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The wave-vector-dependent macroscopic response functions of diamond and silicon are calculated
using a simple model for the static dielectric matrix of a covalent semiconductor. Local-field correc-
tions are taken into account using a Wannier-function inversion technique in which the microscopic
static dielectric response e~G(q) is modeled by two mechanisms of screening, one corresponding to
the response by a uniform homogeneous medium characterized by eo(q+Ci) and the other by a set
of dipoles interacting via the screened electron-electron interaction U (q+Cx)/eo(q+ Cr). Results for
the static dielectric constant with and without local-field effects are compared to previous model cal-
culations. The static microscopic dielectric response is tested in the long-wavelength limit via an
analysis in real space of the microscopic local field and polarization charge density induced by a uni-
form externally applied electric field along the [111]direction.

I. INTRODUCTION

The effects of local microscopic fields in the static
dielectric response of semiconductors and insulators have
been the subject of intensive theoretical work over the last
few years. ' Local-field effects essentially constitute a
measure of the inhomogeneity of the system, and in-
clusion of these effects into the theory of microscopic
dielectric screening in. periodic solids leads to the defini-
tion ' of a microscopic dielectric matrix EGG.(q, ro) in
which 6 and 6' are reciprocal-lattice vectors. In this pa-
per we are mostly concerned with the static microscopic
response eG o(q) and the macroscopic dielectric function
EM(q) = 1/Ep o(q). The magnitude of the off-diagonal ele-
ments of e measures the contribution of local-field correc-
tions to the microscopic response: A purely diagonal
dielectric response matrix essentially corresponds to the
response of a model homogeneous solid and is therefore
unable to account for the changes in the microscopic elec-
tric field and polarization charge density caused by varia-
tions in the electronic environment on the scale of atomic
dimensions.

The evaluation of the full. dielectric response matrix of
a periodic solid requires the previous knowledge of its
electronic band structure and constitutes an extremely
time-consuming calculation. For an arbitrary q the polar-
ization integrals have to be carried out over the full Bril-
louin zone (BZ) and need to be evaluated for every pair of
G, G' reciprocal-lattice vectors. Moreover, after the ma-
trix elements e'G G (q) are obtained, a full inversion is still
required to obtain the microscopic response e . As a re-
sult, in recent years a number of approximations and
phenomenological models have been proposed in which
one relies on simplified electronic band structures, high-

symmetry materials, and mean-point BZ averaging tech-
niques. The resulting model dielectric matrices have been
used in such important applications as lattice dynam-
ics, ' screening of impurities, ' local-field studies in
real space, ' etc. , and although the relative accuracy and
reliability of the different model calculations have not yet
been unambiguously established, the continuing develop-
ment of physically simple models for the microscopic
dielectric response of periodic sohds is clearly of funda-
mental importance.

In this work a model calculation of the macroscopic
dielectric response eM (q) for diamond and silicon is
presented. The static dielectric constant with and without
local-field effects is evaluated and results compared with
previous model calculations. Moreover, the microscopic
static dielectric response matrix EGG(q) is tested for
q~O with an analysis in real space of the microscopic lo-
cal field and polarization charge density induced by a uni-
form externally applied electric field along the [111]-bond
direction.

II. THE MODEL MICROSCOPIC
DIELECTRIC RESPONSE

The general form of the dielectric response matrix is '

4~e
eG G (q, co) =5G G—,IIo G (q, co),q+G q+G'

where II& G (q, co) is the polarizability. Within the
random-phase approximation and within the Wannier-
function factorization scheme, the polarizability is given
b 11,12
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IIa a (q, co)=2+ A, (q+G)N», (q,co)A, (q+G'),
$,$

(2.2)

sion technique. Our factorization ansatz' for the static
microscopic dielectric response is

where A, (q+G) is a form factor between Wannier func-
tions P„(r) and P&(r+R~) and the index s stands for the
lattice vector index l and for the indices v and p of the
Wannier functions used to describe the Bloch functions.
The matrix X» (q, co) contains the Fermi factors and ener-

gy eigenvalues and each (s,s') term involves an integra-
tion over the Brillouin zone. Turner and Inkson ' argued
that the major contribution to the dielectric matrix comes
from those terms with form factors A, (q+G) which cor-
respond to both the bonding and antibonding orbitals cen-
tered on the same site and pointing in the same direction.
Further, they proposed an extreme tight-binding approxi-
mation with a single effective gap Eg between conduction
and valence bands. Within the approximations of Turner
and Inkson, ' the matrix N is diagonal and the response
matrix becomes

4'
&e

I
q+G

I I

q+G'
I E,'

X Q A„(q, G)A „*(q,G'), (2.3)

where

A ~(q, G)=e'a @ f P+ (r)e '"+ a "P„(r)dr,
d =—(1,1, 1) (2.4)

8

is a form factor between bonding (P+) and antibonding
(P„) wave functions, 0, is the volume of the unit cell, a
is the lattice parameter, and v denotes the four tetrahedra)
directions for a diamond-type semiconductor As Turner
and Inkson pointed out, ' the above factorization ansatz
for the polarizability overestimates the local-field correc-
tions since it is strictly valid for tightly bound electrons
only. We found, however, that a functional form similar
to the one proposed by Turner and Inkson' gives fairly
good results for the local-field corrections and has a sim-
ple physical interpretation. At the same time it retains
the important property of making the e ' dielectric
response easily obtainable via the %'annier-function inver-

&a,a (q) =&p(q+ G+a,a
4me 4

0, fq+G f
fq+G'

f
E

X QA„(q, G)A„'(q, G'), (2.5)

which has a simple interpretation if one considers that in
the Jones zone scheme, ' as Inkson' suggested, there are
basically two physically distinct types of contribution for
the polarizability:

(a) The first type is a "surface" contribution which
essentially comes from the region in k space around the
Jones zone surface, i.e., the region around the principal
band gap of the semiconductor. In that scheme, the off-
diagonal elements, which reflect the nonhomogeneity of
the electronic charge distribution, are dominated by what
we called surface terms, and are expected to be fairly well
represented within an extreme tight-binding model [the y
factor in (2.5) takes into account that only a fraction y of
the valence electrons contributes to the surface term].

(b) The second type is a "volume" term which comes
from large regions of the "Fermi sea" with essentially
free-electron-like behavior, and which gives no contribu-
tion to the off-diagonal elements of the dielectric matrix.
For the diagonal elements ea a(q), on the other hand, we
have contributions coming from both surface and metallic
terms.

One should notice that the above factorization ansatz
for ea a (q) can be related to the exact static Wannier pro-
cedure [Eqs. (2.1) and (2.2)] by taking ep(q+G)—:1 and
considering creation and annihilation of electron-hole
pairs in different sites and different bonds conveniently
weighted by the propagator X» (q). Physically what we
have done was to approximate the Jones zone surface con-
tribution by an extreme tight-binding term and substitute
the smooth metalliclike volume contribution by a purely
diagonal part ep(q+ G).

The separable form of the polarizability in (2.5) enables
one to calculate easily" the inverse dielectric matrix

ep(q+G) ' 0,
f q+G f f

q+G'
f E, g A (q, G)S~'(q)A~(q, G') (2.6)

(q)=& + gy A„*(q,G) A (q, G) .
c g ep q+ (2.7)

The static microscopic dielectric response ea a (q)
given above may be interpreted on physical grounds as be-
ing modeled by two mechanisms of screening correspond-
ing to the responses by a uniform homogeneous medium
characterized by ep(q+ G) and by a set of dipoles

l

represented by the form factors A (q, G) interacting via
the screened electron-electron interaction v (q+ G) /
ep(q+ G) We should also. stress that the proposed model
has the advantage of being extremely simple from a com-
putational point of view: The inversion of the infinite-
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dimensional dielectric matrix EG G (q) is reduced to the in--
version of a simple 4X4 S (q) matrix with indices cor-
responding to the four tetrahedral directions.

III. RESULTS AND DISCUSSION

We have used the model static microscopic dielectric
response eG&(q) of Eq. (2.5) in calculating the macro-
scopic response

&M(q) =1«o,o(q) (3.1)

ql„(r) =(4V n) R, (r)+V 3 Rz(r) (3.2)

where v represents the tetrahedral vectors [111],[111],
[111],and [111]. Two hybridized orbitals of nearest-
neighbor atoms pointing in the same direction are added
and subtracted to form' bonding P+(r) and antibonding
P„(r) orbitals

for diamond and silicon. We have chosen the origin mid-
way between the two atoms in the [111]direction of the
unit cell of diamond so that the form factors A, (q, G) can
be made real due to the inversion symmetry. We have
used sp -hybridized orbitals localized in the four
tetrahedral directions'

0

1.0
l I

0.5
Iq I/k F

(A ')

1.5

P+—„(r)=[2(l+S)] '~ %„(r)+4 „r——v (3.3)

with S being the overlap' ' between %„(r) and
„(r—(a/4)v) [S(diamond) =0.5; S(silicon) =0.7]. We

have taken the atomic s and p orbitals of diamond as hy-
drogenic orbitals' ' with an effective charge Z=2.5,
while for those of silicon we have used a Gaussian expan-
sion' optimized with respect to a current-conservation
criterion and that also gives a reasonable fit to the charge
density. With these choices the form factors are easily
evaluated analytically. Further, for reciprocal-lattice vec-
tors through the set (222) we have scaled' A (q, Cr) so
that the contribution of the "surface" term to the diagonal
matrix element EGG(q) corresponds to a fraction y [cf.
Eq. (2.5)] of the polarizability in the Penn model. ' We
have followed Penn's criterion' ' in choosing

0 0.5 1.0
I I/k

1.5

FIG. 1. Static macroscopic dielectric response e~(q)
= 1/Ep p(q) for diamond and silicon along the [111] direction.
Dashed curves correspond to diagonal terms only (no local-field
effects}; solid curves correspond to full matrix inversion (local-
field effects are taken into account}.

TABLE I. Anisotropy of the macroscopic static dielectric response eM"{q), including local-field ef-
fects, for diamond and silicon.

0.0
0.15
0.30
0.45
0.60
0.7S
0.90
1.05
1.20
1.35
1.50

qf f
[111]

5.7
5.219
4.299
3.354
2.5SO
1.997
1.631
1.410
1.275
1.191
1.138

e~ (q) {diamon'd)

qf f[110]

5.7
5.251
4.308
3.331
2.511
1.956
1.619
1.408
1.278
1.194
1.136

qf f[100]

5.7
5.350
4.379
3.363
2.539
1.968
1.657
1.467
1.290
1.201
1.145

ql i[111]

12.0
10.728
8.054
5.502
3.720
2.653
2.040
1.663
1.451
1.319
1.228

e~"{q) (silicon)

12.0
10.752
8.147
5.637
3.822
2.715
2.070
1.693
1.466
1.324
1.229

ql I[1001

12.0
10.796
8.196
5.682
3.811
2.672 '

2.044
1.670
1.442
1.302
1.214
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'See Ref. 20.
"See Ref. 7.
'See Ref. 23.
dSee Ref. 13.
'See Ref. 22.
See Ref. 24.

~See Ref. 17.
"See Ref. 3.
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the difficulties encountered by several investigators in
modeling a realistic microscopic static dielectric response
matrix.

Our present model for the static dielectric matrix was
also tested in the long-wavelength limit via an analysis in
real space of the local fields and polarization charges in-
duced by a uniform externaHy applied electric field

0.4

0.2

Lij

T 3

)LU

(3.5)

E(.)= IE'"'I g.G,'.(q) q+ .'"+G" q-0 (3.6)
+G

q+G
while the polarization charge density induced by the uni-
form applied field is'

&'"'(q) g I q+G I [eG,o(q) —&G,o]
4m G

E'"'(r) =E'"'(q) e'q' q 0

along the [111]direction. The corresponding induced mi-
croscopic local field is given by'

-0.2
-0.4

O. 2

T~

T LLj

atom atom

dl 0 ITIOAd

0.4

+ei (,q+G)].r (3.7)
-02 I

-0,4
I

-0.2

silicon

0,2In (3.6), the G=O term gives the macroscopic field
E'"'zoo(q) while the remaining terms yield the oscilla-
tions of the microscopic internal fields which fluctuate on
the scale of the atoms involved rather than with the wave-
length of the applied field.

One should note that the evaluation of either E(r) or
p'" (r), which depend on the eG'o(q) elements of the in-
verse dielectric matrix, provides a much more stringent
test on a model die1ectric response matrix than just the
evaluation of the macroscopic dielectric response, which
depends on a single eo o(q) element.

Figure 2 shows our results for the microscopic induced
polarization charge density p'" (r) for r along the [111]
diagonal of the conventional unit cell. It is clear from
Fig. 2 that strong and localized dipoles are induced on
those [111]bonds which are parallel to the uniform ap-

FIG. 3. Microscopic local field E(r),r=a(x, x,x), for dia-
mond and silicon along the [111]direction induced by a constant
displacement E'"' parallel to the [111]direction. Solid horizon-
tal lines indicate the macroscopic field E "'coo(q), q~0, in-
cluding local field corrections. Dashed horizontal lines corre-
spond to the macroscopic field E'"'/zoo(q), q~O, without
local-field corrections.

plied electric field, as one would expect. The microscopic
local field E(r) induced by a uniform external field paral-
lel to the [111]direction is shown in Fig. 3 for r along the
unit-cell [111]diagonal: The microscopic field fluctuates
rather strongly in the unit ceil and, at the bond center, the
applied field is overscreened so that the microscopic local

TABLE IV. Some elements @~0(q) of the inverse dielectric matrix for diamond and silicon in the
limit q~0 along the [100] direction. Elements with

I
G

I & v 20 2m. /a which are not reported are re-
lated by symmetry or vanish. Also shown, for comparison, are the values obtained by Baldereschi, Car,
and Tosatti (BCT) (Ref. 1).

Cx(a /2m)

(000)
(111)
(200)
(220)
(3»)
(131)
(222)
(400)
(133}
(313)
(420}
(240)
(042)

'See Ref. 1.

BCT'

0.205
0.031
0

—0.008
—0.011

,
—0.008
—0.014
—0.005
—0.001
—0.002

0
0

—0.000

Diamond
This work

0.175
0.024
0

—0.017
—0.010
—0.011
—0.010
—0.002
—0.001

0.000
0
0

—0.001

BCT'

0.092
0.022
0

—0.011
—0.010
—0.005
—0.008
—0.005
—0.001
—0.000

0
0

—0.000

Silicon
This work

0.083
—0.003

0
—0.015
—0.010
—0.007
—0.005

0.000
—0.000
—0.000

0
0

—0.000
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field is in fact opposed to it. Results shown in Figs. 2 and
3 qualitatively agree with E(r) and p'" (r) obtained by
Baldereschi et a/. ' Fairly good agreement is also obtained
when the @Go(q) elements, q~0 along the [100] direc-
tion, of our model dielectric response are compared with
those obtained by Baldereschi et al. ,

' as shown in Table
IV.

In conclusion, we have presented a model for the static
dielectric matrix of diamond and silicon, which seems
capable of realistically describing the static dielectric
properties of these materials. Besides having a clear phys-
ical interpretation, this model is extremely simple from
the computational point of view, and can be easily extend-
ed to the III-V semiconductors. It is also quite convenient
for using in the study of several problems of current in-
terest such as lattice dynamics and screening of impurities

in covalent semiconductors. %'ork along these lines is
now in progress.
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