
PHYSICAL REVIEW B VOLUME 32, NUMBER 6 15 SEPTEMBER 1985

New variational solution for the lowest subband level of the two-dimensional electron gas
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An analytical formula for the first-subband energy level of the two-dimensional electron gas was
derived using the variational method. Two different trial envelope wave functions were used: an
Airy function with one variational parameter and an exponential-power function with two variation-
al parameters. Solutions were obtained in the spherical effective-mass approximation with the en-

velope wave function assumed to vanish at the surface (or interface). In both cases we obtained
quantitative agreement with the numerical self-consistent results within accuracies of 1% to 2% not
only for the values of the first-subband energy but also for the average characteristics of the wave

function. The accuracy of these solutions is several times better than the well-known variational
solution proposed by F. F. Fang and W. E. Howard [Phys. Rev. Lett. 16, 797 (1966)]. Exchange-
correlation energy is calculated in the local-density-functional approximation. Analytical form of
this energy is obtained to first order of the perturbation theory using exponential-power variational
wave function.

I. INTRODUCTION

Studies of the energy levels of the two-dimensional elec-
tron gas (2DEG) using analytical' and numerical
approaches have been published in a number of papers.
In spite of the fact that analytical methods have less accu-
racy because of the need to make some simplifying as-
sumptions, they are more important, because they can be
used in a number of other problems, such as those of elec-
tron scattering and optical transitions.

In the effective-mass approximation the simplest
analytical solution of the problem can be obtained when
the potential energy of the electron is considered as a tri-
angular well. In this case the wave function of an electron
is described by the Airy function Ai(g) in the form

%(r,z)=u(r, z)g(z) exp(ik r),
where

(1.2)

is the envelope part of the wave function (tr indicates that
it is triangular),

r

The parameter a and the energy of the bottom subband
E are related to the electric field Fo ——Fo(0+) by the
equations

a=a„=(2meFo /A' )'r

E=E,„=y(fi/2m)'r (eF ) ~s,
(1.5)

Z, =Z, „=I z
I
g(z)

I
'dz=2y/3a„,

S 2Z2=Zzi. = i5 (y, /air)

where e and m are the electron charge and the effective
mass, respectively, and @=2.338 is the smallest root of
Eq. (1.4). As can be seen from Eq. (1.5), this root defines
the lowest energy level E which will be the main interest
of this paper.

Other properties of the solution, no less important than
the energy, are the average separation of carriers in the
subband from the surface of the vertical potential well
(Zi ), defined as the average value of the coordinate z as-
sociated with the wave function g(z) and the average
value of z (Zz) given by Ref. 3

Ai( —y) =0 . (1.4)

Equation (1.4) follows from the boundary condition
4=0 at the surface of the vertical wall of the potential
well located at z=0.

z is the coordinate along the axis perpendicular to the
two-dimensional layer (z&0), r is the two-dimensional
coordinate vector, and k the wave vector, both vectors be-
ing in the plane of the 2DEG, u(r, z) is the Bloch func-
tion at the bottom of the conduction band, Ai'(g) is the
derivative of Ai(g), and y is a root of the equation

In practice the electric field is not constant in the re-
gion of the 2DEG. Nevertheless, if the surface concentra-
tion of the 2DEG, n, is substantially less than the number
of impurity charges per unit area in the depletion layer

(in the case when the two-dimensional gas forms
near the heterointerface, Xd,~&

is the number of impurity
charges in the depletion layer on the side of 2DEG locali-
zation) the electric field can be considered constant for
distances of the order of the size of the wave function
( 1/a) and equals Fo F(0+ ) = (4rre /e)(——X&,„i+n, ),
where e is the dielectric constant in the region of the
2DEG.

Then we have
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E,„=4y~~ (Nd, pi+n )

(1.7)

1/2
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where u is the variational parameter.
o first order in the parameter

=Rg N, /(N, g )" (1.9)

where N is a 1volume concentration of ioniz
centers in th de epletion region % =Xd, I

ionized impurity

Xd z&
——XI. and L, is the depletion-re i

eff de 1+
gio i (o

denotes the Fang-Howard-S
g'ven y (FHS

owar - tern approximation)

0.99C)

CL

Esc /EFHS

=2(6 N,rf)'~—
3X,ff

(1.10)

EFHs = 377 (36/Nefr) d'pI+ 96

/3 Nd pi + ( 1 1n /96 )

~ 5/3
eff

The values Z and Zd Z2 in this case are equal to

Z 31,FHS 3/~FHS~ Z2 FHHS OFHS (1.12)
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II. BASIC EQUATIONS

In the region of the two-dimensional electron gas, the
charge density is the sum of the ionized-impurity (eX)
and the electron charge densities:

p(z)= —e[X+n,
I
g(z)

I ] .

Integrating Poisson's equation with the charge density
(2.1) yields

0.92 d V(z)/dz = I'(0—+ )+(4rre/e)Xz+F, (z},
where

(2.2)

0.90

0.97
(b)

2
As/ Nd~p)

Z1 G2 / Z 1,FHS

F( z) =(4~ en, /e) f, I
g(z)

I

'dz (2.3)

is the part of the total electric field which is proportional
to n, .

Because the wave function g(z ) extends over a distance
much less than the depletion-layer width I, it follows
from (2.2) that

F(0+ ) =(4me/e)(Xd, zi+n, ) . (2.4)

A second integration of Eq. (2.2) gives the potential

D
0.95

IX

Zl, sc /Z1, FHS
V(z) = V(0)+(2~eX/e)( 2Lz+z )+—V, (z),

where

V, (z) = —(4~en, /e) f z
I
g(z)

I

'dz

(2.5)

0.94

0.95- I

25 55

s«dep~
55

[—(i' /2m)d /dz eV(z)—]g(z)=Eg(z) . (2.7)

+ f (z —z')
I
g{z')

I

2dz' . (2.6)
Z

Substituting Eq. (2.6) into the Schrodinger equation we
obtain a single-particle Hartree equation

FIG. 2. Ratios of the average electron distances Z»„,z
Z d Z from the surface to Z» FHs as function oof1G»~ an »G2

n, /Xd, ~». Values for Z» „weretaken from Ref. 3.

To use the variational principle it is necessary to wnte the
equation for the full energy of the 2DEG. This energy di-
vided by the number of the electrons is given by

(iri'/2 ) g ~dz (2~e'X/e) —f (z 2Lz) Igj dz+——, f eV, I/I z.oo

(2.8)
dz

Parameters of the trial function are determined from the condition of minimum (
~ ~ 'm m (E ) and the subband energy is found

from Eq. (2.7).

III. EVALUATION OF THE ENERGY WITH THE TRIAL FUNCTION g- Ai(g')

f f E (1.2) but assume that a is the undetermined variational parameter thenIf we take the trial function in the orm o q, u a

4~en Ai(g)Ai'(g')+ 2$[Ai'(g) —2g Ai (g)
[A'( —y)l'

(3.1)

Substituting (3.1}in (2.8} we find

2Ny 3ns(E{a))=ya /3+(16~y/3a) Nd, p)
— +5'

(3.2)
\For the relevant integrals of the second power of the Airy

a' —8w[g„~,+(3n, /8) —(4Xy/5a)]=0,
and from Eq. (2.7) we find the bottom-subband energy

(3.3)

functions see Ref. 3 and for the fourth power see the Ap-
pendix.

The condition for the minimum (E(a) ) gives the equa-
tion for a,
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/

EG, =(y/3)Ia +(16m/a)[Nd I+(3n /4)

—(2Ny/5c7)] j . (3.4)
(E(c7,v)) = + [(c7L —v —1)(2v+1)]

4(2v —1)

Within the same accuracy as that of Eq. (1.10), we have
1/3

4mn,
(2v+ 1)[1—f(v)], (4.2)

3)is
n =c76(——2 m Nd, p]+ 8

4&y

15[Nd,p)+(3n, /8)]

4n ~ y [Nd, p( + ( 5n, /8) ]

[Nd,p) + ( 3n, /8) ] '

8m' yN[N d, pt+(n, /8)]

15[Nd,p)+ (3n, /8)]

(3.5)

(3.6)
where

where

1 " (k+ 1)I (4v+ k+ 3)
I (2v+2)2 +

k p 2 I (2v+k+3)
Note that f(1)= —,', .

The function (4.3) could be written in the form

r(2&+-', )
f(v)= g (k+1)A(k),

2m'~ I (2v+3) k p

(4.3)

(4.4)

If we neglect the terms of order A. in EFHs [see Eq.
(1.11)]and in Eq. (3.6) then the ratio of these energies is

2 2 y[Nd pl+(Sn /8)]
EG1 IEFHS

[Nd, pi + ( 55n, /96) ]
1 /3

A(0)=1, A(k)= A(k —1) .
2(2v+ k+2) (4.5)

The minimum condition c)(E(a,v))/Ba=0 gives

a 3 —16m'(4v —1)[N "(v)+(2N/a)(v+1)] =0, (4.6)

where

[N , d)+p(11 n/32) ]

[N„p,+(3n, /8)]
(3.7) N*( )v=N ,d)p+ —,[1—f(v)]n, .

Using Eq. (4.6), Eq. (4.2) could be rewritten

This ratio is plotted in Fig. 1 as function of n, INd, p&. As
can be seen, EGI is less than EFHs at a11 values of n, . To
compare it with the numeric self-consistent calculation of
the E„weplotted the ratio E„/EFHs using the data tab-
ulated in Ref. 3. Figure 1 shows that our result is only
1.2%%uo larger than the exact result at the larger values of
n, In th. e region n, ~ SNd, p&

it diverges from the exact
solution by less than 1%.

The values ZI o& and Z2 ol are defined by Eqs. (1.6)
where a„must be replaced by ao&. Ratios ZI o& /ZI FHs
and ZI „/Z&FHs are plotted in Fig. 2 as function of
n, /Nd, p~. The difference of these values is close to 2% at
low concentration n, and it decreases with increasing ns

going to 0 at n, /Xd p] 10. At larger concentrations it
changes sign [see Fig. 2(b)]. We see that both the trial
functions (1.2) and (1.8) overestimate the value of Z& in
the region where the ratio n, /Xd, p] ~10 but at larger
values n, INd, pl we have ZI „&Z, .ol.

IV. ENERGY EVALUATION WITH THE TRIAL
FUNCTION g-z" exp( —az /2)

( E(c7,v) ) =c7 /2(2v —1)+(4'/c7)(2v+1)N*(v)

and the expression for energy subband takes the form

(4.7)

c7=2[2~(4v —l)N*(v)]'~ —2(v+ 1)N I3N'(v) . (4.9)

Below we shall neglect the correction term in (4.9).
Then substituting a in Eq. (4.2) we obtain

(E(v) ) =[3/(2v —1)][2m(4v —1)N*(v)] ~ (4.10)

To find the minimum of (E(v) ) we note that the func-
tion f(v) could be approximated by the function

f(v) =5(5—v)/64 (4.11)

in the interval v= 1—1.6 with an accuracy of 0.6%%uo. Then
using (4.11) we find that the minimum of (E(v)) occurs
for

E=c7 /2(2v —1)+(4m/c7)(2v+ l)[Nd, p)+ —,n, (1—f(v)] .

(4.8)

Within the same accuracy as in Eq. (1.10) we find from
Eq. (4.6)

In this section we consider the problem of evaluating
the energy with a trial function of the form

(2v+ I ) /2

g(z) =,&z
z"exp( —az/2) (4.1)r'~ (2v+1)

v=v =4 —6+ 5+ 55 11
2 48

where

' 1/2

(4.12)

having two variational parameters v and a. I (x ) is the I
function. The function (4.1) is a generalization of the
function (1.8) and it coincides with (1.8) when v= l.

Substituting (4.1) in Eq. (2.8) we have

39ns
5= 64Xd,p] + 2

15n, . (4.13)

As can be seen from Eq. (4.12) v ~—, when

n, /Nd, p~
—+0 and v ~1.223 when n, INd, p&~ac. The
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FIG. 3. Dependence of the parameter v in the wave func-
tion (4.1) on the ratio n, /Xd, ~].

dependence of v~ on the ratio n, /Nd, ~~ is displayed in
Fig. 3.

From Eq. (4.8) it follows that the bottom-subband ener-

gy is given by

In the practical range of the parameter values the poten-
tial V,„(z)can be considered as perturbation to the main
Hartree potential. Therefore we can calculate a change of
the energy level in the first-order perturbation theory us-
ing the variational wave function as the wave function of
the zero approximation. Then the exchange-correlation
correction of the energy is

SE,„=f V,„(z)
~
g(z)

~

dz . (5.4)

The function y(z) goes to zero on the both sides of the in-
tegration interval as

~
g(z)

~

~, i.e., considerably slower
than

~
g(z)

~

. In the main region of the integration the
function y(z) is much larger than unity; Therefore we
can neglect the unity in comparison with y(z) under the
sign of the logarithm in V„(z).The numerical calcula-
tion shows that the error of this approximation does not
exceed 3%. Using the wave function (4.1) we obtain

3 1(»m /3)AE„=Vp
4 I(2v )

2v +1
+0.7734 lnQ—

3

[2m(4v —1)N*(v )]E=EG2 ——3
2&m

2&m
+ 'P(2v~ + 1)

3
(5.5)

n, [1 f(v )]—
X 1+

3N*(v )

(4.14)
where

Q =21[4man, /3I (2v +1)]' (5.6)

The values Z& and Z2 are equal in this case

Z& ——Zt o2 ——(2v +1)/a,

Z2 ——Z2 o2 ——2(v +1)(2v~+1)/a
(4.15)

V. EXCHANGE-CGRRELATION ENERGY

In this section we calculate the exchange-correlation
correction to the energy by using the local-density-
functional approximation. " This method has been suc-
cessfully used by a number of authors' ' in the numeri-
cal calculations, of the subband energy.

The exchange-correlation potential energy V,„(z)has
been parametrized by a number of authors. We will use
the analytic parametrization proposed by Hedin and
Lundqvist

Ratios E&2 /EFHs and Z& &2 /Z& FHs are plotted in Fig. 1

and Fig. 2. At low values of n, /Nd, ~&
a better result for

the energy is obtained when we used Airy trial function;
however, in the whole interval of the n, the difference be-
tween them does not exceed 1.5%. The value Z& oq is 2%
larger than the corresponding exact value Z&„.

and O(y) is the logarithmic derivative of the I function.
In Fig. 4 the ratio

~
bE,„~/(Eo2+bE, „)is plotted as

function of n, /Nd, „~for Nd, z&
——10' cm, electron ef-

fective mass m =0.07mp and dielectric constant a=13.
As can be seen the importance of the exchange-correlation
correction decreases with increasing surface concentration
n, . In Fig. 5 we plotted b,E,„asthe function of the ratio
n, /Nd, ~~ for the same values of the parameters as for Fig.
4. One of the curves is plotted for v =1, which corre-
sponds to the Fang-Howard wave function. It gives the

0.20

X

UJ
+

0.15—
LLl

0
K

O. 't 0

V,„(z)= Vo[y+0. 77341n(1+y)],

where

(5.1) 50

0 /Ndep(

100

Vo ——2/7(12m )'

y(z)=21(4mRzn, I g(z)
~

/3)'

(5.2)

(5.3)
FIG. 4. Relative valUe of the exchange-correlation correction

as a function of n, //'Xdep].
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smaller absolute value of the EE,„,and therefore the
difference in the values of the energies that are calculated
by these functions increases.

VI. CONCLUSION

As can be seen from the above, both proposed solutions
lead to fairly close results. From a practical point of view
one should prefer the second solution [i.e., the case
described by Eq. (4.1)] because the Fourier transform of
this wave function can be expressed in a simple analytical
form

ns/ Ndepl

FIG. 5. Exchange-correlation correction of the energy level

as the function of n, /Xd, „~.Ry* is the effective Rydberg, 5.6
meV. Solid curve, v=v; dashed curve, v= l.

g(q) = f g(z) exp( —iqz)dz

2@+lav+1/21 (&+ 1 )

[I"(2v+ 1)] ' (a+ 2iq )"+'

This allows one to use it in quantum-mechanical calcula-
tions.

The dependence of the parameter v on n, /Xd, ~~

shown in Fig. 3 demonstrates that the deviation of v
from unity plays an important role. This ratio for the in-
version layer at the semiconductor/insulator interface
may be close to unity. In this case v approaches 1.5
which should substantially affect the probability of pro-
cesses with the momentum change q larger than rx. For
the two-dimensional electron gas in A16aAs-GaAs het-
erostructures the unequality n, &&Xd,p] is practically al-
ways fulfilled. In this case v~ =1.2 and, hence the correc-
tions related to the use of the function (1.8) are less im-
portant. In spite of this, the calculation of the exchange-
correlation energy shows that, at a large value of the ratio
n, /Xd, ~~, the correction mentioned above is still impor-
tant.

ACKNO%'LED GMENTS

The author is indebted to M. S. Shur for a discussion
and to C. H. Hyun for assistance in preparing the
manuscript. This work has been partially supported by
Microelectronics and Information Sciences Center at the
University of Minnesota.

APPENDIX: INTEGRALS OF AIRY FUNCTIONS

(A2)

(A4)

(A5)

(A6)

where Ai=Ai(x ) and Ai'=Ai'(x ) denotes the derivative of Ai with respect to x.

In connection with the calculation of the average energy of the electron gas for the Airy trial function we note the fol-
lowing indefinite integrals:

f xAi~(x)dx =[3x'Ai +3(Ai')~+2 Ai'Ai' —6x Ai'(Ai )']/8,

f x Ai (x)dx=[ —7Ai +12x Ai +28x Ai Ai' —24x Ai (Ai') —12Ai(Ai') +12x(Ai')"]/64,

x Ai x Ai' x dx= —3Ai 4—x Ai +3x Ai3Ai'+2x Ai Ai' 2+Ai Ai' —x Ai' 16,

f Ai (x)(Ai') (x)dx=[ —x Ai +2Ai Ai'+2x Ai (Ai') —(Ai') ]/8,

f x Ai(x)(Ai') (x)dx =(Ai') /4,

f Ai (x)Ai'(x)dx=Ai /4,
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