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Treatment of the relaxed I" center in Kcl with the recursion method
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Ham's vibronic model for the relaxed excited state of the F center in KC1 is investigated with a
new approach based on the recursion method. We have calculated the energy and the wave function
of the ground vibronic state and the lowest excited state, the dichroism in light emission in the pres-
ence of external fields (magnetic field, electric field, uniaxial stress), and the temperature dependence
of the polarization induced by the electric field and by the uniaxial stress. Ham's vibronic model is
found to account satisfactorily for the above properties. The perspectives of the recursion procedure
for studying coupled electron-phonon systems are discussed.

I. INTRODUCTION

In the last few years there has been considerable pro-
gress in the theoretical treatment of systems constituted
by electrons coupled to boson fields. ' This progress is
related to the development of techniques for the calcula-
tion of correlation functions and spectra, such as the re-
cursion method ' and the closely related mernory-
function methods. ' Although quite promising, these
methods have not yet been applied to the vibronic model
of relaxed defects. In this paper we show the convenience
and the advantages of studying the relaxed excited states
of color centers by the recursion procedure with appropri-
ate implementations.

As a specific example we consider explicitly the relaxed
F center in KCl. We study the relaxed excited state (RES)
and we calculate the energy and the wave function of the
ground vibronic state and the lowest excited state. We
can thus discuss the dichroism in the light emission in-
duced by external fields and the influence of the tempera-
ture, and compare our results with those based on a per-
turbation approach ' or symmetry treatment of angular
momenta.

In our calculation we consider the simplest vibronic
model of the RES. Basically this model consists of an
electronic 2s orbital interacting via a vibrational mode of
symmetry I 4 with threefold 2p orbitals of different ener-

, gy. The model was proposed originally by Bogan, and its
extreme consequences were investigated by Ham and
Grevsmuhl.

Later, Kayanuma and co-workers' "' and Iwahana,
Iida, and Ohkura' proposed more complicated models
which also included the Jahn-Teller interaction between
2p levels' ' or vibronic coupling among higher excited
states' (3s, 3p, 3d). Our approach based on the recur-
sion method could also allow in this case a nonperturba-
tive treatment of the problem. However, at this stage of
theoretical and experimental development, we consider
only the model of Bogan; more complicated models
should be corroborated by detailed band-structure calcula-
tions and a quantitative analysis of the deep defects corre-
sponding to an anion vacancy.

II. THE MODEL HAMILTONIAN
AND THE RECURSION METHOD

The most general situation of a relaxed excited state can
be described by a Hamiltonian of the type

e+A I +A e L +A

where F., and Fy denote the orbital energy of the 2s and
2p wave functions of the F center in the relaxed configu-
ration. We notice, however, that with a trivial extension it
is possible to modify Eq. (2) in order to account for other
wave functions and spin-orbit coupling, whenever neces-
sary.

We turn now to the lattice Harniltonian and to the
electron-lattice coupling. We assume that only one lattice
mode, namely the longitudinal-optical mode of symmetry
I 4, is relevant and couples linearly the 2s and 2p states.
We can thus write for A L

3T~LO+ Iia~LO(az ax + y ay +az az ) (3)

where A'coLo is the energy of the longitudinal-optical mode
and a; and a; (i =x,y, z) are the creation and annihilation
operators of symmetry x,y, z of the longitudinal mode.

The electron-phonon coupling interaction A, I is in
the linear approximation

l =X,P, Z

y(a;+a;)( ~p;)&s ~+ is)&p;
~
),

where y is a coupling constant related to the coupling en-

ergy EG encountered in the literature via the relation

where the terms are, respectively, the electronic Hamil-
tonian, the lattice Hamiltonian, the electron-lattice cou-
pling, and the interaction with external fields.

In the vibronic model of interest here, the expression
for the various terms appearing in Eq. (I) is simplified as
follows. The electron Hamiltonian is taken to be

~, =E, ~~)&~ ~+E ( ~p )&p
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It is convenient to represent the Hamiltonian (3) and (4)
on the basis set

I P;;lmn),
where i =s,x,y,z and l, m, n are integer numbers (positive
or zero), giving the phonon occupation numbers. We have

fico«+ g %co«(l+m +n )
I
P;;lmn ) (P;;lmn

I,m, n
l =S,X,J,Z

=y g Wl (
I p„;l —1 m n ) (p„lm'n

I
+

I
p„.1 —1 m n ) (p„;lmn

l, m, n

+&&+1(
I p„;l+ lm n &&(t, ;lmn

I
+

I
q4'l+ 1 m n &&p. 'lmn

I
)

+v m( Ip„;lm —ln&(p, ;lmn
I
+ Ip, ;lm —ln)&p„lmn

I
)

+v'm+1( Ipy, l m+1 n&&y. lmn I+ I W. lm+ln&&py lmn
I

)

+v n ( Ip, ;l m n —1)(p, ;lmn
I
+

I p, ;l m n —1&(p. I
lmn

I
)

+v'n+1(
I p, ;l mn+»&p„lmn I+ Ip„lmn+»&p„lmn

I
) .

The representation of the operator A in the basis set (5) is
very simple and of sparse form, and combined with the
recursion method it allows us to include a large number of
phonons. For instance, a basis set of about 5000 states al-
lows inclusion of at least ten phonons for each direction.
There is, however, no need to diagonalize explicitly such
large matrices. In fact, since the matrix is sparse we can
use the recursion method, basically in the form given by
Lanczos, '" and we can transform the initial and large
sparse matrix into a tridiagonal one, whose dimension is
the number of iterations performed. It is well known that
the eigenvalues of the small tridiagonal matrix converge
rapidly toward the eigenvalues of the large matrix, whose
eigenstates have relevant overlap with the starting state of
interest. Typically in the present problem, a tridiagonal
matrix of order 20 was more than sufficient to provide the
convergence to the exact eigenvalues with a precision
better than 10, in the energy range of interest. Further-
more, it is possible to determine the coefficients of the
states entering the vibronic state of interest by exploiting a
simple property inherent in the algebraic transformations
of the Lanczos approach in fact, such coefficients for a
given starting initial state can be calculated (within an
inessential phase factor) from the diagonalization of the
small tridiagonal matrix.

For convenience we give explicitly the recursion pro-
cedure for our model Hamiltonian. Let

I fo), I f~), . . .
indicate the v+1 normalized functions of the recursion
hierarchy; let

I
F +& ) be the (unnormalized) function de-

fined as

~ v+ 1
= (Fv+ 1 I

Fv+ 1 &

(8a)

After determining b„+~, we construct the normalized
function

I f +& ) of the recursion hierarchy as

or, equivalently,

In the case of our vibronic model

I
F ) = Q c~)~~ I PJ,'lmn )

j=l—4
I,m, n

(9)

where j=1,2,3,4 stands for s,x,y, z, respectively. Using
Eqs. (8), (8a), and (9), we obtain the following explicit re-
cursion relation for the coefficients cj'~~„.

The next pairs of parameters b + ~ and a + ~ are given by
the normalization and by the expectation value of the
Hamiltonian on the state

I F„+,), namely
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c'1"I+„"=Ic', I' „[E,+(l+m+n+ —,
'

)fmLo]

+y(V'l + lc2'I'+1m „+Wlc2'I', m „+™+ lc 3 I m+1n

(~) (v) (v) ~ (v) ~ (v—1)a b
+~mC3lm —1n ++n + 1C4lm n+1+~nC41m n —1 )] /~v C limn C limnb b

c2lm„"= Iy(3/l+1cII+1 „+~lcI'I' 1 „)+c21mn[EI +(~+m+n+ 2 )~LO]I/bv c2!mn c2lmn

c3!mn ty(3 m + c1lm+1 n +~mc1lm —1n )+c3lmn[Ep+(I+m +n + 2 )flCOLO] I /b — c3lmn c3lmn

c4lm„"= I y(1/n + lc'1 I'm „+1+Vn c'1 I'm „1)+c4'lmn [E~+(I+m+n+ —,
'

)ficoLo] J/bv c—4lm„— c4lm„' .
b " b„

These relations, for any given starting state, allow one
to construct a small-order tridiagonal matrix, which is
then diagonalized using standard programs.

To give an idea of the reliability of the method used, we
have verified that about 20 iterations in a cluster contain-
ing up to 20 phonons in each direction provide an accura-
cy of better than 10 for the eigenvalues of interest.
This precision is almost 3 orders of magnitude better than
what was really necessary. For actual calculations we
have used clusters whose size was checked to be more
than sufficient for our purpose.

In performing the calculations, we take E& —E, =90
meV as assumed by Ham and Grevsmuhl. In a theoreti-
cal estimation of Wood and Opik, ' the difference Ez E, —
of the relaxed F center in KCl is calculated to be 80 meV.
Because of some uncertainty in the theoretical treatment,
and in order to compare our new method with the pertuf-
bative procedure of Ham, we have taken the value of 90
meV. Similarly, the value of fmLo is taken to be 26.8
meV, and the coupling constant y = 19.4 meV.

In Table I we report our calculations in the absence of
external fields. The most significant physical quantities
are 6E, the difference between the first-excited vibronic
state and the ground state, and r„(0)/r„(p), the ratio be-
tween the radiative lifetimes of the ground vibronic state
and the electronic state 2p. Finally, we also give the ratio
R =r„(0)lr„(1)concerning the ratio of the radiative life-
times of the ground vibronic state and the first-excited
state. A comparison with the previous results of Ham
shows that a nonperturbative approach is desirable, even
if the relaxed-F-center problem in KC1 falls in the
intermediate-coupling region.

TABLE I. Comparison between our results and the calcula-
tions of Ham and Grevsmuhl (Ref. 7) in the absence of external
fields. The energies are in meV.

III. EXTERNAL PERTURBATION EFFECTS

A. Effect of a magnetic field

We now study the effects of external perturbations on
the vibronic model outlined in the preceding section. In
order to consider the effect of the magnetic field, it is con-
venient to take as basis functions for the electron Hamil-
tonian, besides

I p, &, the states

The relevant part of the Hamiltonian due to the presence
of the magnetic field H is thus

We have calculated the induced circular polarization
neglecting spin-orbit terms:

I+ (0)—I (0)

I+ (0)+I (0)

We find a satisfactory agreement with the experimental
data of Fontana and also of Baldacchini et a/. ' In par-
ticular, expression (11) turns out to be linear in H; with
the value gL,

——l we obtain

P (0)= —(8.9X10 )H (H in G) .

The experimental results' of the circularly-polarized di-
chroism and the previous theoretical results of Ham are
summarized in Table II. Incidentally, we remark that the
experimental situation is still somewhat uncertain' and
more accurate experiments would be desirable.

KC1

'This work.
Reference 7.

Recursion
method'

19.37
12.3
1.73

Perturbative
method

17.65
12.1

2.4

B. External electric field

In the presence of an external electric field, say in the z
direction, the interaction Hamiltonian becomes

A g ——eEz,

where E is the local electric field and e is the absolute
value of the electronic charge. Because of this interaction
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TABLE II. Comparison between our results, the calculations of Harn, and the experimental results
in the presence of external fields (magnetic, electric, and uniaxial stress).

P {0)

Recursion
method'

—{8.9~10 ')H

Perturbative
methodb

—(10.2 && 10—')H

Expt.
results

—(9+1)&& 10 H'
—(11+1)&(10 H'
—(16+1)&& 10 H

P (0)

p„„..(o)/~

(4. 14)& 10 )o,' F

5.4)& 10 (kg/mm )

(2.24&& 10 )cx F

5.1 && 10 (kg/mm )

(1.0+0.3) X 10-'F

9.9)& 10 (kg/mm )

(2.27+0. 13)X 10

'This work.
bReference 7.
'Reference 16.
Reference 17.

'Reference 9.
Reference 20.

gReference 21.

the states 2s and 2p are coupled regardless of the vibronic
interaction, the state 2s being coupled with the state 2p, .
We can thus write the additional term due to the presence
of an electric field in the form

~E DE(I.&——&p. I+ Ip. &&. I),

D E=&s IeEz Ip, & .
The change in energy of the ground vibronic state is
found to be negative and quadratic in D E.

The polarization induced by the electric field is given
by

I,(0)—I~(0)
PE(0)= I,(0)+I„(0)

This is positive and quadratic in D.E. For convenience
the dipole D is measured units of a dipole with length 1

A; the dimensionless parameter is indicated with a. We
also assume that there is no difference between the local
field and the bulk field. The results are given in Table II.
The comparison with the experimental data gives for a a
value between 4 and 5, as predicted by Bogan and
Fitchen.

We have also calculated the temperature dependence of
the polarization induced by the electric field. We suppose
the system to be in the condition such that kT &&5E.
Then we can write

P(7 ) 1+( (7 )
sElkT—

p(0) 1+3Re—sEzkT

where 5E is the difference between the ground and the ex-
cited vibronic state (in the absence of a perturbation),
C(T) is only slightly dependent on temperature, and R
has been defined in Sec. II. It is possible to show that the
induced polarization decreases with the temperature and
can be approximated with an exponential of the form

—I-A
P(T)

with P=227 K, 2=3.8=3R —C(T); this behavior is
again in good agreement with that of Hogan and Fitchen. 9

C. Uoiaxial stress

Finally, we have also considered with our procedure the
effect of a uniaxial stress on the luminescence of the re-
laxed I center. Suppose that a uniaxial stress X is applied
in the z direction of the crystal. This gives a deformation

eg =X/( C 11 —C 12 )

where cll and c12 are the elastic constants of the isotropic
solid. The most important effect of the uniaxial stress is
to lift the degeneracy of the 2p levels. In the presence of a
uniaxial stress we must include in our formalism the addi-
tional Hamiltonian

~.1--=«e( —
I p. & &p. I + z I p. & &p I

+ 2 I py & & py I »
where 3 Vee/2 is the energy difference of the states p„and
p, due to the stress. It is possible to obtain the polariza-
tion and its dependence on the temperature via the stan-
dard tridiagonalization procedure used throughout this
paper. If we take for V the value that can be deduced by
the experiments of Schnatterly'8 and Hetrlck, 19 we obtain

P„,'„,(0)=(5.4X10 )X (X.in +kg/mm ) .

This must to be compared with a value of (5.1X10 )X
calculated by Ham and with an experimental value of
(9.9 X 10 )X of Hetrick and Compton and
(2.27X10 )X of Akiyama et al. ' We have also found
that P ( T) increases slightly with the temperature, but this
increase is less than 10% [P„„»(T)/P„„»(0)—1=9% per
100 K], in agreement with the experimental data.

IV. CGNCI. USIONS

In this paper we have considered a nonperturbative pro-
cedure, based on the recursion method, for investigating
the vibronic model of impurity centers. The procedure
has been successfully applied to study the luminescence
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features of the I center in KCl, which is known to be in
the intermediate-coupling situation. In this case, as
shown in this paper, the differences between a perturba-
tive and a nonperturbative approach are significant, but
not dramatic. The major advantage of our procedure lies
in the fact that it can be applied with about the same
amount of labor to strongly coupled electron-phonon sys-
tems. Furthermore, other possible extensions of the vib-
ronic model can be treated within the approach of the
present paper. For instance, it would be possible to take

into account quadratic terms in electron-phonon coupling
(if relevant), to include other modes, or spin-orbit interac-
tion, or to study more complicated centers such as I"z
centers, ' which are of large importance for color-center
lasers.
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