
PHYSICAL REVIEW 8 VOLUME 32, NUMBER 6

Quasiparticle band structure of lithium hydride
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We consider the energy bands of quasielectrons and quasiholes in lithium hydride within the
Coulomb-hole —plus —screened-exchange formalism. The crystal density matrix is expressed by
means of localized Gaussian functions and off-diagonal terms are preserved and rigorously account-
ed for. Using a basis set of plane waves orthogonalized to the cation core wave function, we express
the matrix elements of the nonlocal self-energy operator in analytic form, thus achieving high nu-
merical accuracy with moderate computational labor. Our theoretical results for the quasiparticle
band structure, the valence bandwidth, the energy gap, and exciton resonances are in good agree-
ment with the available optical and photoemission data. Ab initio inclusion of the many-body ef-
fects is found to be a key point for a theoretical interpretation of experimental electron properties
and transitions in LiH.

I. INTRODUCTION

A sound theoretical description of the electronic struc-
ture of solids cannot be achieved without handling direct-
ly the equations of motion obeyed by the one-particle
Green's function of the many-electron system. The
independent-particle approximations, on which consider-
able efforts have been focused in the literature, ' constitute
an important but only a preliminary step toward a qoanti-
tative account of the electronic excitations in the solids.

The many-body theory of quasiparticles (QP's) in solids
has been systematically developed and reviewed in the
literature; ' the simplest many-body approach which in-
cludes ab initio correlation polarization effects in the
concept of energy bands is known as the Cou-
lomb-hole —plus —screened-exchange approximation
(COHSEX). Soon — after the appearance of this basic
theoretical framework, it was applied to semiconductors
and to insulators. However, in the papers mentioned, '

the numerical evaluation of the exchange and correlation
effects was so laborious as to discourage for a decade or
so further studies of energy bands based on the Coulomb-
hole —and —dynamically-screened-exchange approximation
(except for the perturbative version of Brener6).

Another source of the delay operating against systemat-
ic application of the many-body formalism can probably
be ascribed to the concomitant developments of the
density-functional formalism. %'ithin this formalism,
the treatment of exchange and correlation with various
approximations has heuristically succeeded in describing a
number of ground-state properties of solids. However, the
situation is less satisfactory for interpreting single-particle
excitations; furthermore, from a first-principles point of

view it is not clear what kinds of many-body effects are
actually included in the local-density formalism.

More recently a renewed interest has focused on the
fundamentals of first-principles calculations within the
Green's-function method. The formalism has been re-
vised to obtain physically and mathematically sound ap-
proaches to the complicated self-energy operator. Furth-
ermore, efficient techniques have become available to
treat rigorously the integro-differential equations which
describe the elementary excitations in solids; using ap-
propriately localized Gaussian-type orbitals' (GTO's) and
orthogonalized plane waves" (OPW's), the matrix ele-
ments of the nonlocal self-energy operator can be calculat-
ed by analytical means in the COHSEX approximation.

In this paper we consider specifically the quasiparticle
states in solid lithium hydride, which constitutes the sim-
plest heteronuclear crystal. The quantum-mechanical in-
vestigation of its structure has been pursued from the
pioneering work of Hylleraas' up to the recent Hartree-
Fock (HF) work of Dovesi et al. ' In spite of its simplici-
ty and of the numerous theoretical and experimental in-
vestigations, a quantitative understanding of the electronic
excitations of this pilot compound is still lacking. In this
paper for the first time we calculate ab initio the quasipar-
ticle band structure of l.iH and show that a proper ac-
count of the many-body effects ~is central to bring into
agreement theoretical and experimental results.

Calculations on the energy bands of LiH have been car-
ried out by several authors with different methods. The
first calculation was performed by Ewing and Seitz, ' who
used the cellular method. An important contribution was
that of Kunz and Mickish, ' who also treated correlation
polarization effects within the electronic polaron model.
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Ermoshkin and Evarestov' used a cluster model for the
perfect crystal and for a number of embedded point de-
fects. Perrot' applied an appropriate version of the
augmented-plane-wave (APW) method. Kulikov' ex-
ploited a linearized Korringa-Kohn-R. ostoker method in
the version implemented by Ziman (KKRZ). Grosso and
Pastori Parravicini' performed a Hartree-Fock calcula-
tion within the orthogonalized-plane-wave method; they
introduced a Gaussian representation of atomiclike orbi-
tals and assumed an ad hoc diagonal density matrix. Fi-
nally, Dovesi et al. ' performed a HF study using a polar-
izable basis set of localized orbitals.

Despite these extensive efforts, ' ' substantial quanti-
tative disagreement occurs among the various calculations
even for the interpretation of basic experimental proper-
ties, such as the valence bandwidth and the forbidden gap.
This appears even more surprising if one considers that
LiH, which crystallizes in the highly symmetric fcc struc-
ture, is the simplest of a11 binary compounds. In fact, in
the generally adopted ionic picture, all four electrons in
the unit cell have s-like character and only two of them
are really relevant for the chemical bonding.

In this paper we show that the discrepancy between
theory and experiment is substantially removed if a
many-body approach is adopted for describing the quasi-
particle band structure of LiH. Particular attention has
been given to a correct account of orthogonalization ef-
fects; due to the diffuse nature of the hydride-ion wave
function, a large number of neighbors must be taken into
consideration. Even in this peculiar situation, we succeed
in expressing the matrix elements of the nonlocal self-
energy operator in analytic form; this technical part is dis-
cussed in the Appendix. In Sec. II we briefly summarize
the basic equations encountered in the Coulomb-
hole —and —dynamically-screened-exchange approxima-
tion. The density matrix for LiH crystals and a suitable
model dielectric function are also provided. In Sec. III we
report the results of our calculations and compare them
with the theoretical and experimental data available in the
literature. Section IV contains the conclusions.

Hartree potential of the electrons, and X is the self-energy
operator which includes all the exchange and correlation
effects. In terms of the spin-independent one-electron
density matrix p(r, r') we can write

2

V(r)=I, p(r', r')dr'. (2)
[r—r'/

In general, the difficulty in solving Eq. (1) is related to the
fact that X(r,r', E) is a complicated, nonlocal energy-
dependent operator.

In the Hartree-Fock approximation the self-energy
operator is replaced by

2

XHF(r, r') = ——,
'
p(r,r'), . (3)

/r —r'
f

The previous theoretical works on LiH were concerned, at
least in principle, with the solution of Eq. (1) with the ker-
nel as in Eq. (3).

As already discussed, the COHSEX -approximation
constitutes one of the biggest steps in the theoretical basis
for band calculations. In the COHSEX formalism the
self-energy operator is approximated by

&coHsEx(r, r') = ——,
'
p(r, r') ~(r —r')+&cH&(r —r'),

where 8'(r —r') is the statically screened Coulomb in-
teraction and the Coulomb hole energy is given by

1 4me 1
&cH= 2 J 3dq 2(2m )' q' ~(q)

In Eq. (4) it is assumed that the dielectric screening is
homogeneous and local field effects can be neglected. '

The quasiparticle band structure of LiH provided in the
present paper is obtained solving the integro-differential
equation (1) with the kernel (4). Some relevant details
concerning two ingredients that we need, namely, the den-
sity matrix and the dielectric screening in LiH crystals,
are briefly discussed below.

B. Density matrix for LiH crystals

II. SUMMARY OF THE FORMALISM

A. Discussion of the quasiparticle equations

The calculations of the present paper are based on the
Coulomb-hole —plus —screened-exchange approximation
proposed by Hedin and extended by Hedin and
Lundqvist. In essence, this formalism considers the
dynamics of the one-particle Green's function and then
expands the self-energy operator in terms of a dynamical-
ly screened interaction (rather than a bare Coulomb in-
teraction), keeping the first term. The quasiparticle exci-
tations in a closed-shell many-electron system (such as
LiH) obey the integro-differential equation

+ V~(r)+ V(r) P(r)2'
+ J X(r, r', E)g(r')dr'=EP(r),

where V~ is the nuclear Coulomb potential, V(r) is the

The crystal structure of LiH is fcc with two ions in the
unit cell, H in the position d~ ——0 and Li+ in the posi-
tion d2 ——(a/2)(1, 0,0). The lattice constant a is taken to
be a =7.720 a.u. In the ionic picture, cations and anions
have the simple 1s closed-shell configuration. The local-
ized wave functions, following the work of Hurst, ' were
recalculated for our purpose and expanded in Gaussian or-
bitals. 22

The computation of the electron band structure requires
the knowledge of the first-order density matrix of the
electron system. In the minimal basis set for the closed-
shell LiH system, the spinless density matrix can be writ-
ten as

p(r, r)=2+ g P'(r —d —~ )(S ') p„
m '&n

)& Pp(r' —dp —r„),

where ~~,r„are translational vectors, a,P label either hy-
dride or lithium ions, and S is the overlap matrix
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S p„= (P (r d— v—)
~
Pp(r d—p r—„)} . (7) III. RESULTS OP CALCULATIONS

Because of the diffuse nature of the hydride-ion wave
function, the inversion of the overlap matrix must be per-
formed nonperturbatively and include a sufficient number
of shells. This peculiar aspect of orthogonalization effects
was first pointed out by Berggren and Martino and has
been extensively studied in the literature. As we shall
see, a proper account of orthogonalization effects is essen-
tial also in connection with band-structure calculations.

C. Dielectric screening for LiH

In the literature there are a number of model dielectric
functions, which allow a satisfactory description of
screening effects in semiconductors and insulators. In
this paper we find it convenient to adopt the interpolation
formula9

1 1 q q+C1 p +C2
&(q) &0 q +k) q +k2

(8)

The advantages of this interpolation formula are the fol-
lowing.

(i) Each term in Eq. (8) gives rise to an effective interac-
tion in real space of the Yukawa type, and the correspond-
ing matrix elements can be evaluated in closed analytic
form (see the Appendix).

(ii) We can determine the parameters in Eq. (8) in such
a way as to reproduce the expected behavior of e(q) for
low-, intermediate-, and high-q limits. We will comment
more explicitly on this point.

The correct low-q limit in Eq. (8) is obtained by setting
e0 equal to the electronic contribution to the static dielec-
tric constant; from Ref. 27 we set @0=3.61. We also re-
quire that the value of one of the screening parameters,
say, k~ is the same as that provided from a Thomas-
Fermi treatment.

In order to fix the remaining three parameters, we no-
tice that for high q the behavior of e(q) must be of the
orm

16mn,
~+0 6

as q —+00
~(q)

'
a~ q' q' (9)

where n, is the valence-electron density and a~ is the
Bohr radius. In the asymptotic behavior (9}, the term of
type q must be rigorously lacking, as can be inferred
also from the fact that its presence would give rise to un-

physical divergences in the response to a point-charge per-
turbation.

The above criteria completely determine the parameters
in Eq. (8); we have verified that other reasonable choices
based on models (see Ref. 26) lead to similar results and
do not influence appreciably the final calculations. The
actual values of the parameters used in Eq. (8) are
c~ ——1.144, kI ——0.817, c2 ———0.421, k2 ——1.346; the value
of the Coulomb-hole energy, defined by Eq. (5), is
EcH ———5.01 eV.

A. General remarks

Within the formalism outlined in the preceding section,
it is now very economical to calculate the band structure
of LiH in the HF approximation and the quasiparticle
band structure in the COHSEX approximation. We have
performed both types of calculations in order to single out
and discuss the role of the many-body effects. As an ex-
pansion set we have used plane waves orthogonalized to
the cation core wave function.

The energy of the core states in the crystal has been
determined with the following procedure. In the ease of
HF calculations, the theoretical orbital energy for the free
Li+ ion with seven optimized Gaussians is found to be
'e= —75.97 eV, which differs by less than 0.35 eV from
the experimental ionization limit29 (Iz ——75.6193+0.0031
eV). The position of the HF core band can be obtained30
from the relation E«"„——e+a~e /a+5, where
a~ =3.495 13 is the Madelung constant, a~e /a =12.31
eV is the potential of the surrounding lattice of point ions,
arid 5= —0.44 eV is the correction due to the finite size
of the hydride ions in the first few shells. For the core en-

ergy in the HF calculations, we thus have E„"„=—64. 10
eV. The position of the COHSEX core band is modified
because of the screening of the ionic self-energy operator
with the crystal dielectric function. This shift can be
safely obtained with a perturbative approach because of
the small spatial extent of the cation core wave function.
We obtain E„„=—59.94 eV, the difference with
respect to the corresponding HF value being, of course, of
the same order as the Coulomb-hole term. Now we will
pass on to present calculations and discuss our results.

B. Hartree-Pock energy bands

In Fig. 1 we report our results for the HF energy bands
of LiH; the crystal energies at some symmetry point of in-
terest are given in Table I. The states are labeled with the
irreducible representations of the little groups of k, fol-
lowing the notations of Koster et al. ' A few additional
details on our calculations are worthwhile to mention.

The cutoff in kinetic energy of the plane waves has
been chosen as 16(2m/a) Ry because this assures a satis-
factory accuracy; this corresponds to including a number
of OPW's between 60 or 70 (depending on the point k of
interest). Occasionally, we have performed test calcula-
tions with as., many as two hundred OPW's. In the inver-
sion of the overlap matrix (which is the most peculiar as-
pect of LiH}, we have included up to seven shells; this cor-
responds to considering the interaction between the cen-
tral ion with the first 80 neighbor atoms. The diffuse na-
ture of the hydride-ion wave functions makes this com-
pound a nontrivial challenge for band-structure methods.

We wish to insist on this particular aspect with a few
more considerations. In Fig. 2 we show the behavior of
the valence energy band (described here with a single
OPW in order to keep to the essential) when increasing
the number of interacting shells. The relative maximum
of E„(k) for small k exhibited by some curve in Fig. 2 is
totally due to the fact that only a small number of neigh-
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FIG. 1. Hartree-Fock band structure of solid lithium hydride.

bor ions were considered. This spurious behavior disap-
pears when a proper number of shells is included. A
spurious effect of similar origin, concerning the isotropic
Compton profile, was earlier noticed by Paakkari et al.

In order to evaluate quantitatively the effects of off-
diagonal terms in the density matrix we have performed
HF calculations, replacing in Eq. (6), ( S ') p„by
5a~ ~„. The results are reported in Fig. 3; the central im-
portance of a proper account of orthogonalization effects
for a correct description of the valence band is evident.

The results of Fig. 3 on one hand justify qualitatively the
"ad hoc" procedure, adopted in Ref. 19, which consisted
of simulating the orthogonalization effect by a suitable
narrowing of the hydride-ion wave function; on the other
hand, the results of Fig. 3 show that a quantitative
analysis of the band structure of I.iH can only be pursued
with an accurate description of the density matrix of the
crysta1.

The features mentioned above are the primary source of
the differences, at times remarkable, occurring among the

TABLE I. Energies in eV of Hartree-Pock calculations in LiH at high symmetry points of the Bril-
louin zone: I (k=0), X [k=(2m/a)(1, 0,0)], L [k=(2m/a)( 2, 2, 2 )], IC [k=(2m/a)( ~, 4,0)], and W

[k=(2m/a)(1, —,',0)].

Core
states

r+ —64.10 Xi —64.10 L p
—64.10 E g

—64.10 8'4 —64.10

Valence r+ 15 97
states

Xi —7.77 L I
—10.60 E i —8.32 8'i —8.09

Con-
ciuc-
tion

states

I +) 18.72 Xg 3.03 4.42 EC4 4.36 5.64

I 4 19.53

I +5 23.45

I 2 24.64

X5 11.77
X4+ 14.71

Xi 18 27

L i 15.41
L+ 18.00
L3 20.10

Ki 780
EC2 12.98

Ki 17.18

8'4 12.01
8') 19.67
8'5 25.14
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theoretical calculations available in the literature. In
Table II we report some relevant energies as calculated by
different authors, together with the rigorous HF calcula-
tions of the present work.

The sequence of levels of the valence and conduction
bands in LiH can be qualitatively understood starting
from the "empty-lattice" analysis of the NaC1 structure
and considering the interaction between states of the same

symmetry by perturbation theory. For convenience, in
Fig. 4 we show the empty-lattice band structure. To
understand qualitatively the relationship between Figs. 1

and 4, we notice that at each k vector the lowest s-like

X N/ K

FIG. 3. Comparison between the HF band structure obtained
with the rigorous density matrix (solid curve) and the HF band
structure with the density matrix in diagonal form (dotted
curve).

empty-lattice state splits off in the actual LiH crystal in
order to give the corresponding s-like valence band. The
remaining accidental degeneracies of the empty lattice are
then removed in agreement with the qualitative rules of
the perturbation theory. For instance, at point I we have
in the empty lattice the sequence

The lowest I ~i state corresponds to the bottom of the
valence band. The degeneracy among the states

TABLE II. Energies (in eV) of LiH at some symmetry points determined by different authors and
different methods in the one-electron approximation. LCAO denotes the method of linear combination
of atomic orbitals.

Present Kunz and
work, Dovesi et al. , Kulikov, Perrot, Mickish,
OPW LCAO' KKRZ APW' LCAO"

Ermoshkin
and

Evarestov,
cluster

method'

Ewing
and Seitz,

cellular
method'

Xz,
EG ——X+,„~Xz,
r+

Lz.

Xl,core ~X2c

—7.77

3.03
10.80

—15.97
19.53

35.50
8.20

—10.60
4.42

15.02
67.13

—6.73
6.61

13.33
—13.39

6.67
—10.57

70.35

3.3
7.0
3.7

—1.2

4.5
1.2
8.9
7.7

4.5
6.8
2.3

—1.4
21.3
22.7
5.6
2.3
9.1

6.8

—5.4

13.8
—19.3

21.2
40.5
13.7

—9.2
10.4
19.6
73.7

—13.0

12.6
—15.8

6.8

17.9
3.0

' Reference 13.
Reference 18.

' Reference 17.
d Reference 15.
'Reference 16.
Reference 14.
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FIG. 4. Empty-lattice energy bands for face-centered-cubic lattices.

I ~, I 4, I 5, I q, corresponding to the plane waves
(2m/a)(1, 1, 1), is lifted taking into account the interaction
with the states of the same symmetry on different shells
of wave vectors; the interaction with the plane waves of
type (2m/a)(2, 0,0) tends to decrease I &,14 with respect
to I 5, I 2, and the sequence of conduction states is in fact
I ) (I4 (I g (I p.

Similarly at point X we have the empty-lattice sequence

X),X2 (X(,X4,X5 ((X),X2,X3,X4,X5,X5 . . . .

We thus expect that the valence band has symmetry X+&,

and that the lowest conduction states have the sequence
X2 &X5 &X4 &X~, as confirmed by Fig. 1.

A similar analysis can be applied to the other symmetry
points. According to these qualitative remarks confirmed
by the detailed calculations, we see that the valence band
and the lowest part of the conduction band are s- and p-
like, respectively. This situation is reversed with respect
to standard alkali halides. Since p bands (s bands)
berid downward (upward) as the wave vector k changes
from the center of the Brillouin zone toward the borders,
we immediately understand why the direct gap of this ma-
terial occurs at the point X of the Brillouin zone and not
as its center. Another consequent feature is the strong an-

isotropy of the effective masses of the holes in the valence
band at X; notice in fact the strong dispersion along the
X-I" direction against the almost negligible dispersion in
the direction X-8' perpendicular to it. We finally note
that the band structure of solid hydrogen exhibits similar
aspects, whose origin is ultimately related to the s nature
of the occupied molecular orbital.

While the qualitative features of the HF bands are well
established (and valid also for correlated energy bands) the
quantitative agreement of rigorous HF results with experi-
mental data is poor. For instance, the HF energy gap in
our calculation is 10.80 eV, while the experimental gap is
=5 eV. The HF valence bandwidth is 8.20 eV against ex-
perimental values of =6 eV. Also the core-conduction
edge, estimated experimentally as =59—60 eV, is in the
HF calculations equal to 67.10 eV. These discrepancies
can be removed only by handling from the very beginning
the dynamical equations of the one-particle Green's func-
tion.

C. Quasiparticle energy bands and comparison
with experimental data

Using the formalism outlined in Sec. II, we have calcu-
lated the quasiparticle energy bands of I.iH within the
Coulomb-hole —pulse —screened-exchange approximation.
In Fig. 5 we report the QP energy bands. The calculated
energies at some symmetry points of interest are given in
Table III: for convenience, also the effective masses of
quasiparticles are computed and reported in Table IV.

From a comparison between Figs. 1 and 5, we see that,
as expected, the core and valence QP energy bands shift
upward and the QP conduction bands shift downward;
however, these shifts are not "rigid" as in rare-gas solids
or alkali halides. This in turn is related to the complicat-
ed nature of the valence band, whose width is narrowed by
many-body effects. Another important modification is
the change of the energy gap; the QP energy gap is 5.24
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eV, in comparison with the HF energy gap of 10.&O eV
and with the experimental energy gap of 4.99 eV. Also,
the energy threshold for core excitons changes drastically,
again with a considerable improvement in the agreement
with experimental data.

The electronic structure of LiH has been widely investi-
gated experimentally by means of reflectivity mea-
surements at the fundamental edge, x-ray photoelectron
spectroscopy, synchrotron radiation, and soft-x-ray pho-
toelectric yield spectroscopy. In Table V we compare our
theoretical results with experimental data of relevance.

The optical measurements at the fundamental edge are
quite accurate and in substantial agreement among them-
selves. The transition X+»~X&, is dipole a11owed

and the experimentalists have observed clearly the n =1
exciton, the series partner n =2, and the one-phonon side-
bands. The fine structure of the phonon sidebands, as
well as the optical phonon replica, is favored by the high
anisotropy of the exciton bands (as can be seen from Table
IV). In the effective-mass approximation for shallow ex-
citons, we expect that the effective dielectric constant is
close to the static value e, =12.9+0.5. Using the Qp
masses of Table IV, we obtain for the binding energy of
the valence exciton the theoretical value Eb ——+44 meV,
in excellent agreement with the experimental data.

Besides the prominent peaks related to the valence-
exciton resonances, other weaker structures were observed
in the interband transitions to higher conduction states

TABLE III. Energies (in eV) of the COHSEX calculations in LiH at high symmetry points of the
Brillouin zone.

Core
states

I +i —59.94 X+) —59.94 L —, —59.94 K) —59.94 P 4 —59.94

Valence
states

Con-
duc-
tion

states

I +i —13.52

I +i 14.21

X+) —6.36

X2 —1.12

L+, —9 23 Ei —6.86

X4 0.11

8'i —6.56

1.30

14.79
18.57
19.71

Xg 7.22
X+ 9 91
X ) 13.37

Li
L+
L3

10.93
13.17
15.45

K)
E2
Xl

3.41
8.38

12.35

8'4
8')
85

7.37
14.94
20.23



4084 S. BARONI, G. PASTORI PARRAVICINI, AND G. PEZZICA 32

TABLE IV. Longitudinal, transverse, and weighted-averaged
effective masses (in units of the free-electron mass) for quasipar-
ticles at high symmetry points of the Brillouin zone. The re-
duced masses for some relevant direct transitions are also given.

p+

X2,
L)„
L2.
X)„X2,

mI =m, =0.748

m) ——m, =—0.018
mh ———0. 150 m, = —4.304

ml =0.121 m~ =0-938
m~ ———0. 171 m, = —0.610
mI ——0.13? m, =0.142

p~ =0.067 p&
——0.770

pI =0.076 p, =0.115

(m ) = —2.919
(m ) =0.666

(m ) = —0.464

(m) =0.140

(p) =0.542

(p) =0.108

above =5 and 10 eV in the absorption spectrum. Ac-
cording to our results of Table III, these structures could
be related to the dipole-allowed transitions in the energy
region around L~„~L2, (9.45 eV) and K&„~K„(10.27
eV), and to the higher dipole-allowed transitions
X»~Xz, (13.56 eV) and K»~Kz, (15.20 eV)'.

The valence bandwidth has been measured by x-ray
photoemission spectroscopy ' (XPS), and we find again
a substantial agreement between our theoretical values and
the XPS data.

Reflectivity measurements have been performed around
the Li+ E edge, and a prominent peak at 57.8 eV has been
identified as due to a Li+ ls ~2p-allowed exciton at point
X. This is confirmed (within the accuracy of the experi-
ments at these energies) by the prominent peak in the I.i+
E photoelectric yield spectrum occurring at 58.4 eV. In
order to estimate the core-conduction energy threshold,
we assume that the binding energy of the core exciton is
determined by the reduced mass @=0.666m, (see Table
IV) and by the electronic contribution to the dielectric
constant ep=3. 61. We obtain a binding energy of the core
exciton of Eb'" ——0.70 eV, which is an order of magnitude
higher than the binding energy of the valence exciton. An
increase in binding energy of core excitons has been ob-
served also in other materials and has been extensively
discussed in the literature; this interesting effect seems
to be favored whenever the conduction band has minima

away from the center of the Brillouin zone because of the
intervally mixing among them. For a discussion of a
similar effect on impurity states see Ref. 47. Although a
rigorous account of the interplay between the central-cell
correction and intervalley mixing in determining the bind-
ing energy of core excitons is difficult, from the experi-
mental value of the exciton resonance and the theoretical
binding energy, we estimate the core-conduction threshold
at =59.1 eV. From Table III we see again a good agree-
ment with the theoretical value of X&„„~X2,(58.82 eV)
in the COHSEX approximation (although this agreement
must be taken with some caution because of the already
mentioned uncertainty both on the experimental and
theoretical side).

Besides the prominent core-exciton peak, other struc-
tures were observed at =66.0 and =70.7 eV in reflectivity
measurements, and at =63.4 and =72 eV in photoelec-
tric Li E yield measurements. The discrepancy of =2
eV in the experimental position of these structures is not
clear. at this stage. We notice here that the position of
these structures with respect to the band-to-band thresh-
old seems to be in overall correspondence with the struc-
tures of the valence-conduction transitions with respect to
the energy gap. A relative shift is expected because of the
lack of dispersion of core states and because of the dif
ferent selection rules for cationic and anionic s like bands-
(a point which seems to have been overlooked in the
literature). According to our results in Table III, the ex-
perimental structures in photoelectric Li E yield spectra
at =63.4 and =72 eV seem to be related to the dipole-
allowed transitions in the energy region around
K&««~K&, (63.35 eV) and to the higher dipole-allowed
transition Lq««~L ~, (70.87 eV) and Lq««~L3, (73.21
eV). Notice that L+~ +L+3 are p-like stat'es for the ion not
at the origin (i.e., Li in our work), and the experimental
structure in photoelectric yield spectra beginning at =72
eV can be assigned to s~p cationic transitions (with ini-
tial and final energies both shifted by the Madelung term
with respect to the free cation). This interpretation is fur-
ther corroborated by the fact that the transition energy
I I p +I 4, occurs at 74.73 eV, which is near the experi-
mental ionization limit (Iz ——75.62 eV) of the free cation.
However, further experimental data with better resolution
would be desirable in the energy region of core transitions.

TABLE V. Experimental data (in eV) for valence-conduction transition edges, valence bandwidth, and core-conduction edges, and
comparison with our QP and HF band-structure calculations.

X)„~X2,
10.80

L ),~L2c

15.02

Xiv ~&5c ~v =&iu —I IU

19.54 8.20 67.13 75.87

X1 core ~X2c X1core ~X5c

79.51 82.10

COHSEX 5.24 9.45 13.58 7.16 58.82 67.16 70.87 73.11

Expt.
4 99' =9.0b =13.5" 6.3+1.1'

6.0+1.5d

exciton
58.4'
57.8

above 72'
above 70.7b

'References 39, 40, and 44.
b Reference 44.' Reference 45.
"Reference 43.
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IV. CONCLUSIONS

In this paper we have performed an ab 'initio study of
the quasiparticle energy bands in lithium hydride, and we
have obtained a satisfactory quantitative understanding of
the peculiar physical properties of. this compound.
Despite its apparent simplicity, the study of the electronic
structure must be done with sophisticated techniques.
The peculiar shape of the bands, the occurrence of
equivalent minima, and the high anisotropy of quasiparti-
cle effective masses add interest to this prototype com-
pound. This work should also stimulate a wider study of
quasiparticles in solids, since it is evident that the tech-
niques for solving rigorously HF integro-differential equa-
'tions can be appropriately transferred to the solution of
the integro-differential equations obeyed by the one-
particle Green's functions.
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APPENDIX: ANALYTIC EXPRESSION OF THE
SCREENED-EXCHANGE BIELECTRONIC

INTEGRALS BETWEEN GAUSSIAN ORSITALS
AND PLANE WAVES

In this appendix we give the analytic tools for comput-
ing the matrix elements of the self-energy operator in the
GPW method. We explicitly discuss here only the expres-
sion of the screened-exchange bielectronic integrals be-
cause these are by far the most complicated ingredients we
need. The other types of integrals are either a particular
case of what we are going to discuss explicitly or are trivi-
al. This appendix is presented in a self-contained form; it
includes as particular cases, situations already encoun-
tered in previous papers. ' Without loss of generality,
we suppose that the GTO's of interest are of Is type;
higher angular momenta can be easily handed by applying
differentiation techniques to the results of the present Ap-
pend1x.

The most general screened-exchange bielectronic in-
tegral we need in our calculation on I iH involves two
plane waves and two ls GTO's, centered on different
sites, i.e.,

—ik r —a(r —5 )J ( k), a), $).,g; k,2a~, 5)2= f e ' 'e
—A, F12

ik2 r2 —a2(r2 —52) de e d1 )dI'2,
I'i2

(Al)

where r&2
——

~
r& —r2

~

. An analytic expression for J, can
be obtained in terms of the error function of complex ar-
gument.

First we decouple the variables r& and r2 by means of
the identity

A,r12 iq. (r1 —r2)

dq.1 e

2+ g +A,

Then we exploit the well-known relation for the Fourier
transform of a Gaussian function

The problem of evaluating J, has been transformed into
the problem of finding an analytic solution for the in-
teg1 al

e —q 2/4a

f elqx dq
+A,

(A4)

where X is a complex vector (the subscript to X and a
have been suppressed, being inessential here).

We use the identity

—p(tt~+A2)d p
q2+A, 2 0

'
3/2

~
~

~ik r —a(r —5) ~ ik 5 —k /4ae
'

e dr= — e e
A

(A2)

next we analytically extend to the case of the complex k
vector the result (A2) valid in real field. We obtain

3/2

With some trivial algebra we obtain P+ (1/4a)
e P42e [X2/4(P+ ) /4a—) ]dP—

—r (k1.51 —k2.52) —(k 1/4a1) —( k 2 /4a2)J,= e e
2(a,a,)'"

q 2/4a12
sq X12 e

q'+~' 'dq,

where the reduced exponent a~2 and the vector + ~2 are de-
fined as

A )CX2 ~]
&2= X)2=5I—62 —

& +~)+~2 2O.') 20,'2

3/2
e)j.~/4a ~

e
—Pk~e X2/4PdP—

1/4a p

where g~=g„+g +g, . Performing the change of vari-
able

= x' = x'dp=—
4P

' 2t'

the expression for I becomes
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4~ g2/4~ +
g

2 (y2g2/4g 2)d
3/2 v

e ex 0

and with some algebra, we arrive at the result
(A5)

where for X one means

x=(x x)'". (A6)

r

e''4~ e'z erf XVa+
x 2va

It is useful to introduce at this stage the complex error
function erf(z):

2 —t2erf(z)= e ' dt, zEIL' .

Using the following indefinite integral,

g 2~ 2 ( b 2/~ 2 ) 1

L

+e ~z erf +va — +1
2 a

(A7)

e2ab erf g~ +, +e —2ab erf
4a X X

+const,

It is easily verified that Eq. (A7) does not depend on the
sign of X; in fact, if we change X~—X, the integral I is
invariant because of the standard odd property of the
complex error function erf( —z)= —erf(z). The final re-
sult for J, is quite simple:

J,(k],a$, 5$, A, ;kz, a2, 52) = 32e
2(a&a2) ~

2
A, /4a)2—i (k) 5)—k2.52) —(k ) /4a I ) —(k 2 /4a2) e

e
+12

~12X ~ e erf X]2V a&p+
2v'ai2

+12
1 +e erf X)z+a(z-

2+a)z
(A8)

An equivalent expression, useful for the computational work, can be obtained using the relation

—z2erf(z)=1 —e ' w(iz),

where the complex function w (z) is defined as

-z2 2lw(z)=e ' 1+ e' dt

Equation (A8) can be written as

3 2 2 12 12
2

i (k 5$ k2 52) (k
$ /4a] ) (k2/4a2)

JS
2(a)a~)'~ X/2

w i —Qa(2X)z —w i +V a12~12
2+a(, 2+a„ (A9)

~ith the help of a standard computer routine ' for the function w(z) the screened-exchange integrals can be easily
evaluated.
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