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Excitons and polaritons in InP
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We report an investigation of the reflectivity spectra of InP at normal inci. dence, at pumped-
he1ium temperature, and under [100] uniaxial stress Th. ree transverse exciton frequencies associated
to the 1s ground state and the 2s and 35 excited states have been found. We deduce an exciton bind-

ing energy E,„=5.1+0.1 meV. From a detailed investigation of the 1s ground state in terms of the
three-branch polariton dispersion curves we achieve a very satisfactory agreement between theory
and experiment. Resolving the fine structure of the exciton ground state, we find (i) the exchange
energy 6=0.04+0.02 meV and (ii) the longitudinal-transverse splitting ELT ——0. 17+0.02 meV. The
surface dead layer which corresponds with the best experimental fit is twice the exciton' Bohr radius,
as expected for an intrinsic surface-exciton-free layer.

I. INTRODUCTION

The fine structure of excitons in semiconductors is
driven both by the Coulomb interaction and the electron-
hole exchange interaction. The Coulomb interaction gives
rise to a Rydberg series whose energy spacing in usual
III-V compounds is of the order of a few milli-electron-
volts between the fundamental and the first excited state
of the complex. The exchange interaction, which depends
on the overlap between the electron and the hole wave
functions, is lower. It is typically of the order of a tenth
of a milli-electron-volt; therefore in most cases the corre-
sponding splitting is not found within the experimental
uncertainty. This exchange interaction is well character-
ized only for bound-exciton complex' because a bound ex-
citon is atomiclike in nature and results in very sharp ab-
sorption and luminescence lines. In this case the applica-
tion of external perturbations, which cause deep changes
in the level scheme and oscillator strength of the system,
easily allow the determination of all parameters which fit
the description of the energy spectrum of the complex. In
this way magnetic field and uniaxial-stress experi-
ments have been widely used over the last years.

Concerning now the free-exciton spectrum, the situa-
tion is more controversial. In recent measurements per-
formed under uniaxial stress, the fine structure was
claimed to have been resolved by extrapolation of the
splitting pattern down to zero stress. In this analysis the
position of the reflectance minima was plotted as a func-
tion of external stress. However, only the longitudinal-
exciton resonance frequency approximately corresponds to
the reAectivity minimum, whereas the important trans-
verse resonance frequency cannot be determined so easily.
On the other hand, the energy shift of the longitudinal
resonance frequency differs from the one of the transverse
resonance frequency. ' In this case there is a subtle prob-
lem of line shape in the reflectance spectrum, especially
when several resonances exist within a small energy range

and one should take the analyzed values of exchange split-
ting of the exciton ground state with reservation. A line-
shape analysis of reflectance is often necessary in order to
obtain detailed information about the internal structure of
the exciton states, but in the case of III-V compounds
with a fourfold-degenerate valence band a complete
analysis of the data must include (i) the three-mode polar-
iton (two-mode exciton), (ii) the k-dependent energy and
oscillator strengths, (iii) the perturbation-dependent ener-

gy and oscillator strengths, (iv) an exciton-free surface
layer, and (v) a finite lifetime of the excitons.

In this paper we present results obtained on InP. The
outline of the paper is as follows: In Sec. II we give a
theoretical calculation of the exciton and polariton disper-
sion curves, taking into account the fourfold degeneracy
of the I 8 valence band, the electron-hole exchange energy,
and the presence of an external stress. We calculate the
corresponding reflectivity spectra, taking into account an
exciton-free surface layer, additional boundary conditions,
and stress dependence of both the energy levels and oscil-
lator strengths. In Sec. III we explain our experimental
conditions. In Sec. IV we present our experimental results
and the numerical values of the parameters which give the
best fit within the model detailed in Sec. II. %'e discuss
these values in Sec. V and present our conclusions in Sec.
VI.

II. THEORY

A. Exciton dispersion curves under uniaxial stress

Exciton states in the center of the Brillouin zone

Basically the free-exciton ground-state in a direct-
band-gap III-V compound semiconductor is made of an
electron, with spin s = —, associated with the I 6

conduction-band minimum, and a hole, with angular
momentum j=—,, associated with the 18 valence-band
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maximum. The exchange interaction which depends upon
the electron-hole overlap splits the corresponding
eightfold-degenerate state characterized by the zeroth-
order wave functions

~

—,',m~ &
~

—,',m, &. The short-range
part of the exchange effect gives rise to the J =1 triplet
state (dipole allowed) and the J=2 quintuplet state (di-
pole forbidden). The energy difference between these two
states is the so-called exchange energy h. Next, the long-
range part of the exchange effect leads to the
longitudinal-transverse splitting of the dipole-allowed
state and results in a longitudinal exciton

~
1,0& and two

transverse ones
~

1,+1&. The energy difference between
these two states is the so-called longitudinal-transverse
splitting ELT. The exchange interaction Hamiltonian can
be written in a phenomenological way:

H,„,), ———,
'

b, (3—4JS)+ ELT5J 1(5M O
—

3 ) .

(a) je, jg

je, jt

ELT

The resulting configuration is given in Fig. 1(a), where the
experimentally attainable parameter 5=E ( 1, + 1)

E(2,m) is —given by 5=3, , ELT. Now—, —following the
discussion of Bonneville and Fishman, ' the splitting Et T
only preserves the center of gravity of the triplet state for
Frenkel excitons. This is no longer true for delocalized
Wannier excitons. In this case the center of gravity of the
triplet state is not conserved and more likely the
longitudinal-transverse splitting corresponds to a shift to-
ward higher energy of the

~

1,0& longitudinal exciton.
The resulting energy-level diagram is given in Fig. 1(b),
and here 5= b, . This is the model we use for InP.

The fivefold-degenerate J=2 states can, in principle,
split into twofold- (I 3) and threefold- (I 4) degenerate lev-
els, due to the cubic crystal field. This splitting, which re-
quires higher-order spin mixing in the Bloch functions,
has never been observed.

2, Exciton dE'version curves

The problem of the exciton dispersion curves is easily
solved in the case of nondegenerate bands by the well-
known center-of-mass transformation. Unfortunately, in
zinc-blende —type semiconductors, the valence-band max-
imum is fourfold degenerate at the I" point, and the prob-

I

J=2 iI

l2~&
FIG. 1. Energy-level diagram of the exciton. 6 is the ex-

change energy, ELT is the longitudinal-transverse splitting. {a)
Frenkel excitons and {b) W'annier excitons.

lem has no analytical solution. This has been investigated
by Kane" for direct semiconductors and extended to in-
direct ones by Altarelli and Lipari. ' Kane considers
separately the low- and high-momentum limits. In the
former one, which corresponds to the experimental situa-
tion in polariton experiments, he develops the exciton
wave function in the eight-dimensional space of the k =0
exciton ground state and solves the problem using a per-
turbation approach. In this calculation the exchange in-
teraction between electron and hole has not been taken
into consideration. Most of Kane's results which are use-
ful in studying the polariton dispersion curve are reviewed
by Sermage and Fishman, ' who introduced the exchange
interaction. We do not repeat all the details of the calcu-
lation but only recall the resulting kinetic and exchange
Hamiltonian in the base of the

j J,MJ &k states quantized
along the wave-vector direction:

~1 +1&k
i
2, +1&k

I
1 0&k I2 o&k I»+2&k

1, (E(+3EI,)+5 —+ (Ei Ep,)—v3
4

0

+ —.(3E~+E~ ) 0 0

0
FI +5+ELT

0 0

All the parameters have the meaning given in Ref. 13.
The origin of the energies is taken on the

~
2, m & states at

k =0. 5 is the splitting E(1,+ l)-E(2,m) and corre-
sponds to the exchange energy 6 as already discussed for
Wannier excitons [see Fig. 1(b)]:

Rk E Ak
2M ' 2M

MI and MI, are the effective masses of light and heavy ex-
citons, respectively, which correspond to
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the hole. Depending on the stress direction, the magni-
tude of E is given by the well-known expressions

[oo~]

~100 b (S1 1 SI 2 )X for X
f I [100]

d
eiii ——— S4gX for Xf I[111],2v'3

E]$Q——,(e|00+3E»&)' for Xf I[110]

(4b)

(4c)
Y

FIG. 2. Experimental configuration. k is the incident photon
wave vector. X is the stress direction. Light with electric field
along X {g axis corresponds to m. {0.) polarization with respect
to the stress.

1 1 1 1

where M, and M, are given as a function of electron ef-
fective mass and valence-band parameters y; by Eqs. (66)
and (67) in Ref. 11.

The
I
J,Mz) basis states are built of linear combina-

tions of the zeroth-order basis states
I

—,',m~)
I

—,', m, ),
hereafter labeled Im~, m, ). The coefficients of the dif-
ferent combinations are the Clebsch-Gordan coefficients.
For J=1, I+ —,,m, )1, —,,m, )k

Now remember that the kinetic and exchange Hamil-
tonian given in Eq. (1) was expressed in the

I
J,Mq)k

basis taking the wave vector k as the quantization axis
while, in Eq. (3), the quantization axis corresponds to the
stress direction. Since both directions do not coincide we
must rotate one Hamiltonian.

Our experimental configuration corresponds with a
(001) epitaxial layers. The incident light is normal to the
surface so that k

I
I[001], and the stress is applied in the

plane of the sample along the [100] crystallographic direc-
tion (see Fig. 2). As a result we must calculate the [100]
stress Hamiltonian in the basis of the

I mi„m, )zo& states.
A straightforward calculation gives

I
1, +1)=+—,

'
I

+ —,', + —,
' ) +

I

+ —', , +,' )

10 = — 1 i ) 1
I

1 0&= —
~2 I

—
2 I&+ ~2

and for J=2,
f2+2&= I+2 +2 &

I
2, +1)=

I

+—,+ —)+—
I
+ —,+ —)

I
2,0) = —

I

——,', —,
'

&+

3. Stress dependence

(2a)

(2b)

(2c)

(2d)

(2e)

2+To1

v32'
w her e E=E i oo =b (Si i

—S|2 )X.
Now we calculate the strain Hamiltonian in the
J MJ )k basis states by using Eq. (2). Next, by summing

the resulting strain matrix with the matrix equation (1),
we obtain the complete matrix Hamiltonian in the

I
J,MJ )k basis. Lastly, conserving k as the quantization

axis and taking account of the cubic symmetry, we define
a new set of basis states which behave as p- or d-like
states.

+ Z~~e x + z~~e x

%"hen a uniaxial stress is applied to the crystal, the
stress dependence of all

I m~, m, ) zero-order states is ob-
tained by just adding the stress dependence of the consti-
tutive particles. For InP these stress dependences are well
known, ' but the strain-matrix Hamiltonian is diagonal
only if the quantization axis of the angular momentum
corresponds to the stress axis. In this case the strain-
matrix Hamilionian is written as

IX&= '
(I 1, 1&

I
1, »),v'2

I
»= (I 1.1 &+ I

1.-»),
2

I
z&=

I
l, o&,

I2, 1+)= ( f2, 1)+ f2, —1)),v'2

(6a)

(6b)

(6c)

3+@
0

(3)

is the hydrostatic component given by
A = a (S» + 2S,2 )X, where a is the hydrostatic deforma-
tion potential of the exciton; S,z are the elastic compliance
constants and X is the stress magnitude taken to be nega-
tive for a compression; e is the shear-strain dependence of

I

I2,0)= I2,o),

I
2,2+) = (

I
2,2)+

2

I
2, 2-) = (

I
2,2)—

2

I2, —2&),

I2, —2)) .

I2, 1 )= (I2, 1)—I2, —1)),v'2 (6e)

(6g)

(6h)
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I

I

+
+
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I

I

I

I

1

mfa
+
+

+
+

I

+

(9b)

In this basis the kinetic-exchange-strain Hamiltonian
may be written as shown at left. We obtain four 2 &(2 ma-
trices which give rise to eight exciton dispersion curves.
The only ones which couple with light are those contain-
ing

I
X) or

I

Y') basis function, corresponding to the dif-
ferent eigenvalues of the first 2 &&2 matrices.

For zero stress and k=0 only the
I

1,+1) states would
couple with light, the lX) excitons being allowed with
light polarized parallel to the [100] crystallographic axis
and the

I
Y) excitons with light polarized parallel to the

[010]crystallographic axis.
For zero stress but finite k values, the kinetic part of

the Hamiltonian mixes the d-like
I
2, 1+ ) and

l
2, 1 )

states with the
l
X) and

l

1') states, respectively. Four
states now appear that are dipole allowed.

I
Z) denotes

longitudinal excitons and remains uncoupled with light.
The first two matrices being identical, the corresponding
eigenvalues are twofold degenerate. This gives rise to a
two-branch exciton dispersion curve coupled with light
and, therefore, a three-branch polariton dispersion curve.

For finite-stress and finite-k values we do not find any
additional coupling with the

I
X) and/or

l

I') dipole-
allowed basis states, but the first two matrices are no
longer equivalent. They lead to a four-branch exciton
dispersion curve (dipole allowed) and then a five-branch
polariton dispersion curve. Please note that the eigen-
states of the first 2 X 2 matrix contain

l

X ) -like basis
states and then couple with light polarized parallel to the
stress axis (m polarization). On the other hand, the eigen-
states of the second 2)&2 matrix contain only

I

Y')-like
basis states and couple with light polarized perpendicular
to the stress axis (cr polarization). One point, however, is
interesting to outline. In the first 2&&2 matrix, the forbid-
den

I
2, 1+) state couples with the

I
X) dipole-allowed

state only through the kinetic part of the Hamiltonian.
Consequently, the corresponding eigenstate is dipole al-
lowed only at very low stress and becomes forbidden when
the applied stress separates the two states. As a conse-
quence, only one single component appears to be dipole al-
lowed for ~ polarization at high stress. Conversely, the
second 2&&2 matrix clearly shows that the two basis states
are both k and X coupled. As a result two components
are dipole allowed in o. polarization.

The four eigenstates which couple with light are

Ei 2
——,' (Ei+Eg+5)+—A+, P, — (Sa)

E3,4= 2 «i+Eh+~)+~+ z Q . (8b)

The corresponding eigenfunctions are

I
1)=a,

I
X&+/3i

I
2, 1+), (9a)

12& =a2 IX&+/3212 1+
&

I

+
+

l3&=,
l
»+/3, l2, 1-&,

I
4) =aq

I
I') +/34 I 2, 1 ),

where

ai ———, I I+ [ (2e+5) (E(—Eh )/2]/—P I, —

a3= ~ I I+ [+(&+&)—«i —Eh)/2]/Q!

/3J 1 —aj~, aJ+——i= /3J, /3J+i ——aq —(j =1,3),

(9c)

(9d)

(10b)

(10c)
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with

P = [4e 4e—5+5+5 +(Ei Ep,—) +(2e—5)(Ei Ei,—

(1 la)

=[4m +2E5+5 +(Ei E)—+(2 —5+ 2&—»«i —Ei )l'"
(1 lb)
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Asshownb F . 9y q. ( ), there are two excito
bran h sm d fo th ~X) di o1
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~
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from vacuum, and let E~ be the electric field of the re-
flected wave and E&, E2, E3 the electric field of the
transmitted waves. The usual Maxwell boundary condi-
tions' express the conservation of the tangential com-
ponent of E and the normal component of D:

Er +ER =E1+E2+&3

Er ER . ~1E1+n2E2+n3E3

(15a)

(15b)

~, (~)= g ~i(~)E,(~) .
I

(17)

Then, for the two exciton branches, ABCl can be writ-
ten as

~iE, +'E2E, +~~E, =
e', +'E, +e,'+'E, +e','+'E, =O,

(18a)

(18b)

where j= 1 for rr polarization and 3 for cr polarization.
In connection with the additional boundary conditions

we must include the effects of a surface layer of the crys-
tal where the exciton does not contribute to the dielectric
function. This exciton-free layer is the so-called "dead
layer. " Again, the problem of the physiml behavior of an
exciton near the surface has been investigated by various
authors. ' ' For the origin of the dead layer Hopfield
and Thomas' (HT) first proposed the presence of an
image-force barrier that originates from the repulsive in-
teraction of the exciton with its electrical image when the
exciton approaches the surface. At the boundary the
repulsive potential is infinite and, deeper into the crystal,
one should have a gradual change in the exciton parame-
ter (energy and damping parameters) toward the bulk con-
ditions. Since this inhomogeneous region near the surface
is difficult to deal with, HT replace it with an homogene-

In the classical case, with only one mode of propagation
in the medium, ER/Er mn be calculated from these con-
ditions. However, we deal with three modes of propaga-
tion, and these conditions do not determine unambiguous-
ly the reflected and transmitted fields from the knowledge
of the incident field. Additional boundary conditions are
needed. Many workers discussed the ABC's under vari-
ous physical considerations. ' The different ABC's are re-
ferred to as ABC1, ABC2, and ABC3. The most com-
monly used, ABC1, are due to Pekar (Ref. 17) and require
that the total exciton polarization should vanish at the
boundary; ABC2 (Ref. 18) require that the normal com-
ponent of the derivative of the polarization should vanish
and ABC3 (Ref. 19) generalize ABC1 and ABC2. We
used ABC1. Now each of the three modes which propa-
gate in the medium contribute partially to the polariza-
tion. Returning to the dielectric constant, we can write
each contribution as

2 2a~oaj (n~ )
ejl(a)) =

coj(n~) co —i I Jco—

where j= 1—4 refers to resonance frequencies and l=1,2,3
refers to the mode of propagation. co&(nl) and aj~(n~) are
determined by Eqs. (8) and (10), in which A: is replaced by
con~ /c per each mode of propagation. We obtain the re-
sulting polarization of the medium,

(19b)

Taking account of the m'ultiple reflections in the dead
layer the resulting reflection coefficient is given by

I &2+ ~23e
(2o)

1 +~12~23e

with 0=2nd/2, where A, is the wavelength in the dead
layer, k =A./e„.

Now, in order to obtain the coefficient rq3 E~/El, we-—
apply Maxwell's boundary conditions and ABC1 at the in-
terface 2-3. Let y/ EJ /EI (j =1——,2,3) and Eqs. (15) and
(18) be written as

'V1+'Y2+3'3 —~23 =1
~

~13 1++23 2+~3/ 3+no~23

eiXi+~2'V2+~Q'3=o

(21a)

(2lc)

J, +17,+ ~, +17,+ J, +1y, =O, (21d)

where e~ are given by Eq. (16), and j=1 for m polariza-
tion and 3 for cr polarization. Equations (21) give

E; E)
E)

E2

E3

0&

-d 0
FIG. 5. Schematic picture of the three-layer model.

ous dead layer. This model essentially corresponds to a
rectangular exciton-free layer with an abrupt change of
the damping parameter. This model was further refined
by introducing for the exciton a depth-dependent damp-
ing or eigenenergies, or both. However, a conclusive
description of an exciton approaching the surface is still
an open question, since, in addition to these intrinsic ori-
gins, there may be extrinsic ones due, for instance, to sur-
face space charges. In fact, all results obtained with the
refined model given above clearly show that for large-
sized Wannier excitons the homogeneous dead layer first
proposed by HT applies to a very good approximation by
taking a depth d of about twice the exciton Bohr radius
d=2ao. We used this approximation with ABC1 applied
at the depth d from the surface. This correlates to a
three-layer model with the vacuum characterized by the
refractive index n =1, the dead layer characterized by
no ——Qe, where e is the background dielectric constant
and, at the depth d=2ao, the bulk characterized by the
three indices of refraction n&, n2, n3 already discussed (see
Fig. 5).

The reflection coefficients at interfaces 1-2 (surface)
and 2-3 are given, respectively, by

(19a)
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np —neff
~23 =

np+n, ff

where n, r~ is an effective index of refraction given by
0.30 '

A=/ 0=3

neff =

with

n 1 ~23+ n 2 ~31+n 3 &12

12+623+ 631 0.28—

&Ik = [&g ~~( ] =&k&( &l&a—

111. EXPERIMENTAL TECHNIQUES
All experimental reflectivity spectra have been taken on

very-high-purity [001] epitaxial layers of InP grown by
vapor-phase epitaxy. We used a conventional PC13-In-InP
process. In this process the primary chemical reagents
are hydrogen and phosphorous trichloride. The second
reagent is indium metal. All reagents were used as ob-
tained from the manufacturers and no further purification
was attempted, except for hydrogen, which was purified
by palladium diffusion units. The temperature achieved
in the reaction tube was about 750 C and that in the depo-
sition zone was 650 C. All substrates were single-crystal
slices of InP mechanically polished in a 4% bromine-
methanol solution. The typical layer thickness was about
10 pm.

We have investigated a series of ten different samples
which all give similar results. From one sample to the
other the main difference in optical spectra comes from
the resolution of excitonic features associated with the
n =2 excited state. This was better achieved with sample
3 (KV 296 in the nomenclature of Ref. 28), whose carrier
concentration and electron mobility at liquid-nitrogen
temperature were 8.6X10' cm and 70000 cm /Vs,
respectively. Sample B (KV 322), for instarice, whose mo-
bility is higher and whose carrier concentration is lower
(87000 cm /Vs and 2.8&&10' at 77 K, respectively) did
not exhibit better-resolved features.

The uniaxial-stress experiments use a conventional
stressing apparatus already described. ' A lever arm
lowers a stainless-steel rod which transmits the force to
the sample chamber. The samples were obtained from the
[001] epitaxial layer by cutting small rods along a [100]
direction. After carefully polishing the narrow [100] pres-
sure faces, this resulted in small parallelepipeds which
were mounted between two optically flat pistons. A
piezoelectric quartz transducer, positioned just below the
sample, controlled the strength. Typical sample dimen-
sions were 0.35&1&8 mm, and the whole apparatus was
designed to work in a pumped-liquid-helium bath.

The experimental configuration is given in Fig. 2. The
photon wave vector k and the stress direction X were
parallel to the [001] and [100] crystallographic axes,
respectively. Both m and o polarizations with respect to
the stress direction were used. No important difference
could be observed between spectra obtained on as-grown
surfaces and after the sample had been chemically pol-
ished in a dilute solution of bromine in methanol.

IV. EXPERIMENTAL RESULTS
A typical reflectivity spectrum obtained at zero stress

on our best sample is shown in Fig. 6. Clearly, we resolve
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K
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FIG. 6. ReAectivity spectrum obtained at pumped-liquid-
helium temperature, without uniaxial stress (sample A).

three structures associated with the ground state and the
two first excited excitonic states. From the difference be-
tween the energy minima we could deduce a crude esti-
mate of the exciton binding energy. However, as dis-
cussed in Sec. II, the energy minima E~; of the reflec-
tance curve do not correspond exactly to the transverse-
exciton energies ET1, ET2, and ET3. Moreover, the ener-

gy difference E~; ET; depends on th-e oscillator strength,
the damping parameter, and the dead-layer depth, all of
which vary from the n =1 ground state to the n =2 or 3
excited states. Only a theoretical fit of the experimental
spectra will permit one to obtain an accurate determina-
tion of the exciton binding energy.

This is done in Fig. 7, where we display for comparison
the experimental and calculated reflectivity spectra in the
vicinity of the ls and 2s exciton resonances. Please note
that a theoretical fit on the 3s excited stated is not signifi-
cant. In this case, on account of the weakness of the os-
cillator strength, the structure is very small and the ener-
gies E 3, ET3, and EL3 are very close. Their determina-
tion does not need a fit: ET3,——EL3 ——E 3, within the ex-
perimental error. The calculated curve is obtained from
the theory given in Sec. II. Among the different parame-
ters used in the calculation, most were taken from experi-
mental data and are listed in Table I. We have only ad-
justed the dead-layer thickness. For the 2s excited state
the oscillator strength is the eighth of the ground state
and we have used a2 ——ao/8.

The damping constant and the dead-layer depth have
been taken as I 2

——0.2 meV and d2 ——360 A, respectively.
For each state, the longitudinal exciton energy EL is de-
fined as the energy of the polariton at k=O, where the
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FIG. 7. Comparison of reflectivity spectrum (solid line) with

a theoretical line-shape fit (dashed lin )
'

he ine using the model given in
ec. I and the parameters given in Table I {sample 8).

14180

E,„=5.1+0.1 meV .

1

transverse upper polariton branch is degenerate with thi e

exciton ener
er an, t e transverse

exci on energy ET is defined as the energy of the k=0 ex-
citon in the limit of
Th

zero exciton-photon interactio .'on.

—1 0
hese parameters are obtained b thy e usual relations

e coT ——0 and e(coL)=0; the values calculated with the
parameters given in Table I are ET ——1418.50+0.05 meV
and E =1418.6 +I —— . 7 0.07 meV for the 1s ground state and
ET2 ——1422.30+ 0.05 meV and EL 1422.32+0 0

e s excited state. They are plotted in Fi . 7. W
deduce the ion

in ig. . e

+0
e ongitudinal-transverse splitting E =0.17

.02 meV and ELT ——0.02+0.02 V. 0
LT

small os
' z —. . me . wing to the

sma oscillator strength of the 2s excited state, E is
ver small an

cie sae, LT2 is

ver close
y the corresponding reflectance min'e minimum is
y c ose to the exciton-transverse energy. From the

e uce an accurate valueexciton-transverse energies we d d
or the exciton binding energy E = —'(E

obtain
ex 3 T2 T .

030-
X=222 b

0.30-

nick and Dean ' rom&rom 'uminescence measurements (5
meV). Within experimental uncertainty, all values ap ear
in satisfactory agreement. On the contrary concern'

small e
ructure of excitons and because f th

effects that one expects, only significant results can
e o tained from a perturbative approach f

very- ig -quality crystals. This was the main goal of our
work.

Beforeore discussing the parameters listed in T bl
resent o

is e in a eI letus

~ ~ ~ ~

p our results concerning the stress d depen ence o the
reflectivity spectrum associated 'th h 1wi t e s ground state.
Typical spectra obtained for [100 ' '

1

are shown in Fi
' uniaxia compressions

are s own in Fig 8.for cr polarization. The 1'd 1'e soi ines

corres
p d to experimental results and the d h d
pond to the calculated spectra. Fi ure 9 sh

e as e lines

stress de enden
igure s ows the

epen ence of the energy minimum of th
tures where so i

o e siruc-
solid and open circles correspond to o. and m

polarization, respectively. The 1'd 1e so i ines correspond to
the theoretical fit. Clearly in th h' h-, in e ig -stress region we
o serve two structures in o polarization and onlel ion an on y one

tion t
vr po arization. In m polarization ( 1

'
n o. po anza-

) the structures are associated with the exciton
branches

~

1 ) and
~

2 ) ( [ 3 ) and
~

4 ) ) [Eqs. 9, charac-
terized by t e resonance energies E and E (E d
[ q . ( )] and the oscillator strengths d
a) E s. 10

s ai an ai a3 and
qs. )]. Owing to the fact that a goea~ goes very rapidly

zero with mcreasing stress [see Eq. 10(a) and Fi
'g - gy component in vr polarization,

~
1), be-

a an ig. 4],

comes dipole forbidden. In the low-stress region the situ-
ation is more complex because all th e a; i =1—4) are not
zero, but the splitting is very small and the structures are
not c early resolved. The calculated curves displayed in

This value is to be compared with the results obtained
e a . rom magnetoreflectance measure-

ments (5.39 meV), by d'Andrea and Del Sole from re-
flectance measurements (5.6 a d 49 V),n . me &, and by Skol-

TABLEBLE I. Best-fit parameters obtained for the 1s ground
state and 2s excited state.
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X=205b

X=134b

X=92b

Parameter

Oscillator strength'
Effective masses"

Nondispersive
dielectric constant'

Damping parameter
Depth of the dead layer
Exchange energy

Ap

me

y2
P3

'From experimental data of Ref. 35.
"From experimental data of Ref. 41.
'After Ref. 42.

1s

3 X 10-'
0.08 mp
5.15
0.94
1.62

12.36
0.06 meV

180 A
0.04 rneV

3/8 ~ 10-'

0.2 rneV
360 A
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0.30-
X=40b

X=0
P (8) X II [1001
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tivit s ectrum
FED&. 8. Stress-induced behavior of the o.-polarizat fl'za ion re ec-

' '
y pectrum. The stress is applied alon the 100g e crystallo-

correspond to experimental results. The dashe
lines correspond to the theoretical fit obtained with th dwi emo el
g' ' . II and the parameters given in Tables I and II.
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tained experimentally from the very-well-resolved
luminescence spectra associated with the neutral-acceptor
(A X) and neutral-donor (D X) —exciton complexes (see
Fig. 4 of Ref. 5). These spectra and the corresponding
value of I clearly show the good quality of the samples
used.

The polarizability parameter O.o can be determined from
the measured absorption coefficient at the band gap. For
a nondegenerate hydrogenic exciton, the relation is

E
%est

U

1419

I I I I

0 50 100 150 200
STRESS ( ba I' )

FIG. 9. Stress dependence of the energy minimum of the
structures. Solid circles and open circles correspond to o. and ~
polarization, respectively. Solid lines correspond to theoretical
fits.

I

250

Figs. 8 and 9 have been obtained with the parameters
given in Table I and are discussed below. Only additional
parameters characteristic of the stress-induced change in
the band structure have been used. These new parameters
are given in Table II. The hydrostatic and shear deforma-
tion potentials have been measured by different au-
thors ' and vary between 6 and 11 eV for a, and be-
tween —1.5 and —3 eV for b. The best fit in Fig. 9 has
been obtained with the values quoted in Table II. In order
to obtain the best fit in Fig. 8, it was necessary to account
for the stress-induced broadening of the high-energy
structure. Let us introduce a parameter which measures
the strain inhomogeneity in the sample (p); we find

p =3.0&& 10 eV/bar, while the energy shift of the struc-
ture is 9.3 X 10 eV/bar. This corresponds to a stress in-
homogeneity of about 3%%uo, which is not very important.

TABLE II. Stress parameters.

Elastic compliance constant' S~~

S~2

844
drostatic deformation aHy

potential
Shear deformation potential
Broadening constant

'After Ref. 32.

1.644 & 10 bar
—0.594 X 10 bar

2.174& 10 bar
—9.3 ev
—9.3 eV
—2.1 eV

3 X 10 eU/bar

V. DISCUSSION
I

Before discussing the values of the parameters used in
the theoretical fit, let us note that these values permit fit-
ting of the zero-stress reflectivity curve, the stress-induced
shift of the reflectivity minima, and the line shape of the
complete reflectivity spectra under various stress condi-
tions. The damping parameter I =0.06 meV was ob-

4vra, o 4Ace—'—Roa(Es )/~Eg,

where Ro is the exciton binding energy and a(Es) is the
absorption coefficient at the band-gap energy. Using our
value for Ro and, for a(Es), the value measured on the
curve given by Turner et ai. , a(Eg)=1.1&10 cm ', we
obtain 4~a.o—2.6&10 . The best fit has been obtained
with 4vrao ——3 10

The effective masses of the light and heavy excitons
have been calculated from Eqs. (66) and (67) of Ref. 11, as
a function of the electron effective-mass and the Luttinger
valence-band parameters. For the electron mass we
have taken the value given by Chamberlain et al. ,
m, =0.08mo. Concerning the Luttinger parameters, there
exists in the literature a great deal of calculated and
experimental values. Surprisingly, we find that the
values proposed by Bimberg et ar. did not permit a good
fit. The best fit was obtained using the values proposed
by Rochon et al. : '

y& ——5.15, y2
——0.94, and y3

——1.62.
The dead layer has been chosen as an adjustable param-

eter, but its value is directly related to the Bohr radius of
the exciton. The best fit has been obtained with d=180
A; on the other hand, the calculated value of the exciton
Bohr radius is of the order of 100 A, and, consequently,
the good fit is obtained with d=2ao. This result is-in
agreement with all the existing theories; moreover, it
clearly shows the intrinsic nature of the exciton-free layer
in our samples.

Lastly, concerning the exchange energy 6, we obtain
5=0.04+0.02 meV. Now, from Eqs. (8), it is straightfor-
ward to show that, at high stress, the energy difference be-
tween E4 and E2 (the low-energy components allowed in
o. and m. polarization, respectively) tends to a constant
value given by 45/3. This is not the energy difference
measured on the reflectivity minima given in Fig. 9 (0.11
meV). Consequently, associating the reflectiv'ity minima
with E4 and E2, we would obtain 5=0.08 meV. This
value corresponds to the value, 0.07 meV, proposed by
Weber et aI. from the energy shift of the minima of the
reflection curve. This assignment is not exact because E4
and Ez correspond to transverse exciton energies and not
to the minima of the reflection curve. Only a complete fit
permits the deduction of 5 from the stress dependence of
the reflectivity curve. This results from the fact that the
difference between the resonance energy and the reflec-
tance minimum is not the same in o. and w polarization
because the oscillator strengths are different. Now, as dis-
cussed in Sec. II, for Wannier excitons, 5 corresponds al-
most exactly to the short-range contribution of the ex-
change energy h. Therefore, with a good approximation
we can propose 6=0.04+0.02 meV. This value agrees
with the one proposed by Ekart et al. from polariton



32 EXCITONS AND POLARITONS IN InP 4051

spectra in an intermediate magnetic field. Concerrung
ELT, only Ekart et al. have proposed an upper limit, of
about 0.1 meV. No other value is available for compar-
1son.

VI. CONCLUSION

We have investigated the fine structure of the direct ex-
citon in InP. At pumped-liquid-helium temperature,
measuring the reflectivity spectrum at normal incidence,
we have obtained three structures associated with the 1s
ground state and 2s and 3s excited states of the exciton.
From a careful analysis of the line shape, we deduce an

accurate value of the exciton ionization energy,
E,„=5.1+0.1 meV. The structure associated with the 1s
ground state is analyzed in terms of the three-branch po-
lariton dispersion curve both at zero stress and under
[100] uniaxial compression. We have used the model for
the homogeneous dead layer and the additional boundary
conditions proposed by Pekar {ABC1). We obtain a very
good agreement between theory and experiment with a
dead-layer depth of about twice the exciton Bohr radius.
%'e deduce the exchange energy 5=0.04+0.02 meV and
the longitudinal-transverse splitting ELT ——0.17+0.02
meV.
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