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In a three-dimensional crystal of trans-polyacetylene we have considered different interchain
orientations. Using a semiempirical self-consistent-field calculation scheme (modified neglect of dif-
ferential overlap) we have calculated optimal values of the setting angle and total energies for dif-
ferent structures. The (CH), chains are found to be in phase along the horizontal and vertical crys-
tal axes. In the glide plane, however, we found a degeneracy between the in-phase and out-of-phase
orientations. The intrachain geometry is not affected by the surrounding chains as long as there are
no solitons present on the chain. A segment between a soliton-antisoliton pair or between a soliton
and a chain end, however, is confined due to interchain interactions. The confinement energy, here
called the soliton-lattice energy, is 0.1 meV/(CH unit) in the soliton-bearing chain for a system ini-
tially in the ground-state configuration, leading to a confinement length at room temperature of

about 250 CH units.

I. INTRODUCTION

Scanning electron micrographic studies! of films of po-
lyacetylene show that the polymer chains build up fibrils
with a diameter varying from 100 to 500 A. These fibrils
are randomly oriented. If one aligns the fibrils by stretch-
ing the polymer film, x-ray studies’ show that the poly-
mer chains are parallel to the fibril axis. From x-ray-
diffraction and electron-diffraction experiments it is also
possible to determine the relative orientation of the poly-
mer chains. Here, we restrict ourselves to the trans iso-
mer, which is suggested to have the structure given in Fig.
1.23* Numerical values of the lattice parameters obtained
by different groups and by different techniques are listed
in Table I. Comparison with structural data from trans-
diphenylpolyenes CgH5(C=C),C¢Hs suggests that trans-
(CH), has a monoclinic symmetry and based on this the
space group is either P2;/a or P2,/n depending on
whether the single-bond—double-bond pattern on the two
chains in the unit cell is either in phase or out of phase.
Results quite different from those shown in Table I have
been obtained from electron-diffraction experiments by
Lieser et al.® Here the different methods of polymeriza-
tion, which use, for example, the Ziegler-Natta catalyst6

or the Luttinger catalyst,” play an important role for the
structure. The isomerization procedure is also important;
it has been suggested® that the P2,/n structure is the
ground-state phase in polyacetylene while the P2;/a
structure is obtained as a metastable intermediate state
during the isomerization from all cis-(CH), to all trans-
(CH),.

The degree of dimerization of trans-(CH), has also
been experimentally determined. X-ray diffraction? shows
that the carbon-atom distortion (see Fig. 1) is u(=0.026
A, resulting in single- and double-bond lengths of 1.44
A and 1.36 A, respectively. On the other hand, electron-
diffraction experiments® give u,=0.024 A and single-
and double-bond lengths of 1.43 A and 1.38 1&, respective-
ly.

Most previous theoretical work on polyacetylene has
been based on the Hiickel theory including o-bond
compressibility. Within .this model, the Su-Schrieffer-
Heeger (SSH) model,1® it is possible to calculate self-
consistently the dimerization pattern on a single chain'!
and fit it to experimental findings by adjusting the param-
eters included in the model. The Hubbard term, which
contains the on-site electron-electron interaction, has been
added to the SSH Hamiltonian. Monte-Carlo-type calcu-

TABLE 1. Comparison of the unit-cell structure of trans-(CH),.

x-ray fiber Electron BM BM
1P IPR IPR OPR oP oP diffraction® diffraction® calc® calc®
a 4.24 4.24 4.24 4.24 4.24 4.24 4.24 7.32 4.25 4.25
b 7.32 7.32 7.32 7.32 7.32 7.32 7.32 4.24 7.32 7.32
[4 2.50 2.50 2.50 2.50 2.50 2.50 2.46 2.48 2.48
B 91.5 91.5 95.0 91.5 91.5 95.0 91.5 90.5 91.1
¢ 52.9 51.8 51.1 51.7 53.0 52.3 55.0 66 51.8 54.1
P2,/a P2,/a P2,/a P2,/n P2,/n P2,/n P2, /n Pnam P2,/n P2,/a
*Reference 2.
*Reference 4.
“Reference 15.
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lations'? on small systems using this model show an
enhancement of the dimerization for small values of the
Hubbard U. Equilibrium structure of both the cis and
trans isomer of polyacetylene has been determined from
ab initio calculations by Karpfen and Petkov!® using a
double-{ technique. Semiempirical self-consistent-field
calculations using the modified neglect of differential
overlap (MNDO) scheme'# have also been applied to cal-
culations of the ground-state geometry of a polyacetylene
chain. Comparisons with experimental and ab initio stud-
ies show that geometry predictions are very accurate in
the MNDO scheme and the three-dimensional-structure
calculations in this paper will therefore be performed us-
ing this method.

Calculations concerning the geometry of the three-
dimensional unit cell of polyacetylene have been done by
Baughman et al.> They minimize the lattice energy,
which is the summation of the Williams 4 intermolecular
potentials CC, CH, and HH. The unit-cell parameters are
calculated for trans-(CH), using crystallographic data
from diphenylpolyenes and assuming a monoclinic struc-
ture with P2,/a symmetry. In a later article by Baugh-
man and Moss'®> (BM), three different methods of calcu-
lating the lattice energy are presented. One method uses
the Williams 4 potential; the second method uses the
bond-bond interaction theory of Salem for the C-C disper-
sion and the Williams 4 potential for the C-C repulsion
and the C-H and H-H repulsion and dispersion. In the
third method, dynamic polarizability calculations of
bond-bond dispersion between the C—C bond replaces the
Salem method. Lattice-energy contributions are calculat-
ed using the three different methods and the results show
a rather good agreement between the methods. The lattice
energies of the P2,/a and P2,/n structures are calculat-
ed, giving a slightly lower energy for the P2,/n structure.
BM also introduce the soliton-lattice energy Eg;, which is
the change in energy due to a phase shift of 7 in the bond
alternation of one chain surrounded by a lattice having its
ground-state equilibrium geometry. Using the second and
third methods they found that Eg =4 cal/mol C,H,
[0.09 meV/(CH unit)] for the P2,/n symmetry and
Egp =14 cal/mol C,H, [0.32 meV/(CH unit)] for the
P2,/a symmetry. They also found that the six-nearest-
neighbor chains contribute about 96% of the total value
of Egp. This result is used in this report where we have
restricted the polyacetylene system to seven chains (see
Fig. 1).

The problem of soliton confinement in polyacetylene
due to interchain coupling is also treated by Baeriswyl and
Maki'® who use the SSH Hamiltonian including an inter-
chain hopping term ¢, on a system of two chains. Using
values for the interchain and intrachain hopping energies
t; ~25—120 meV and #,=2.5 eV, they found that an an-
tiferromagnetic (out-of-phase) ordering between two
chains is the ground-state configuration and the calculat-
ed soliton-lattice energy in a five-chain system is equal to
Eg; ~3—10 K per site. This method predicts out-of-
phase ordering between all chains independent of their
orientations. Other authors, such as, Baughmann and
Moss always keep the in-phase orientation in the horizon-
tal and vertical planes (see Fig. 1), which results in a unit
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FIG. 1. Seven-chain trans-(CH), system viewed in the
chain-axis direction (above) and with chains 1 and 4 projected
on to the horizontal plane (below). ¢ is the setting angle and 3
is the monoclinic angle.

Our calculated

FIG. 2. Intrachain geometry of trans-(CH),. e
d;=1.09 A,

values are d,;=1.3584 A, d,=1.4642 A,
a=124.95°, and y =115.6".
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cell of three-dimensional (3D) (CH), built up from two
chains in the same glide plane (chain 1 and the middle
chain in Fig. 1). In this article we will compare total en-
ergies of the in-phase and out-of-phase orientations of
chains in the horizontal plane and in the glide plane. We
will also determine the relaxed intra-chain and interchain
geometry of the system shown in Figs. 1 and 2 and finally
calculate the soliton-lattice energy for the system.

II. METHOD OF CALCULATION

As mentioned in Sec. I, Boudreaux et al.'* have shown
that the MNDO scheme of Dewar and Theil'” gives a
very good prediction of the chain geometry for polyace-
‘tylene. It is therefore reasonable to assume that the
three-dimensional-structure calculated by this method is
also of good quality. MNDO is a semiempirical method
for finding the self-consistent-field solutions of the
Roothaan equations with a basis set consisting of the
valence atomic orbitals of the calculated molecule. Cer-
tain selected sets of multicenter integrals are neglected
and other terms in the equations are determined either
from experimental data or from semiempirical expressions
which contain numerical parameters that are adjusted to
optimize molecular geometries and heats of formation
AH f:

AH;=E —Eq+ 3 AHf
A

and

Etot :Eel +22E§C§e .
A B

(A <B)

The summations are over all atoms in the molecule. E$3°

are the core-core repulsions, E is the total energy of the
molecule, and E,, is the total electronic energy of the mol-
ecule.

Since the aim of this report is to calculate geometrical
data for different structures of the three-dimensional unit
cell of polyacetylene and to compare total energies of
these structures, the MNDO scheme is ideal for our pur-
pose. Other data, such as, the band gap and the energies
of individual molecular-orbital (MO) states that are less
accurate in MNDO are not presented here. Another great
advantage of MNDO compared to ab initio methods is
that the approximations made in the MNDO scheme
make computations of relatively large systems possible.
Since in our calculation we need up to seven chains (see
Fig. 1), it is still a very time-consuming project.

The interchain distances a and b cannot be optimized
in the seven-chain system and will therefore be held fixed.
Numerical values of a and b are taken from x-ray-
diffraction studies by Fincher et al.>: a=4.24 A and
b=7.32 A. Also, the monoclinic angle 8 will be fixed
but two different values, 8=91.5° and 8=95.0°, are used
in two otherwise identical sets of computations. The set-
ting angle ¢ will be optimized separately in the P2;/a and
P2,/n symmetries. The optimization is done iteratively
by guessing one starting value ¢, for the six surrounding
chains and letting ¢ on the middle chain vary to lower the
total energy. The optimized value ¢, is the input setting
angle of the six surrounding chains in the second itera-
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tion. This procedure is then repeated until self-
consistency in ¢ is obtained. Using the optimized value of
the setting angle we optimize the chain geometry in the
same iterative way by fixing the geometry of the sur-
rounding chains and letting all the bond lengths and bond
angles on the middle chain vary to lower the energy. In
this case, however, there is in principle no need to iterate
since it is found that the intrachain geometry is not af-
fected by the surrounding chains as long as no solitons or
polarons are present. Once the optimized geometry is
found we can calculate differences in heat of formation
and total energy between different structural configura-
tions.

III. RESULTS AND DISCUSSION

With the fixed values on the geometrical parameters a,
b, and [, we have optimized the setting angle in the
seven-chain system. Each of chains 1 to 6 (see Fig. 1)
contain six double bonds, i.e., C;;H 4, and the termination
unit is =CH,. It is worthwhile to stress that trans-(CH),
chains always end with double bonds. The intrachain
geometry is taken from the optimized values of a single-
chain system. Thesg values are, for the double bond
(C=C), d;=1.3583 A, the single bond (C-C),
d,=1.4640 A, the C—H bond, d3;=1.09 A, the C—C=C
angle, a=124.9°, and the H-C—C angle, y=115.6".
Suppose that the unit cell of (CH), in three dimensions
consists of a C,H, unit from two chains in the same glide
plane, say, chain 1 and the middle chain in Fig. 1. Note
that under this assumption, the chains in the same hor-
izontal plane are in phase. With fixed interchain distance
we' can think of four different orientations that can give
local minima in the total energy. These orientations are
shown in Fig. 3 viewed in the chain-axis direction and
projected on the horizontal plane. The different orienta-
tions in parts (a), (b), (c), and (d) are as follows: (a) in
phase (IP), (b) in phase and rotated by 7 (IPR), (c) out of
phase and rotated by 7 (OPR), (d) out of phase (OP). To
be able to do comparable calculations on different sym-
metries and to calculate the soliton-lattice energy, it is
necessary to be able to shift and rotate the middle chain
without changing the energy due to interactions involving

rr i e rr
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FIG. 3. Different possible interchain orientations of the
unit-cell chains, chain 1 and the middle chain. (a) The chains
are in phase; (b) the chains are in phase but the middle chain is
rotated by 7 about the chain axis direction; (c) the chains are out
of phase but the middle chain is rotated by ; (d) the chains are
out of phase.



the chain ends. To avoid this effect we let the middle
chain be longer than the surrounding chains, here, the
middle chain contains ten double bonds, i.e., CyoH,,,
which means that the ends of this chain will always be far
away from the ends of the surrounding chains. With this
geometry the setting angle is optimized following the
iterative procedure described in Sec. II. The results con-
verge after about five iterations with an accuracy of
roughly 0.02° in the final value of ¢. Table I, columns
1—6 provide the optimized values of the setting angle for
two different monoclinic angles B and for the different
orientations described above. Columns 7—9 provide re-

sults, both theoretical and experimental, from works of

other authors.

During the optimization procedure we found that the
setting angle of the middle chain results from competition
between chains 1—4, on the one hand, and chains 5 and 6,
on the other hand. Mainly, the electron-electron repulsion
energy between orbitals attached to close-lying hydrogen
and carbon atoms connected to different chains is mini-
mized to determine the optimal value of ¢ in the ground
state of the seven-chain system. A five-chain system con-
taining chains 1—4 and the middle chain will relax to the
optimal setting angle 90°. If only the chains in the hor-
izontal plane are treated, the resulting value of ¢ is 0°.
The smaller value of the setting angle in the rotated struc-
ture can also be explained in terms of electron-electron
repulsion between electrons occupying the molecular orbi-
tal localized mainly on a hydrogen atom and a 7 electron
which sticks out normal to the plain of the polyacetylene
chain and points in the direction of the hydrogen atom. If
we look at Fig. 1 we can recognize the rotated structure as
the one in which all the carbon atoms in the plane normal
to the chain axis are in the same intrachain position, while
in the unrotated structure, the carbon-atom positions are
changed on the chains in the horizontal plane containing
the middle chain. A careful study of the overlap between
the m-electron MO’s on the middie chain and the MO’s lo-
calized on the close-lying hydrogen atoms in chains 1—4,
shows that this overlap is smaller in the rotated structure.
As mentioned earlier, the value of ¢ on the middle chain
results from a competition between chains 1—4, on the
one hand, and chains 5 and 6, on the other hand. Since
the interaction between the middle chain and chains 5 and
6 is unchanged, and that between chains 1—4 is weakened
in the rotated structure, the setting angle is then reduced.

As can be seen from Table I, we found a very small
difference in the setting angle between the in-phase and
out-of-phase structures. This is reasonable since the dis-
placement of the carbon atoms is very small (u,=0.03 A)
compared to the interchain distances. Similarly, the two
different values of the monoclinic angle do not give any
large change in the setting angle, which is also expected
since a change in 8 does not change the distance between
nearest neighbors on neighboring chains. -Only more dis-
tant neighbors on different chains in the same horizontal
plane come closer when f3 is increased.

A comparison (see Table I) shows that our values of ¢
are rather close to both the experimental value of Fincher
et al.? and what has been calculated by Baughmann and
Moss. In their works the interchain orientation is denoted
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by the space-group assignments P2,/a and P2,/n
representing the in-phase and out-of-phase orientations,
respectively. However, these assignments do not specify
whether or not one chain in the unit cell is rotated by 7
about its axis. From Fig. 2 in Ref. 15 one can see that
they treat only the cases denoted by IP (P2,/a) and OPR
(P2,/n) in this report. Their calculated values of ¢ and 3
shown in Table I come from these two orientations and
agree very well with what we found from the MNDO ‘cal-
culations. Our findings that the optimal value of ¢ is
smaller in the rotated orientation than that in the unrotat-
ed one and that ¢ gets smaller when S is increased, are
also in agreement with what BM found.

To check the finite-size effect on the optimal value of
the setting angle, we repeat the calculations with chains
1—6 reduced to C¢Hg and the middle chain reduced to
C;Hy4. In these smaller systems we found slightly larger
values of the setting angle. The increase is, however, less
than 1.0° in all cases. With such a small change in ¢, we
are convinced that the values given in Table I, columns
1—6 are rather close to what should be found in an infin-
ite system.

Concerning the intrachain geometry, we found in a
single-chain system the following values of the geometri-
cal parameters (see Fig. 2): d;=1.463 A, d,=1.357 A,
d;=1.09 A, a=124.9°, and y=115.7°. These values are
adopted for all chains in the seven-chain system and kept
fixed during the setting-angle optimization. Once the
value of ¢ is found, we look for the optimized values of
the intrachain lattice constants in the seven-chain system,
with only the restriction that the backbone structure be
planar. The new values are d,=1.464 A, d,=1.358 A,
d;=1.09 A, a=124.95, and y=115.5. Surprisingly, the
H—C—C angle y is almost independent of the interchain
orientation. We also found that the hydrogen atoms al-
ways lie in the same plane as the carbon atoms. The
values of d;,d,, and « result in a distance between two
CH units of ¢=2.5036 A (see Fig. 1) and a CH unit dis-
placement of u;,=0.030 A. From these very small
changes in the intrachain lattice constants we can con-
clude that the intrachain, ground-state geometry is not af-
fected by the surrounding chains. However, as we shall
see later, there is a change in total energy involved in a
phase shift of 7 of one chain with respect to a neighboring
chain, which will affect the intrachain structure if topo-
logical excitations, such as, soliton-antisoliton pairs are
present on the chain. We will come back to this interest-
ing question later in this section.

Knowing the different geometries we can calculate and
compare their respective total energies. A difficulty when
calculating total energies for systems containing up to
seven chains, is that the surface is very large compared to
the bulk. We believe that this causes no problem as long
as we only qualitatively compare energies of different in-
terchain orientations in otherwise identical systems. A
quantitative comparison between our results and other
works is more uncertain. Numerical values of energies
presented below will be normalized either with the total
number of CH units in the system, or with the number of
CH units in one chain. The latter way of normalizing is
used when we calculate the soliton-lattice energy, which
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TABLE II. Heat of formation AH r, total energy E\, electronic energy E., core repulsion energy
E33° for the seven-chain system system [in eV/(CH unit)], and soliton-lattice energy Eg [in meV/(CH

unit of the soliton bearing chain)].

IP IPR OPR (0)
AH; 0.3497 0.3484 0.3484 0.3496
E —144.3365 —144.3378 —144.3378 —144.3366
Egy —2427.503 —2427.417 —2424.902 —2425.714
ESF° 2283.167 2283.079 2280.564 2281.377
0.1

Eg 0.1

then will be independent of the size of the system.

The difference in total energy between the different
alignments of chains in the same horizontal plane is cal-
culated in a three-chain system containing the middle
chain and chains 5 and 6 (see Fig. 1). We found that the
in-phase alignment is the most stable configuration. This
means that we have confirmed the previous assumption
that the unit cell of trans-(CH), consists of two chains
only. The difference in total energy between the in-phase
and out-of-phase orientations is, however, small, only 0.5
meV/(CH unit). Two more orientations are possible if the
middle chain is rotated by 7 around its axis. Given this
rotation, we found a difference in total energy, with
respect to the ground state, of 1.2 and 1.7 meV/(CH unit)
for the out-of-phase and in-phase orientations, respective-
ly. Next, we repeat the calculations in a five-chain system
(containing the middle chain and chains 1—4). Here, we
found two almost degenerate ground-state interchain
orientations, namely, the OPR and IPR orientations [see
Figs. 3(b) and 3(c)]. In fact, OPR has lower energy but
difference is only 0.01 meV/(CH unit) which probably is
less than the accuracy of the program. About 1.0 and 1.5
meV/(CH unit) higher up in the total energy we found the
OP and IP orientations, respectively. Given the in-phase
alignment in the horizontal plane, the ground state for the
seven-chain system should then also exhibit a degeneracy
in total energy between the OPR and IPR structures. Us-
ing the optimized value of the setting angle we have cal-
culated the total energy for this system and compared it
with the other possible orientations shown in Fig. 3. The
numerical result, given in Table II, shows that there is a
jump of about 1.2 meV/(CH unit) in total energy between
the rotated and unrotated orientations. If, however, some
external force, from, for example, the end groups, bending
of the fiber, or other kinds of disorder; will force the
chain into larger setting angles, the total energy of the ro-
tated (OPR and IPR) orientations will exceed the total en-
ergy of the unrotated (OP and IP) orientations which then
become the ground-state configuration. The increase in
energy of the OPR orientation when the setting angle is
increased from its optimal value (51.75°) to 55° is roughly
1 meV/(CH unit). This rather small energy difference
shows that fluctuations in the value of ¢ are expected.

The x-ray-diffraction experiments of Fincher et al.,?
who found ¢=55° and a P2,/n structure and the results
obtained by BM agree with our findings. Given the
monoclinic angle f=91.4°, BM derive the setting angle ¢
by minimizing lattice energy. These values of ¢ are then

used to calculate the total lattice energy. The optimized
setting angles they found were ¢ =51.8° in P2,/n (OPR)
and ¢=54.0° in P2,/a (IP), and the difference in total
lattice energy is 0.06 kcal/(mol C,H,) [1.3 meV/(CH
unit)] where the P2;/n structure has the lowest energy.
From Table II we can see that our calculated difference in
energy between the OPR and IP orientations also is 1.3
meV/(CH unit).

Chien® has suggested that the OPR orientation (struc-
ture C, Fig. 3.24, p. 119 of Ref. 9) is the product of long-
time thermal isomerization and that the IPR orientation
(structure B) is a metastable structure obtained during the
process of isomerization. Going from IPR to OPR in-
volves a rotation by 7 around the chain axis of one chain
in each unit cell. This motion has a very high energy bar-
rier to pass and can only occur at high isomerization tem-
peratures (7'~400 K), provided that at these tempera-
tures, the OPR phase is a state of lower energy than the
IPR phase. If the temperature is lowered before a homo-
geneous OPR phase is obtained, the sample will consist of
a mixture of the two phases. Since the isomerization in-
volves a lot of rotations it is very likely that the sample
also will contain IP and OP phases, but these phases can
more easily, through a shift of one chain, relax to OPR
and IPR. In general, one can say that less carefully per-
formed isomerization will result in trans-(CH), chains ro-
tated in many different ways. Concerning the intrachain
properties this rotation can reduce or even cut out the -
electron overlap. This shortening of the conjugation
length has been experimentally verified from the disper-
sion of the Raman spectra taken on trans-polyacetylene. '8

If a soliton-antisoliton pair (SS) is introduced on the
middle chain in the seven-chain system, the segment be-
tween the kinks will give rise to additional interchain in-
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FIG. 4. Projection of the middle chain (M) and the chains 1
and 6 on the horizontal plane. The area between the dashed

lines contains the region between the soliton (S) and antisoliton
(S).
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teraction energy; following BM we will call this energy
the soliton-lattice energy Eg;. Given the OPR (IPR)
orientation, the segment on the middle chain between the
kink and antikink will be out of phase with respect to
chains 5 and 6 but in phase (out of phase) and rotated by
ar with respect to chains 1—4. Figure 4 shows how the in-
terchain orientation is changed if the middle chain bears a
S S pair. We know from the calculations above that the
out-of-phase ordering in the horizontal plane is energeti-
cally unfavorable, while the two different orientations in
the glide plane are degenerate. One would therefore ex-
pect a soliton-lattice energy, approximately equal to the
increase in energy due to the out-of-phase ordering be-
tween chains 5 and 6 and the middle chain, which from
the calculation in the three-chain system is 0.5 meV/(CH
unit). However, due to the different polarization of the
electron cloud in the seven-chain system, this chain differ-
ence is reduced. Our calculated value of the soliton-lattice
energy is 0.1 meV/(CH unit) in the middle chain. This
value holds for the system initially either in the OPR or in
the IPR orientations. As mentioned in the introduction
BM also calculated the soliton-lattice energy and found
Eg =4 cal/mole C,H, (or 0.09 meV/CH) in the soliton-
bearing chain in the P2,/n (OPR) structure, which again
is surprisingly close to the value calculated from the
MNDO scheme.

The existence of highly mobile spins in trans-(CH), is
experimentally verified'*~2! and is interpreted'® as neutral
solitons which have a small activation barrier for transla-
tional motion. Low-temperature electron-nuclear double-
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resonance (ENDOR) studies?”?! suggest a diffusion length
of about 50 CH units.”?> Narrowing of the ENDOR spec-
trum with increasing temperature shows that the mobility
of the soliton increases due to the larger confinement
length. For n CH units between a soliton and antisoliton,
or between a soliton and a chain end, we have an increase
in total energy of E, =nEg;, which at temperature T im-
plies a soliton confinement length of n,=kzT/Eg . At
room temperature, n,~250 CH units. It is, however, un-
realistic to think that this value also could be found from
experiment since a real material always contains disorder.
The disorder effect will produce local variations in the in-
teraction energy, which easily can exceed, or cancel the
small value of the soliton-lattice energy found in our cal-
culations. Dopant molecules, such as, AsFs; have been
shown?® to increase the thickness of the fibril containing
the polyacetylene chains and therefore, to a great extent,
change interchain distances and orientations. The motion
of solitons created by doping will therefore be even more
controlled by the disorder effects. Still, the three-
dimensional interactions will be of importance and must
be considered in future studies of soliton transport.
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