Two observations are immediately obvious from these
results: First, the relaxations are quite small, at roost a
few percent of the interlayer distance in the outer layer
(n =1), and second, the relaxations diminish rapidly with
increasing distance from the surface. Therefore, restrict-
ing the calculation to four surface planes is completely
sufficient in alkali halides and MgO. In fact, if we allow
a fifth layer to relax, nothing happens, i.e., the fifth layer
does not shift and the relaxations in the first four layers
remain the same.

In studying Table II, we note the following systematic
features.

(1) Looking just at the outer layer, the ion with smaller
polarizability relaxes inward from the ion with the larger
polarizability. Accordingly, LiF, NaF, NaC1, NaBr, NaI, —

KI, and RbI, for which a ~ a+, all show negative rum-
ple, i.e., (z+ —z' ) &0. MgQ also falls into this category,

although the shell model used in this work yields a larger
polarizability for Mg + than for 0; this is an unphysi-
cal aspect of the model. (A typical relaxation pattern
with negative rumple is shown in Fig. 2.)

(2) According to this same principle, KF, KC1, RbF,
and RbBr, for which a+ &a, all exhibit posItive rumple,
i.e., (z+ —z' ) &0. However, we draw attention to the
fact that the shell models of KCl, RbF, and RbB all have
rather large cation-shell charges. In these models the core
and shell charges of the positive ion mimic the effects of
overlap polarization; they do not describe the genuine
positive-ion polarizabilities. In fact, because of changes in
overlap effects at the surface, a properly surface-adapted
shell model should contain corresponding changes in these
parameters for ions near the surface. However, for the
present calculation no such changes have been made. It
is, therefore, quite possible that the positive rumple which
we are seeing in these cases is a model effect.

(3) The exceptions to the general rule of points (1) and
(2) are LiC1 and KBr, for which a )a+, but which both
show positive rumple. These cases indicate that the rum-
pling is not solely a function of the ratio of the polariza-
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TABLE III. (Continued).

10.760
—1.130

(0.008)
0.317

—0.054
—0.247

0.085
0.961
1.233

—0.060
0.455
0.040
2.672
RT

—3.617
4.578
1.573

—2.534
640.07
530.01

K.Cl'

11.17
(—0.784)

0.011
0.27

—0.074
0.15
0.08
0.82
1.61
0.019
0.99
0.064
3.126
80

14.137
—13.317

1.611
—2.431

6719.81
355.10

KBr"

13.15
(—1.227)
—0.034

0
0

—0.399
0.054
0.965
2.12

—0.101
3.05
0.141
3.274
90

—,2.234
3.199
2.336

—3.301
328.30
239.80

13.4
—1.0

(0.066)
—0.16
—0.01
—0.29

0.05
0.92
2.28

—0.11
4.51
0.13
3.505
90

—1.824
2.744
3.672

—4.592
272.96
391.32

RbFf

12.31
( —1.416)
—0.15

0.02
0.0003

—0.17
0.050
1.00
1.54

—0.008
1.15
0.099
2.805
80

Derived quantities
—40.338

41.338
1.494
2.494

48 920.0
229.36

RbCl

12.01
(—0.827)
—0.20

0.36
—0.04

0.31
—0.01

0.79
0.66
0.066
2.31
0.103
3.27
80

2.271
—1.481

2.531
—3.321
222.00
323.56

RbBr"

12.00
( —0.634)
—0.195

0.50
—0.18

0.11
0.036
0.79
3.04
0.011
0.56
0.042
3.416

80

37.992
—37.202

1.005
—1.795

36 284.0
447.89

RbI'

13.82
(—0.938)
—0.096
—0.28

0.19
0.64

—0.21
0.87
2.29

—0.099
5.64
0.045
3.629
80

2.020
2.890

14.792
—15.662
336.79

4145.14

29.13
—3.51

(1.142)
0
0

—1.353
0.256
1.885
0
0

(1.760)
(0.685)
2.106
RT

0
(1.885)
(1.155)

—3.04

75.97

bilities but is, to some extent, determined by other model
properties as well. Also, in the case of LiD, the shell
model is unphysical in that it assigns zero polarizability to
the Li ion, so that the rule linking the rumpling to the ra-
tio of the polarizabilities is not really applicable in this
case. On the other hand, in KBr the (anomalous) positive
rumple is very small, so this case is not a very significant
exception to the rule.

(4) The rumple of the top layer is repeated in lower
layers, but with decreasing amplitude and alternating sign.
That is, if in the top layer the positive ion is relaxed in-

ward, then in the next layer the negative ion underneath it
is also relaxed inward, etc. The rumpling dies out in three
or four layers.

(5) "fhe average layer shift —,(z, +z, ) is negative in the

top layer and alternates in sign in successive layers, i.e., it
is inward for the first and third layers and outward for
the second and fourth layers; the exception is RbI, where
the pattern is reversed.

These regularities in the relaxation results are the most
pronounced ones. To look for further, less obvious, regu-
larities is not very useful, since in any particular case the
details in the relaxation are the result of the interplay of
the various model parameters in that particular case.

We have considered two shell models for NaCl (cf.
Table III); the first, because it is the model used by Chen
et al. ' in their dynamics calculations, and the second be-

cause it is physically the better model: it has a more real-
istic anion polarizability and negligible overlap between
cation second neighbors. The relaxation results for the
two models are in good agreement, except for the shell
shifts of the Cl, which, although small in both cases,
differ by a factor of 2; we attribute this to the large differ-
ence in anion polarizability between the two models.

We now compare the present results with those of ear-
lier calculations. We first mention the relaxation calcula-

Na+ CI

unrelaxed relaxed
FIG. 2. Typical relaxation pattern for alkali halides with

negative rumple (NaC1). The vertical relaxation is enhanced by
a factor of 10. The dashed line indicates the warping of the core
positions, the dotted line that of the shell positions.

tion of Chen and de Wette for NaCl, NaI, and MgO, us-
ing the same shell models as were used here. These au-
thors erroneously used the total B+ to construct the
Born-Mayer potential V+, with the result that the bulk
equilibrium distance is not compatible with this potential
(cf. Sec. II). This gave rise to nonconverging average frac-
tional interlayer shifts d„and was the basis of the errone-
ous conclusion that bulk dynamic shell models are unable
to describe static re1axation phenomena in a consistent
fashion.

The first and most extensive relaxation calculatioris of
alkali halides using shell models have been carried out by
Benson and Claxton. There is qualitative overall agree-
ment in the magnitude of the relaxations and their de-
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crease away from the surface between our results and
those of Ref. 8, although, in general, the relaxations of
Ref. 8 are somewhat larger. However, this lack of agree-
ment in detail is not surprising. The present calculations
are based on shell models which are designed to fit bulk-
phonon dispersion curves over the entire Brillouin zone,
and hence the models have a certain internal consistency.
The models of Ref. 8 contain model parameters which
were taken from a variety of different sources, some dat-
ing back as far as 1933. Moreover, the models of Ref. 8
include van der Waals interactions, which we have not
taken into account. ' In view of these differences, the
overall qualitative agreement between these sets of calcu-
lations is comforting. At the same time, the differences in
detail point to the sensitivity of the results to the details
of the interaction models.

Martin and Bilz' have made an extensive and careful
study of the relaxation of the MgO(001) surface, using
twelve different interaction models, which include such
effects as surface-induced changes in anion polarizability,
quadrupole contributions to the total energy, and charge
enhancement at the surface. It should be appropriate to
compare the present results for MgO with those of
Martin's and Bilz's model 2, which is a simplified version
of the shell model of Sangster et al. ' used in this work.
It is found that, overall, the relaxation shifts are of com-
parable magnitude, but approximate agreement is found
only for the Mg relaxation in the two outer layers. Again
this lack of detailed agreement points to the delicate
dependence of the results on the details of the relaxation
models.

Comparison with the work of Welton-Cook and Prut-
ton on alkali halides [Ref. 9(a)] and MgO [Ref. 9(b)] leads
to similar conclusions. In general, the relaxation found by
these authors for the alkali halides are between 2 and 10
times larger than found here (the only comparable case be-
ing NaF); the rumplings are comparable. , For MgO the
agreement is better than for the alkali halides; in particu-
lar, the rumple of —2.44% in the top layer agrees well
with the low-energy electron-diffraction determination of
—2% by Welton-Cook and Berndt. '

A final comparison can be made with the one-layer re-
laxation calculation of LiF by Cowley and Barker their
cation and anion core shifts are about half of what we
find for the top layer in our calculation. A reason for this
small one-layer relaxation may be the circumstance, point-
ed out above, that a relaxing layer adjacent to the bulk

acts as a transition layer, adjusting itself to the unrelaxed
bulk. The difference in results between those of Ref. 17
and the present work has to be viewed in this light.

We conclude this discussion of the alkali halide results
with the important observation that they provide an
a posteriovi justification for the validity of the dynamical
calculations of Chen et al. ' for the unrelaxed (001) sur-
faces of the alkali halides. The smallness of the relaxa-
tions make it plausible that the small error one makes in
the equilibrium configuration, by placing the surface par-
ticles in their bulk rather than their relaxed positions, has
a minimal effect on the calculated second derivatives of
the total potential, i.e., on the vibrational frequencies of
the system. Of course, other surface-related changes, such
as changes in the anion static charges and polarizabilities,
can occur, and can have an effect on the surface modes,
but, in general, these effects are small. These facts have
been borne out by the recent He scattering experiments of
Brusdeylins et al.

B. Lead sulfide

In the foregoing we discussed the surface relaxation of
the alkali halides, which are weakly polarizable materials.
However, the relaxation procedure can handle equally well
strongly polarizable materials for which appropriate shell
models are available. Interesting materials in this
category are PbS and PbTe, which are narrow-gap semi-
conductors with the rocksalt structure. The difference in
the calculated relaxation between these materials is the
following: PbS is strongly polarizable, but its surface re-
laxation turns out to be convergent, like that of the alkali
halides. PbTe, on the other hand, because of its large Te
polarizability, exhibits a nonconvergent relaxation pattern
involving the entire slab. Because of this qualitative
difference, we have only included the results for PbS in
Table II; the relaxation of PbTe will be discussed in a
forthcoming paper. The results for PbS and PbTe can be
summarized as follows:

(a) PbS (shell-model parameters given in Table IV).
Most relaxation quantities (with the possible exception of
z,+ in the center layer) are large compared to the same
quantities for the alkali halides, and it takes more than ten
layers to approach the bulk values (as opposed to fewer
than four for the alkali halides). The relaxation is, howev-
er, convergent, and hence there is only a qualitative differ-
ence with the relaxation of the alkali halides but no quali-

TABLE IV. Shell-model data for PbS taken from M. Elcombe, Proc. R. Soc. London, Ser. A 300,
210 {1967),model III, expressed in the same units as those of Table III.

42.0 —7.2

B+-
ss n-cent

{—0.425)

g++
SS

—5.4

g++
SS

0.6 0.3 0.12

5.125 —0.380 6.328 1.090 489.4 49.99

X+
—4.98

Y+

7.12

X

0.924 —3.064 2.14

Pp

2.968

T (K)

300
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tative difference.
(b) PbTe. The relaxation results, obtained with the shell

model of Cochran et al. ', show an unstable, nonconverg-
ing relaxation pattern. We believe that this represents an
attempted reconstruction, which in the calculation is frus-
trated by the fact that the relaxing layers are sitting on
top of a nonrelaxable bulk crystal. Since the frequency of
the TO(I ) mode of PbTe is temperature dependent and
becomes almost soft at low temperatures, our results sup-
port the conjecture that a polarizability-related structural
transition of PbTe (e.g., induced by lowering the tempera-
ture) might start at the surface and work its way into the
bulk of the crystal. This could be an example of a much
more general phenomena that any symmetry-lowering
geometry in a crystal (surface, defect, interstitial, etc.) can
be the center from which a structural transition starts
growing into the crystal (in much the same fashion as nu-
cleation centers are needed for solidification).

C. Fina1 comment

Our calculations, both on the alkali halides and PbS
and PbTe, show that the relaxed positions represent real
minima of the potential with respect to the variations of
the core and shell positions perpendicular to the (001) sur-
face. However, we have to keep in mind the limitations of
the present calculation: Calling reconstruction a surface
rearrangement in which the two-dimensional surface unit
cell is enlarged, we have not taken into account either the
possibility of reconstruction or that of a relaxation of the
cores and shells in the x-y plane. On the other hand, our
calculations of the dynamics of the relaxed alkali halide
and MgO slabs show that our relaxation procedure for
these materials leads to true minima of the potential (pho-
non stability). In contrast, preliminary results of calcula-
tions of the dynamics of relaxed slabs of PbS and the oth-
er highly polarizable IV-VI compounds exhibit phonon in-
stabilities, indicating that additional degrees of freedom
are likely to play a role in the determination of the equili-
brium positions of the cores and shells. When these addi-
tional degrees of freedom are taken into account, it may
turn out that the relaxed positions for PbS, found in this
work, are saddle points rather than absolute minima.
These aspects will be discussed, together with the results
for PbTe, in a forthcoming paper.

APPENDIX A: COULOMB SUMS

Z —ZQ

(Al)

Similarly, the odd sum can be considered as a sum over
the same lattice, but taken with respect to the center of a
square (open circles in Fig. 1). This leads to the expres-
sion

g a
V 2»0 Bz

1

i, , i, [(l~ ——, ) +(l2 ——, )' +( z/W2»0)']' '

Z =ZQ

(A2)

We now bring the expressions in (Al) and (A2) into rapid-
ly converging form by the method of Nijboer and de
Wette;" this will lead directly to the expressions given in
(2a) and (3a).

We call the expressions inside the large parentheses in
(Al) and (A2) S'(z) and S'(z), respectively. We write
S'(z) and S'(z) in the form of an integral as follows:

lo' x"()=ffax y (z2+ 2+ 2)l/2

where

(A3)

w'(x, y) = g 5(x —l
& )5(y —l2) —1,

I),12

(A4)

The sums appearing in the expression for E,' [Eq. (9)]
are summations over a 2D square lattice with lattice dis-
tance 1. In the euen and odd cases, only terms for which
I&+ l2 is, respectively, even and odd, are taken in the sum-
mation (cf. Fig. 1). In a different approach, one can con-
sider the even sum as a sum over a square lattice with lat-
tice distance ~2»0 (solid circles in Fig. 1). In that case
the expression for E,' is

g a
~&»0 ~z i, , i, [li+lz+(z/&2» )']'"
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w'(x, y) = g 5(x —l&+ —,
'

)5(y —lz+ —,
'

) —1,
E1,12

(A5)

p=z/(V2»0) .

We now make use of Parseval's theorem, which states that
if F(h„,h~) and G(h„,h~) are the 2D Fourier transform of
f(x,y) and g(x,y), then

f f dxdy fg*= f f dh dh FG* .

According to this equality,

S"(z)= f f dh„dh~FTq[io"(x, y)]FTHM[(x +y +p ) ] . (A7)
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One can show that"

FT2[w'(x, y )]= g 5(h„—p))5(hy —p2) —5(h„)5(hy ) = g' 5(h„—p))5(hy —p2),
P ]~IJ2

(A8)

where g~ &, is a summation over the reciprocal lattice of the original (l~, l2) square lattice, which is again a 2D square

lattice, with lattice distance 1, The prime on the summation indicates that the term p~ ——pq ——0 has to be excluded from
the summation. In a similar fashion"

FT2[w (x,y)]= g 5(h„—p~)5(hz p—q)exp[mi(h +hz)] —5(h„)5(h&)
P)~P2,

= g' 5(h„—p))5(hy —p2)( —1) ' (A9)

Finally, "
FT2[(x +y +p ) ]=(h x+hz) ~ exp[ 2' —~p ~

(h„+hz)' ] .

If we now substitute expressions (AS) and (A10) in S'(z) [Eq. (A7)], and (A9) and (A10) in S'(z), we have

S"(z)= g' F"(p„p,,)(p', + p', )
' 'exp[ —2~

~ p ~
(p, ,'+p. ,')' '] .

Pj P2

(A 10)

(Al 1)

Finally, substituting S'(z) into (Al) and S'(z) into (A2) leads directly to expressions (2a). The expressions (2b) for F.,'
are obtained by applying the method of Nijboer and de Wette directly to Eq. (1). In that case we write

r

1 dSx def f
( 2+ 2+ 2)1/2 (A12)~e, o

I +i V i+is+(»&o)']'"
(even, odd)' Z Zp

where the sum is a double sum over l&, I2 such that l~+l2 is either even or odd. The derivation is completely analogous
to the one above, but now we need the 2D Fourier transforms of the following sums of 5 functions:

FT2 g 5(x l))5(y l2) 2:4 g 6 (A( A2)5(h 21))5(hy —,'A2) ~5(h )5(hy)
I(+12 Ar ]y Ar 2

(even, odd)

(A13)

The proof of this equality for the case i ~+ 12 even has
been given by'Chen the proof for the case l~+l2 odd is
similar. Using these expressions together with (A10) in
Parseval's expression and taking the limits h, h~ ~0,
occuring in both terms on the right-hand side of (A13), in
the proper fashion, will, after a little algebra, lead to ex-
pression (2b) for E,".

Y+ Y
ca+ a

—Rp Y+ —RpY
d+ =

7k++Rp ' k +Rp

where R o ——3 + +2B+

(B1)

(B2)

APPENDIX B: SHELL-MODEL
PARAMETERS

In Table III we list the parameters of the shell models
for the alkali halides and MgO, as they were taken from
the literature. The short-range parameters in these models
refer to shell-shell interactions. In addition, the models
specify the electrical polarizabilities cx and the mechanical
polarizabilities d which are expressed in terms of shell
charges Y and the core-shell force constants k,

The model parameters given in the literature are given
in the upper part of Table III. Usually, either B+ or
B„,,„, is given in the literature; in each case the derived
quantity [cf. Eq. (12)] is given in parentheses. The quanti-
ties in the lowest six rows except for MgO are derived
quantities; they follow from inversion of (Bl) and (B2)
and the relation Z=X++ Y+ ——X +Y . For MgO the
derived quantities in the entire column are given in
parentheses.
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