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A model for describing a new kind of order in amorphous covalently-bonded networks is
'described. We introduce the concept of "propagated short-range order" (SRO), which expresses the
idea that SRO about a particular atom can constrain the form of SRO around neighboring atoms.
Propagated SRO can be achieved by applying a certain network-building rule to every site in the
solid. For example, the rule "Place eight cubes around each vertex" generates a simple-cubic crys-
tal. However, some ways of prop+gating SRO are incompatible with long-range crystalline order;
specific examples of this frustrated propagation are shown in two and three dimensions. Many in-

teresting kinds of propagated short-range order are compatible with translationally ordered struc-
tures called polytopes, which are large molecules or crystals in non-Euclidean space. We propose
that certain types of polytope order describe intermediate-range order in amorphous semiconductors.
Therefore, the quantum numbers labeling the symmetries of these polytopes provide approximate
symmetry labels for electronic eigenstates of the amorphous solid. We explain the symmetry groups
of the. polytopes in detail; these are discrete subgroups of SO(4). We use their irreducible representa-
tions to construct the analogy of the energy-band dispersion for the amorphous solid. If patches of
polytope order exist in the amorphous solid, then an approximate vertical selection rule should

govern optical absorption in these materials, and we suggest it as part of a possible explanation of
the depressed optical absorption near the band edge in hydrogenated amorphous silicon.

I. INTRODUCTION

It is well known that there exist substantial similarities
between the electronic properties of crystalline and amor-
phous semiconductors. ' Both have an occupied valence
band of about the same width and with generally the same
peak structure, and both have a forbidden energy gap of
about the same size. The similarities become even more
pronounced when the amorphous semiconductor is
prepared in such a way that most of the chemical bonds
are satisfied; this can be accomplished by growth at
higher temperatures or by the incorporation of impurity
atoms (e.g., H or F). In these materials the density of
states in the energy gap is very small and the electrical
properties can be changed by acceptor or donor doping
just as in the crystal. It is the purpose of this paper to
explore some of the possible causes of this similarity.

Qf course, it is well known that the short-range order
(SRO) is essentially the same in the connected amorphous
network and in the crystalline network; in both crystalline
and amorphous group-IV semiconductors, each atom
forms four covalent bonds with its nearest neighbors. It is
quite reasonable to attribute much of the similarity in the

electronic structure to this SRO. However, we will assert
that there is a deeper similarity between the amorphous
and crystalline systems, and that the amorphous network
has a greater degree of order than just SRQ. The presence
of SRO at one point in a lattice forces a similar kind of
SRO at neighboring points. We will make this concept
more concrete later, but for the time being a simple exam-
ple will suffice: If the four F3 bonds are oriented at a
particular direction at one lattice site, then the orientation
of the tetrahedral bonds on neighboring atoms is at least
partially determined. This is the the most elementary
manifestation of what we call propagated SRO. There are
thus two distinct features of SRO which should be
remembered: (a) There are physical and chemical reasons
why the SRO occurring on neighboring sites is correlated;
(2) therefore, SRQ has a tendency to propagate in a par-
ticular way over long distances in the network. This
propagation may or may not be geometrically allowed.

In the crystalline network the SRO is the same every-
where; we say that in this case SRO propagates rigidly in
all directions, leading to perfect translational order. We
will show that there exist forms of SRQ ("polytope or-
der") ' which are natural to the tetrahedrally-bonded net-
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work but whose rigid propagation throughout a11 space is
impossible. This will be suggested as a possible reason for
the long-range disorder in the amorphous solid. However,
this order can propagate over some intermediate distance
in the network, and an approximate translational symme-
try can be associated with this propagation. This transla-
tional symmetry can be used in the same way as in the
crystalline state: a Bloch theorem for eigenstates can be
shown, and symmetry selection rules for optical absorp-
tion can be derived. This wi11 be done in the present pa-
per. Thus we hope to show that the amorphous and crys-
talline networks have more in common than was previous-
ly supposed, and that the similarities in the properties
mentioned above are quite understandable.

To begin, we must be more precise about the nature of
SRG in a group-IV semiconductor network. ' The most
basic property of such a network is its fourfold coordina-
tion. The primitive element of SRO might then be chosen
to be the tetrahedron of orbitals surrounding each atom.
Instead, we have chosen our fundamental local structural
unit to be the six-membered ring of bonds. This is reason-
able, since many of the crystalline modifications of Si and
Ge contain only six-membered rings, and numerical simu-
lations of random networks show a majority of six-
membered rings, although five- and seven-membered rings
do occur. In the diamond crystal structure, the "chair-
type" six-membered ring is propagated uniformly
throughout all space. In wurtzite (or lonsdaleite) a com-
bination of chair-type and "boat type" rin-gs constitute the
fundamental unit of SRO. These two modifications of
six-membered rings are shown in Fig. 1. They merely
represent two different ways of constructing a ring of six
equal-length bonds with tetrahedral angles (=109') at the
joints. Since the optimal bond angles and bond lengths
occur in these structures, they should be of particularly
low energy. However, they are not the only six-fold rings
which satisfy these constraints. Figure 1 shows a third
ring, of a "twisted boat type, " which is distinct from the
other two and which has ideal bond angles and bond
lengths as well. (In fact, there is a continuous family of
boat-type six-membered rings which satisfy all bond-
length and bond-angle constraints. ) The twisted boat
ring of Fig. 1(c) is distinguished by the three mutually-
perpendicular twofold symmetry axes passing through its
center. Rings of approximateIy this geometry have been
found to occur in numerically generated random network
models for group-IV semiconductors; thus it seems
that we must include the twisted boat as a possible funda-
mental local structure unit as well.

How can the SRO represented by the twisted boat prop-
agate? It has already been shown that three twisted boats
can be joined together to form the structure in Fig. 2,
which has been called the "little barrel"
("petit barrelan" ). A natural way of propagating this
SRO is given by the rule "Insert the tips of four barrels
around each atom. " The resulting structure in the vicim-
ty of one atom is shown in Fig. 3. After the building rule
has been applied to several atoms, the "petit barrelan" will
become twisted, as the figure shows. Both the "petit bar
relan" itself and the structure of Fig. 3 have. also been
seen in numerical network simulations. The 27-atom
cluster of Fig. 3 has a very interesting property which
makes it likely to occur: The number of dangling bonds
pointing outward from this cluster (28) is smaller than the
number of dangling bonds in any comparable-size cluster
with diamondlike or wurtzitelike structure (i.e., with boat
and chair rings). " Thus the propagated SRO resulting
from the twisted boat ring may give lower-energy configu-
rations for small numbers of atoms than propagated boat-
or chair-ring order. The natural next step is to try to ex-
tend the SRO in Fig. 3 to larger structures, i.e., to apply
the rule "four 'petits baI"relans' around each vertex" to
successive atoms in the system, but it does not work.
Departures from perfect bond angles and bond lengths be-
come larger and larger as the rule is applied further and
further from the center of Fig. 3. By the time 50 or so
atoms have been added, the rule leads to unrealistically
distorted structures, and defects must begin to appear.

We see that the propagation of a very natural kind of
SRO (as represented, for example, by the twisted boat ring
or the "petit barrelan") need not lead to crystalline long-
range order. This type of SRO still may be very impor-
tant for the disordered network, since it may describe
favorable structures of intermediate size. We will show
that we can generalize the concept of "crystal" to natural-
ly describe the ideal state of perfectly-propagated SRO of
this type. It wi11 be the quantum numbers labeling the ap-
proximate symmetries of this generalized crystal which
will permit us to make analogies between the disordered
and crystalline networks.

The remainder of this paper is organized as follows. In
Sec. II some general concepts of propagated SRO are in-

(b)
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FIG. 1. Top, front, and side views of six-membered rings. (a)
The "chair." (b} The "boat." (c) The "twisted boat, "a new type.

FIG. 2. The "little barrel" ("petit barrelan") In the polytop. e
model, this is a possible fundamental unit of short-range order.
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FIG. 3. An assembly of four "petits barrelans" around a cen-
tral atom forming a 27-atom cluster. It is the smallest cluster in
which all six-membered rings are complete around the central
atom. This cluster has fewer dangling bonds than a diamond-
like cluster of the same type.

troduced. We will use an example in two dimensions to
illustrate a SRO which does not lead to a crystal, intro-
duce the notion of a polytope as a natural generalization
of a crystal, and show how polytope symmetries are relat-
ed to approximate symmetries in the real disordered net-
work. In Sec. III we outline the formal theory of the sym-
metry of polytopes which are representative of structure
in three-dimensional covalent networks. We present the
concept of an energy-band structure for the polytopes in
Sec. IV. In Sec. V we work out a more detailed and realis-
tic electronic structure for one particular polytope which
seems most representative of order in amorphous semi-
conductors; in Sec. VI a model optical-absorption calcula-
tion based on this band structure is presented. We present
our conclusions in Sec. VII. There are two appendixes; in
Appendix A some details of the mathematical treatment
of quaternions are given, and in Appendix 8 the effect of
disclinations on the electronic spectrum of the polytopes
is discussed.

at every vertex. " This rule clearly does not fill the two-
dimensional plane; as Fig. 4 shows, this propagation
suffers the same problem as the fitting together of "petits
barrelans" mentioned above. The structure is sensible lo-
cally, but very quickly leads to unreasonably large distor-
tions. In order to complete the tiling of the plane, viola-
tions of the propagation rule must be introduced (e.g. ,
four pentagons meeting at a point). The crucial observa-
tion made some years ago by one of us ' is that there is a
sort of crystal which corresponds to the rigid propagation
of this SRO as well as many others; it is, however, a crys-
tal lying on a curved, non-Euclidean space, which has
been called a polytope 'Th.e three-pentagons-per-vertex
rule works perfectly in two-dimensional (2D) space with a
particular positive curvature, and the resulting structure is
the dodecahedron [Fig. 5(a)]. The dodecahedron is an ex-
ample of a polytope in 2D space, which is also called a
polyhedron. Its structure may be representative of a piece
of a disordered lattice in two dimensions [see the right-
hand side of Fig. 5(a)], and a mapping may be devised
from one to the other, as suggested by the vertex number-
ing in the figure. The degree of local disorder in the flat-
space lattice is directly related to the curvature of the
sphere on which the polytope sits.

The polytope is highly symmetrical; the disordered lat-
tice has no symmetry at all. Still, depending on the form
of the mapping, some of the symmetries may be approxi-
mately preserved. In the example shown, the fivefold ro-
tational symmetry of the dodecahedron is approximately
retained as a translational symmetry by lattice vector a in
the patch of disordered lattice. We believe it is likely that
this will be a general feature which carries over to more
realistic cases: certain symmetries of the polytope will be
approximately preserved locally upon mapping. In partic-
ular, rotational symmetries of the polytope will go over to
approximate translational symmetries in flat space. Then,
the quantum numbers labeling the irreducible representa-

II. GENERAL CONCEPTS

In this section we show how polytope lattice structures
are naturally related to various rules for propagated SRO,
how the polytope electronic structure can be computed,
how it can be related approximately to the local electronic
structure of a disordered network, and how the sym-
metries of the polytope are related to approximate local
symmetries in the disordered system. Polytopes' may be
defined as crystals in non-Euclidean space, or as Platonic
solids in higher dimensions. %'e will illustrate the po-
lytope concept using a two-dimensional example. It is
vastly more easy to visualize and draw lattices in two di-
mensions than in three, and almost all of the ideas we
present here will be simply generalizable 1ater to one
higher dimension.

Consider a structure in which the fundamental local
unit of SRO is a five-membered ring or pentagon. ' We
might imagine a system in which the fundamental rule for
the propagation of SRO is "join three pentagons together

FICr. 4. An attempt to fill two-dimensional space using the
rule, "Connect three pentagons at every vertex. " This scheme
for propagating short-range order is sensible locally, but be-
comes impossible in larger clusters.
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FIG. 5. (a) Perfect realization of the network-building rule of Fig. 4 on a curved two-dimensional space. The result is the familiar
dodecahedron. This structure may be mapped onto flat two-dimensional space in any number of ways', one such way is shown on the
right-hand side. In this mapping, the fivefold rotational symmetry of the dodecahedron around the axis 0 is approximately preserved
as a translational symmetry a. (b) Our labeling of the twelve sp2 tight-binding orbitals in one unit cell of the mapped structure in (a).
(c) The resulting energy eigenvalue spectrum of the dodecahedron. On the left the states are shown in a molecular energy-level
scheme, with the degeneracies indicated. The pseudotranslational symmetry of (a) permits these eigenvalues to be displayed as points
on a continuous energy-band diagram. The dodecahedral eigenvalues occur where these bands cross the allowed k values as indicat-
ed.

tions of the relevant rotational subgroup of the polytope
will go over (approximately) to a wave-vector-like index in
flat space. In the 2D example shown, the cyclic group of
order n =5 which corresponds to the rotational sym-
metries about the z axis is labeled by a quantum number
m running from m =0 to m =n —1=4. The correspon-
dence with a wave-vector index in real space is
2+m/nark. This ineans that k runs roughly from 0 to
2m/a, or —m. /a to n/a, which is .just the dimension of a
single Brillouin zone in a one-dimensional crystal. Of
course, the wave vector takes on only a discrete set of
values within this Brillouin zone. As we will show
momentarily (see also Sec. IV), a simple analytic continua-
tion is possible which permits quantities like the electronic
energy states to be defined for any value of k, ' and these
may be relevant for patches of a random network like the
one in Fig. 5(a) in which the pseudotranslational order in
the a direction persists for more than n' itucnells (i.e.,
more than five in this example).

We now work out a specific example of an electronic
structure model on the polytope. ' The calculation
proceeds entirely by analogy with the usua1 crystal band-
structure ca1culation. The unit cell contain four atoms la-
beled 4, 9, 14, and 19 in the figure; every other atom in

the structure can be obtained from these by translation (or
rotation in curved space). For our example we will use
the tight-binding approximation, ' assuming that the
states of the polytope can be represented by sp2 hybrids
shown in Fig. 5(b). There are three such orbitals per
atom, or 12 per unit cell, which are numbered in the fig-
ure. As usual in these calculations, this means that the
calculation of electronic structure reduces to the finding
that the solutions of a 12X 12 secular equation
det(H —ES)=0. In this case we will assume that the
overlap matrix S is the identity. The Hamiltonian matrix
elements between the sp2 orbitals are given by a parameter
Vi for two different orbitals on the same atom, and by a
parameter V2 for two orbitals pointing towards each other
from neighboring atoms [see Fig. 5(a)]. Since the basis
functions are actually Bloch orbitals, differing by a phase
factor exp(ika) from one unit cell to the next, the Hamil-
tonian matrix element picks up this phase (or its complex
conjugate) when two interacting orbitals are in adjacent
unit cells.

The resulting 12&12 Hamiltonian matrix is shown in
Table I, and the resulting energy bands are shown in Fig.
5(c) with the choice of parameters Vi ——1, Vz ——2. Only
half the Brillouin zone is shown; as usual, the bands have
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TABLE I. sp~ tight-binding Hamiltonian for the dodecahedron.

9 10 12

2
3

5
6
7
8

10
11
12

0
V +V —rka

V)
0
0
0
0
0
0
0
0
0

~ le
0
V)
0
0
0
0
0
0
0
0
0

V,
V)
0
V2

0
0
0
0
0
0
0
0

0
0
V2

0
V)

Vi
0
0
0
0
0
0

0
0
0
V)
0
Vi
0

V —ika'
2e

0
0
0
0

0
0
0
Vi
V)
0
V2

0
0
0
0
0

0
0
0
0
0
V2

0
Vj
V)
0
0
0

0
0
0
0

V eika
2

0
Vl
0
V)
0
0
0

0
0

, 0
0
0
0
V)

V)
0
V2

0
0

0
0
0
0
0
0
0
0
Vg

0
V)

V)

0
0
0
0
0
0
0
0
0
V(
0

V +V —ska

0
0
0
0
0
0
0
0
0
Vi

e lk4

0

+k symmetry. The discrete set of k values corresponding
to allowed quantum numbers of the ideal polytope are in-
dicated, and the "molecular" energy levels for the ideal
polytope (symmetries disregarded) are shown on the left-
hand side. The allowed energy levels have high degenera-
cy, much higher than can be explained by the k symmetry
of the energy bands alone. This is simply a manifestation
of the fact that we have not used all the symmetries of the
polytope (i.e., the proper icosahedral group, of order 60)
but only the rotational symmetries around one axis (a
group of order five). We expect that some of the extra
symmetries which lead to additional degeneracies are
probably strongly broken by the mapping to flat space
which we have chosen in Fig. 5(a). An important point is

that the detailed form of the mapping determines which
symmetries are preserved and which are broken. In the
mapping chosen in Fig. 5(a), the fivefold axis is preserved;
another choice of mapping could have preserved one of
the threefold symmetries. [In fact, it would be more like-
ly that a threefold symmetry would be approximately
preserved in an arbitrary mapping than a fivefold symme-
try, simply because there are more threefold axes (10) than
fivefold axes (6).j

Figure 6(a) shows another such simple two-dimensional
polytope, the cube. This structure results from the fol-
lowing rule for propagating SRO: join three four-sided
figures at each vertex. In this case the F2 secular matrix
is 8&&8 (see Table II), and the resulting energy bands are
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FIG. 6. (a) The result of applying the network-building rule, "Connect three squares at each vertex" (the cube, of course). (b) The
six F2 tight-binding orbitals in the "unit cell" of the cube. (c) The energy eigenva1ues displayed on a band structure.
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TABLE II. sp2 tight-binding Hamiltonian for the cube.
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shown in Fig. 6(c).
Vhth this introduction, we move on to more realistic

three-dimensional examples. These are more difficult to
visualize, since the corresponding ideal polytope are
wrapped onto a three sphere, which is embedded in four-
dimensional Euclidean space. Nevertheless, the concepts
we will use are very simple extensions of the ones intro-
duced by these two-dimensional examples, and the reader
will be aided by noting the analogies between two and
three dimensions.

Before discussing some of the formal properties of the
three-dimensional polytopes, let us briefly anticipate the
results of the later sections of the paper (Secs. V and VI).
In our applications of the polytope model to
tetrahedrally-bonded amorphous solids, we will assume
that the polytope generated by the rule "Place four Jpetits
barrelan' around every vertex" (called polytope 240; see
Fig 3), is. most representative of local order in the amor-
phous solid, so that clusters containing many atoms show
the polytope-240 structure. There is one symmetry axis
which occurs with the greatest frequency in polytope 240
(called the —",, axis below); therefore, we will assume that
the symmetry about this axis is the most nearly preserved
upon mapping to flat space. Then, the energy eigenvalues
of the amorphous solid can be organized into an energy-
band structure by analogy to Figs. 5(c) and 6(c). When we
say this, we ignore the presence of states associated with
defects in the polytope-240 order. (We show in Appendix
B that at least some kinds of defects do not introduce any
important new electronic states. ) Within this energy-band
picture, we show that an approximate vertical selection
rule for optical absorption is in force; a quantitative dis-
cussion of this appears in Sec. VI. We consider these opti-
cal selection rules as one possible reason for the small op-
tical absorption near the fundamental band edge in hydro-
genated amorphous Si and in well-annealed pure amor-
phous Si.

GI. SYMMETRY GROUPS OF THE POLYTOPES

In this section we give a complete and fairly formal dis-
cussion of the symmetry properties of the regular
polytope. An understanding of these symmetries is quite
useful in our modeling of amorphous solids. For exam-
ple, we will exploit this symmetry to diagonalize model
tight-binding Hamiltonians on the polytope lattice. The
results of these calculations may be relevant to the local
electronic structure in disordered solids, in which case the
irreducible representations of these groups provide physi-

cally meaningful approximate indexing schemes for these
local eigenstates. The polytope symmetries are also useful
for indexing line defects in amorphous solids. '

A. The full symmetry groups

There are two mathematical accidents which make the
structure and symmetries of the polytopes in positively-
curved three-dimensional (3D) space (i.e., the three-sphere
S ) understandable entirely in terms of ordinary rotational
symmetries in three dimensions. The first is that polytope
coordinates, when written as four-dimensional vectors,
may be viewed as unit quaternions. The multiplicative
group of unit quaternions is isomorphic to SU(2), the cov-
ering group of SO(3). This implies a 2:1 homomorphism
between the coordinates of the polytope and ordinary ro-
tations in real space. The second accident is that SO(4),
which is the group of all symmetry operations in the po-
lytope space S, is isomorphic to [SU(2)XSU(2)]/Z2,
where Z z is the two-element group. Therefore, because of
the accidental relationships between different continuous
groups, both the vertex coordinates and the symmetry
operations of the polytopes are related to discrete sub-

groups of the ordinary 3D rotation group, lifted into the
covering group SU(2). (This lifting results in groups
which are often called "binary polyhedral groups" or
"double groups. ")

We now show explicitly the connection between the
discrete rotational groups and the polytope vertices in a
quaternion representation. We briefly review some prop-
erties of quaternions in Appendix A. (More information
may be found in the books of DuVal' and Coxeter. ' ' )
The 2:1 homomorphism between Q (the group of quater
nions) and SO(3) has a kernel which is generated by the
quaternion —1. That is, the two different quaternions
+exp(ay ) correspond to the same rotation by the angle 2a
around a point y on the unit sphere. Here the quaternions
are written in exponential notation (see Appendix A) and

y is the unit pure quaternion which defines a point on the
sphere S . For example, the image of the dihedral group
Dq (of order 4) is the group V' (of order 8) consisting of
the 8 principal unit quaternions

(+1,0,0,0),(0, +1,0,0), (0,0, +1,0),(0,0,0, +1) .

Note that each unit quaternion defines a point on the
hypersphere S of unit radius. The configuration of
points corresponding to V' is the polytope I 3,3,4} (using
standard notation' ), sometimes called the hyperoctahed-
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—,
' (+1,+1,+1,+ 1) . (2)

Consequently T' can be written in the following standard
form. s

ron. Similarly, the lift of the tetrahedral group (of order
12) is the group T' (of order 24) which contains the group
V' together with the 16 elements

—a/2 in the plane wx and +a/2 in the plane yz, gives

(e' u e' u)(e ' 0)~(u e' u)

The net result is a "true" rotation of angle a in the plane
yz which leaves the plane mx invariant.

This example illustrates operations in the direct product
group QXQ, whose elements are the ordered pairs (l, r)
The group has the multiplicative law

r=o (l, r)(l'r') =(ll', rr'), l, r, l', r'e Q . (10)

O'= T'e[T' X(1/V 2)(1,1,0,0)], (4)

where 6„" i A„means the union of n sets
(r = 1,2, . . . , n) which have no elements in common. The
24 elements of T' again correspond to a set of special
points on S, the polytope I3,4,3I, which is a self-dual
packing of octahedra.

We can go further and construct the groups 0' and Y',
the lifts of the octahedral and icosahedral groups, by fur-
ther augmentation of the groups above Th. ese can be
written

The 2:1 homomorphism between QXQ and SO(4) has a
kernel consisting of the pair of quaternions (1,1) and
( —1, —1). If as above we call this two-element group z 2,
then SO(4) is isomorphic to (QXQ)/Z2. The discrete
group of all direct rotations 6' of polytope I3,3,5j has a
similar product structure

6'=(Y'X Y')/Z, .

A complete character table for the irreducible representa-
tions of 6' is given by Warner. ' The elements of 6 are
given by the set of quaternion pairs (l, r), (I,r E Y'), parti-
tioned by the equivalence relation g

Y'= 63 [T'X(—,'r ', ——,'r, 0, ——,')'],
r=0 6'=(Y'X Y')/g, (12)

q ~lqr ' with l, r e Q (6)

is an element of SO(4). Pure rotations correspond to the
"diagonal" case in Eq. (6), 1 =r. A "screw" is a transitive
operation on S with no points remaining invariant; a ro-
tation leaves a plane invariant in the fourth dimension.
Consider the following example. We present a unit
quaternion by a pair of complex numbers (u, u) (see Ap-
pendix A).' When S is embedded in the fourth-
dimensional (4D) Euclidean space It with axes w, x, y,
and z, u and U represent complex coordinates in the
planes wx and yz, respectively. A true rotation of angle a
which leaves the plane wx invariant can be written as

(e' /, 0)(u, u)(e ' /2, 0) .

Applying first the left screw, one obtains

(eia/2 0)(& u)~(eia/2& eia/2u )

This represents a simultaneous rotation by the angle a/2
in the planes wx and yz. The application of the right
screw, which corresponds to simultaneous rotations of

Here ~ is the golden ratio: r:(1 +VS)—/2 The 120 ele-
ments of Y' correspond to the 120 vertices of polytope
I3,3,5I on S . Note that this systematic enumeration of
all regular divisions of S is about a century old.

The symmetry groups of these polytopes, which are
subgroups of SO(4), can also be specified within a quater-
nion representation because of the isomorphism SO(4)
= [SU(2) XSU(2)]/ Z 2. This isomorphism is often ex-
plained by saying that any rigid displacement on the
hypersphere S is the product of a right screw and a left
screw. Both the right and left screws form an SU(2) sub-
group of the SO(4) symmetry group of S; thus the screw
operations can be represented by quaternions. If q&Q
denotes a point on S, the transformation

Since the order of Y' is 120, Eqs. (11) and (12) imply that
the order of 6' is 7200. The total symmetry group 6 of
polytope I 3,3,5 J also includes indirect orthogonal
transformations, analogous to reflections for ordinary 3D
discrete groups. These are given by

q~ —/qr, l, r EF'. (13)

This adds 7200 new elements since the equivalence rela-
tion g is still valid.

=cosa cosP, x =cosa sinP,

y =sinu sinP, z =sina cosP .
(14)

Here ~a+P~ &m. The spherical torus is a deuelopable
surface (i.e., it has zero Cxaussian curvature at every point,
in contrast to the classical torus in lR ), since

g dx i =dc' +dP

An alternative parametrization of the spherical torus
which we shall use below is

B. Description of polytope symmetries
using the spherical torus

A particularly useful way of visualizing the space S is
as a set of coaxial tori. In this section we discuss the
structure and symmetries of the polytopes using this
description.

First we discuss the spherical torus, which is a special
surface on S defined by'
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1 . 1
cosg, x = sing,v'2 &2

1 -1y= cosP, z=' singv'2 ' ~2
with

r g I, r P r
&~. This surface can be described as a

square with opposite sides identified (Fig. 7).. Any line
parallel to one of the square diagonals becomes a great
circle of S (a geodesic line). There are also two impor-
tant lines which correspond to the torus axes. For the
classical torus in R these axes are a straight line and a
circle. In the spherical torus case these lines are two
nonintersecting great circles of S . Referred to the second
parametrization of the spherical torus given above [Eq.
(16)], the equations for these two lines are

w=O, x=O,

y=O, z=O.
In Fig. 8 we have shown a family of tori coaxial with the
spherical torus. They have been projected according to
the mapping

2x 2p 2zxc= C
1 —w 1 —w 1 —w

between the S coordinates w, x,y, z and the Cartesian
coordinates of R, x„y„z,. The set of tori in Fig. 8 are
characterized by the single parameter a in the equations

w =~a cosf, x =v a sing,

y=v'I —a cosP, z=v'I —a sing,
(19)

with 0 & a & 1. a =0.5 is the spherical torus [see Eq. (16)],
The spherical torus surface partitions S into two parts

o 3b

FIG. 7. Construction of the spherical torus. As for a normal
torus, the spherical torus may be obtained by beginning with a
square, then identifying opposite sides (the a's and the b's). Un-
like the torus in flat space, the spherical torus in the three-
sphere S3 has zero curvature at every point. It divides the
volume of S' into two equal parts. The two dotted-dashed lines
are great circles of S3 and they serve as axes of the spherical
torus. The diagonal of the square (the dashed line) also becomes
a great circle of S'.

FIG. 8. Family of tori which are coaxial with the spherical
torus. This family fills up the volume of the three-sphere S3.

of equal volume. These are solid tori with the same two
great circles as axes. Polytope vertices can be specified
with respect to these tori once the spherical torus axis has
been aligned with one of the polytope symmetry axes.

This can be illustrated in the simple case of the hyper-
cube. A. familiar projection of the hypercube in R is
shown (as a projection in R ) in Fig. 9(a) in the form of a
small cube inside of a larger one. This representation
helps to illustrate those hypercube symmetries which can
be described as rotations R and R~, on the torus sur-
face. Successive applications of R „produce the rota-
tions 1—+4~8~3~1 and R~, the rotations
2~5—+6~7—+2 of the 3-cube cells of the hypercube in
Fig. 9(a). The hypercube is particularly simple because all
of the vertices lie on the spherical torus surface [Fig. 9(b)].
In fact, it can be obtained by identification of opposite
sides of a small portion of a square network, as shown in
Fig. 10. Note that a different (but equivalent) choice of
torus axes have been made in Fig. 10 as compared with
Fig. 9.

From this construction, the hypercube may be viewed
as a discretized approximation to the spherical toeus.
This discretization has an easy generalization. In the
above example for the hypercube we started with a config-
uration containing 16 small squares (each long edge being
divided into four short ones). If instead we start with a
configuration containing 25 small squares, then after per-
forming the wrapping procedure given in Fig. 10 one ob-
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This quaternion operation clearly describes a rotation in
the plane u)x which leaves yz invariant .Similarly the ap-
plication of Rz„(P) gives

(u ', v') =(e'~, 0)(u, v)(e '~/, 0) . (21)

So a general transformation (R»(a), R»(P)) reads

(u' v') (&i(~+It)l& 0)(u v)(ei(a p)/z—0)

' FIG. 12. Positions of the vertices of polytope I 3,3,5 I shown
with respect to the pentagonal prismatic division of the three-
sphere S as shown in Fig. 11.

When a=P one obtains a left screw, simultaneous rota-
tions of the same angle in two orthogonal planes. The
point of this new description of transformations on S is
that it is always possible to find two complete orthogonal
planes n.), mz for which a given element of SO(4) is ex-
pressed as successive simple rotations in these two planes.
This fact is a great aid to the visualization of SO(4) sym-
metry operations in S . Using this new notation we ex-
amine several of the polytopes.

torus as well as a family of coaxial tori (Fig. 8) on which
the polytope vertices are located. A suitable choice of the
coordinate system makes these two orthogonal planes cor-
respond with the planes tvx and yz. We will show further
examples of this construction for particular screw-
symmetry axes of several polytopes. We will denote this
screw-rotation symmetry, following the hypercube exam-
ple above, as [R»(a), R»(P)], where R»(a) signifies a
rotation by angle a in the plane mx which leaves the plane
yz invariant. This specification of polytope symmetry
operations is related to the quaternion representation
described above in the following way. A point on S
denoted by the quaternion (u, v) (u, v&Q) is transformed
into the points (u', v') under the rotation R»(a) in the
following way:

(u ', v') = (e' /, 0)(u, v)(e ' /z, 0)

=(ue', v) .

(+—,+—,+—,+—),1 1 1 j
(23)

which can also be written (see Appendix A), '9

(ei+2P+I)/4 cia(2v+))/4) v 0 1 2 37v'2 p»— (24)

From this equation it is evident that the I4, 3,3 I possesses
the following rotational symmetries (R „(a),R»(P)):

C. Polytope I4, 3,3] (the hypercube)

I4, 3,3I has 16 vertices. It may be built according to
the SRO propagation rule, "Fit four cubes around each
vertex. " In a suitable coordinate system these vertices are
specified by permutations of

m, n =0, 1,2, 3 . (25)

The sixteen vertices of this polytope belong to the spheri-
cal torus specified by Eq. (22) whose generic point (u, v) is
such that

i
u

i
=

i
v

i
=v'I/2.

FICx. 13. (a) Projection of the vertices I5,3,3]. I5, 3,3I con-
sists of a packing of dodecahedra; the configuration of a few of
these dodecahedra about one of the torus axes is shown. (b)
Same torus axis after the insertion of a —72' disclination line.

D. Polytope I3,3,5j

This is generated by the rule, "Place 20 tetrahedra
around each vertex. " We will give here two sets of coor-
dinates for the polytope. They are related by a rigid dis-
placement on S and can also be derived from the coordi-
nate set associated with the group Y' [denoted
I(u, v)r I

—see Eq. (5)].
The first set [denoted I(u, v), I ] is such that the I3,3,5I

vertices are disposed with respect to the two fivefold
"axes" in the planes mx and yz. As discussed above, these
two axes generate a pentagonal prismatic division of S .
The way that the vertices are arranged within the pentag-
onal prisms is shown in Fig. 12. Coordinates are given'
in the following form:
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2&p 3O

[] p 1y2p ~ ~ ~ y 30 s

2&p 3O

(34)

Each subset of points A;, BJ., Ck, and D~ belongs to a
torus with principal axes in the planes urx and yz. It is
clear that the whole set of {3,3,5 j vertices can be generat-
ed as the orbit, under the screw operation of Eq. (34), of
the four points Ao, B&, C&, and Do. When mapped onto
the tvx plane each orbit gives a triacontagon (a simple po-
lygon with 30 edges); when mapped onto the yx plane,
each'gives a triacontagram [see Fig. 14(a)]. A triancon-
tagram (denoted {—„jby Ref. 12) is such that by passing
around its 30 edges one has rotated exactly 11 times 2m.
The complete mapping of polytope {3,3,5 j on either the
plane wx or yz, with all vertices and edges, is shown in
Fig. 14(b). The configuration of vertices on the torus sur-
face nearest the plane yz is similar to that of a, linear ar-
rangement of tetrahedra described by Bernal (Fig. 15).
If one forms such a linear arrangement of 28 tetrahedra
(in Euclidean space), the 31st vertex has roughly the same
angular coordinate (in a cylindrical coordinate system) as
the first vertex (Ref. 23). There is a small angular misfit
of 5'40' which disappears when the space is curved.
These two vertices then coincide on 5 .

E. Polytope {5,3,3}

{5,3,3} results from the rule, "Put four dodecahedra
around each vertex. " It is dual to polytope {3,3,S j, which
permits us to obtain one coordinate set as follows. ' I.et
us call I the set of {3,3,5 j vertices given by Y'
[I={(u,v)z j], t the quaternion (e'~~, 0), and p an ele-
ment of order S in Y', e,g., p= —,'(r ', v, 0, 1). Then the
sets {Ij and {I}given by

contains 600 vertices which form the polytope {5,3,3}.
Since {5,3,3} and {3,3,5} have the same symmetry
group, the coordinate sets {(u v)&} and {(u,v)«} (associat-
ed with the fivefold and {—'„j axes, respectively) for
{S,3,3} are derived from the set J in the same way as
these sets are derived from {(u, v )z } for {3,3,5 j.

F. Polytope 240

This tetracoordinated polytope with 240 vertices has
been presented elsewhere. ' It is generated by the rule
mentioned in the Introduction: "Place four petits barre
lans' around each vertex. " While polytope 240 was
rediscovered only quite recently, it was first reported in
the mathematical literature some 55 years ago. The re-
lation between it and {3,3,5} is very similar to that be-
tween the diamond and fcc lattices. While the diamond
crystal contains two interpenetrating fcc lattices displaced
in the (111) direction, polytope 240 contains two versions
of {3,3,5 j related by a screw operation. If one sublattice
is specified by {(u, v )r j, then one choice of the screw
operation generating the other sublattice is [exp(im/4), 0].
This can be applied as either a left or right screw; these
operations generate equivalent but enantiomorphic struc-
tures (i.e., of the opposite chirality; see below). The new
120 vertices belong to the polytope {5,3,3} described
above and are located at the centers of the tetrahedral
cells of {3,3,5}. (One out of every five {3,3,5} cells is
centered. ) There are several equivalent ways of selecting
these 120 tetrahedral cells among the 600 cells of {3,3,5}
(or equivalently, to select the appropriate 120 vertices
among the 600 vertices of polytope {5,3,3}). Using the
same notation as above, ten equivalent sets P of polytope
240 vertices (actually 5 chiral pairs) can be written

P=IIj, j=O, 1, 2, 3, ar 4

I.=p~tI,

Ik ——It@

(35)

or

P=IIk, k=O, 1, 2, 3, or 4.
If one takes the coordinate set

(37)

define new versions of polytope {3,3,5} on S with dif-
ferent orientations. Then the set J: P =I+I

&
or P =I@I4 (38)

4 4

J=IJ —— Ikj=o k=0
(36)

FICx. 15. Linear arrangement of tetrahedra along the —,, axis

of {3,3, 5 },called the Bernal spiral (Ref. 22).

for polytope 240, the above-mentioned transformations
can be used to get the sets {(u,v)&j and {(u,v)«j. The ver-
tices in {(u,v)«} are located on the same four torus sur-
faces as the {3,3,5} vertices. The yz torus axis remains a
{—', , j screw axis, and the atoms in the torus nearest this
axis [shown in Fig. 16(a)] have the appearance of a chan-
neling axis. The complete mapping of polytope 240 (with
edges and vertices) is shown in Fig. 16(b).

The complete symmetry group of polytope 240 is clear-
ly no longer G'=(Y'X Y')/zz as for {3,3,5} or {5,3,3}.
The local icosahedral rotational symmetry of {3,3,5 j is
broken down to a local tetrahedral rotation symmetry in
the tetracoordinated polytope 240. On this basis one
might guess that polytope 240 is invariant under a sub-
group of G', (T'XY')/Zq, where T' is the lift of the
tetrahedral group. We have found numerically that this is
indeed the case. (T'X Y')/Z2 would in fact be the full
symmetry group if the two {3,3,5 j sublattices were distin-
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X

FICx. 17. View of the atoms around the 9 axis in polytope
240.

and the lift of fivefold right screws from F'. In our pre-
vious notation, the screw symmetry group about this axis
1s

a =2pm —'

'p=0, 1,2, . . . , 39 .
=2p1T ~)

(39)

The structure of the vertices around the corresponding
torus axes is shown in Fig. 17. We will refer to this below
as the I —, } axis.

IV. THE s-BAND SPECTRUM OF THE POLYTOPES

FK». 16. (a) View of the atoms around &he —,
&

axis in po-

lytope 240. The structure consists of three (110)-like chains
which are bonded together and spiraling around the central axis;
one of these chains is shown dashed. The operation denoted T
is the —,, symmetry rotation. (b) Orthogonal projection of the

entire polytope 240 along the —„axis. This may be compared

with Fig. 14(b).

Following the work of Sec. II, in this section we com-
pute the electronic spectrum of some of the polytopes
within a tight-binding s-orbital approximation. Our pur-
pose is to illustrate some of the concepts of electronic
structure which will be useful for the more realistic case
considered in the next section. We show how the elec-
tronic structures can be simplified by considering certain
subgroups of the polytope symmetries; this will be
relevant since we will show later how the SO(4) sym-
metries possessed by the ideal polytope could be relevant
as pseudosymmetries of lattice structures in real space.

guishable. Since they are not, there is one further symme-
try generator corresponding to an interchange of the two
sublattices. The resulting total symmetry group is
(O' X F')/Z z, where 0' is the lift of the octahedral group.
This group is of order 2880. Note the asymmetry between
left-hand and right-hand screws; this is a signature of the
chirality of the structure. [The symmetry group of the
polytope of the opposite handedness is ( F'X0')l'Z2. ] As
mentioned above, the 30-fold screw symmetry is
preserved, since it is made up of the lift of threefold left
screws from 0' and the lift of fivefold right screws from
F'. There is another high symmetry screw axis in po-
lytope 240 which has no counterpart in I 3,3,5},which is
composed of the lift of the fourfold left screws from 0' k) —— , m =0, 1,2, 3 .2Am

4a
(40)

A. The hypercube I4, 3,3} spectrum

Consider a hypercube with the coordinate set defined in
the preceding section. There are two independent fourfold
symmetry axes in the planes mx and yz. The rotation R~
partitions the 16 I4, 3,3} vertices into four sets which
transform only among themselves under the rotation. If
one uses only the R symmetry, the 16&16 s-band
Hamiltonian matrix may be reduced to a 4&&4 secular ma-
trix, with one row (or column) for each of these four sets
of vertices. To obtain the s-band eigenvalues, this matrix
must be diagonalized at four points in the pseudo-
Brillouin zone
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Here a is the geodesic distance between nearest-neighbor
vertices. The kq's simply label the irreducible representa-
tions of the cyclic Abelian group generated by R~„, as ex-
plained in Sec. II. If we use R „along with the second
fourfold rotation R„„any vertex may be rotated into any
other vertex. As a consequence the s-band Hamiltonian
matrix becomes a trivial 1 & 1. This Hamiltonian must be
"diagonalized" for every pair (k &, k2), where

(a) E
l2 l

4. ~ ~ ~ ~ ~

k2 —— , @=0,1,2, 3
27Tp

4a ' (41)
~ ~ t ~ ~,0 t ~ ~ ~ ~ ~0

1

~ ~ ~ '. ».~ .o. . ~; ~:. ~ '~ i ~~" ~ .' ~

labels the irreducible representations of the group generat-
ed by Rz, . We have thus succeeded in completely di-
agonalizing the Hamiltonian for I4,4, 3I by using the
direct product symmetry group generated by the two four-
fold rotations. As discussed in Sec. II, the labels of the
representations of this group may be represented as
discrete points within a continuous two-dimensional Bril-
louin zone. The eigenvalues are given by the expression

E=2[cos(k, a )+cos(k2a )j, (42)

with k& and k2 taking on the allowed values mentioned
above. Here we take the hopping matrix element to be
unity. Viewed as a continuous function in the 2D k
space, this expression just gives the energy band of an in-
finite square lattice. This is not surprising since, as we
have shown, the I4, 3,3I is topologically equivalent to a
4X4 piece of a square lattice with periodic boundary con-
ditions.

(b)

0

n(E)

'~ .0.4. .4.
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B. The polytope [3,3,5 I

Here we will exploit the I —,, I screw symmetry about
the triacontal axis of the polytope to partially diagonalize
the s-band Hamiltonian. This symmetry partitions the
vertex set into four subsets A~, 8~, C~, and D~ [Eqs.
(31)]. The four vertices Ao, 8&, C~, and Do (whose orbit
under the screw operation gives the 120 polytope I3,3,SI
vertices) belong to a "unit cell." In order to construct the
resulting 4X4 secular matrix we need to know which of
the members of these sets are connected by bonds, either
from different sets or within the same set. These are

10 15 20 25 30

FIG. 18. (a) Energy bands of an s-band Hamiltonian applied
to polytope [3,3,5I. The wave vector corresponds to the —', ,
symmetry. The density of states, obtained by projecting the al-
lowed states in the band structure (solid circles) horizontally, is
shown on the right. (This may be compared with Fig. S of Ref.
17). (b) The s-state —„energy bands for polytope 240. The
similarity between (a) and (b) is explained by Eq. (4S) in the text.

TABLE III. s-band Hamiltonian for polytope I 3, 3,5].

2 [cos(2ka)
+cos(4ka)
+cos{6ka)]

2[cos(ka)
+cos(5ka) ]

2 cos(3ka)

2 [cos(ka)
+cos(5ka)]

2 cos(6ka )

2[cos(2ka )

+cos(8ka) ]
2 cos(3ka)

2 cos(jka)

2[cos{2ka)
+ cos(6ka)]

2 cos(6ka)

2[cos(5ka)
+cos( 1 1ka) ]

0

2 cos(3ka)

2[cos(5ka)
+cos(1 lka)]

2[cos(6ka)
+cos(16ka)
+cos(22ka )]
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k=, n =0, 1, . . . , 29 .
30a ' (44)

The band diagram is shown in Fig. 18 together with the
resulting density of states. A more complete analysis of
the eigenvalue spectrum of I 3,3,5I has been performed by
%'idom and Nelson, ' ' who show that the secular matrix
can be completely diagonalized if all of the symmetries of
I 3,3,5I are used.

C. The polytope 240 spectrum

We again pick out the I
—'„

I screw axis with the co-

ordinate set I%I, or ISIS. The "unit cell" contains eight
sites (four atom each I3,3,5I subset). We must choose a
phase convention in which the members of the sets I and

I which map onto one another have the same Bloch phase
factor (i.e., we must choose which atoms belong to the
same "unit cell"). With the coordinate set as chosen, each
of the four toroidal surfaces contains a set of 30 vertices

from I and another from I. A convenient one-to-one

mapping between sets I and I can be established by arbi-
trarily identifying first-neighbor sites on each toroidal
surface [e.g., the 'channeling axis in Fig. 16(a)]. The re-
sulting secular matrix is given in Table IV. The 30 al-
lowed k values are the same as for polytope I3,3,5I [Eq.
(44)]. The eigenvalue spectrum of polytope 240 is shown

in Fig. 19(a). A very simple relationship may be demon-

strated between the polytope 240 eigenvalues and those of

given by Coxeter in the form:

~ J —k
~

=2 or 4 or 6 (mod60)

AJBk,
~ j—k

~

=1 or 5

aJC„, ~j —k
~

=3

BB~, ~j
—k

~

=6

B,Ck lJ —k
I

=2 or g

B,Dk,
~

j-k
~

=3

CJCk, (j —k
)
=6

C~Dk, ( j—k
(
=5 or, 11

k
I

=6 or 16 or 22.

From this information, the matrix elements between the
"Bloch orbitals" are easily constructed, leading to the sec-
ular equation in Table III. The Brillouin zone is one di-

mensional with the allowed k values given by

t3, 3,5] (Ref. 26), which is a general consequence of the
"alternant" structure of the lattice. For every k,

&24c = —+(4+Eizo)' (45)

This relationship is evident in Figs. 18 and 19. The "al-
ternant" or "bipartite" structure of the polytope (each ver-

tex of set I has its four-nearest neighbors in set I and vice
versa) has two main effects. (1) The spectrum is symme-
trical about zero; odd moments of the spectrum vanish
since there are no odd-membered rings. (2) A completely
antibonding eigenstate is supported by polytope 240—the
"antibonding edge" is attained —since all rings are even.
Note that the antibonding limit for I3,3,5I, which would
be at E= —12 in Fig. 18(a), is not attained, since the
smallest rings are odd-membered (3). A sp3 spectrum for
polytope 240 may be derived through the Weaire-Thorpe
transformation; a more accurate treatment of the F3
band will be given in Sec. V.

D. The polytope I5, 3,3] spectrum

We will partially diagonalize the Hamiltonian for this
structure by using the symmetries contained in the direct
product group generated by the fivefold rotation and the
tenfold screw axis described in Sec. III. This choice re-
sults in the smallest matrix size (12X12) consistent with
our wave-vector —indexing scheme. (Use of the I

—„ I axis
would have resulted in a 20X20 matrix. ) In other words,
there are 12 sets of vertices which transform among them-
selves under the action of' the group. Using the same sort
of analysis as we have discussed above, we obtain the
12& 12 matrix shown in Table V. It contains many zeros
because the vertices are grouped onto seven toroidal sur-
faces surrounding the fivefold axis. Nearest neighbors be-

long either to the same toroidal surface or to adjacent sur-
faces; many of the vertex sets are therefore not nearest
neighbors. To be more specific, the 12 sets of vertices are
organized such that there is one set on the surface nearest
the fivefold axis, two sets on each of the next five sur-
faces, and one set on the last surface (which surrounds the
complementary fivefold axis). Note that the fourth torus
surface is a spherical torus, i.e., it is equidistant from the
two fivefold axes. The vertices of the polytope on the
spherical torus are arranged in a square lattice configura-
tion but are not nearest neighbors. This explains the null
2&2 central block of Table V. The allowed k points in
the (two-dimensional) Brillouin zone for this case are

TABLE IV. s-band Hamiltonian for polytope 240.
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BO i-
ki —— , n =0, 1,2, 3,4

5a
'

k2 —— , m =0, 1, . . . , 9.2m+
10a '

(46)

40-

20;-

The polytope I5, 3,3j spectrum is shown in Fig. 19(b).
The extreme oddness of the structure (i.e., the large num-
ber of odd-membered rings of bonds) manifests itself in
the fact that the antibonding limit is far from being at-
tained; a fully antibonding state is highly frustrated on
this lattice. Another interesting point is that the spectral
region between —2 and —1 is free of eigenvalues. We
speculate that this internal gap is a result of the large
number of five-membered rings although we cannot give a
simple proof. In Appendix B, which contains a discussion
of the effect of disclinations on the polytope electronic
spectrum, we give an indirect illustration of the effect of
ring parity on this spectral region.

n(0
80- V. sp 3 ELECTRONIC STRUCTURE

CALCULATION —POLYTOPE 240

40-

10-

„.I E
4

n(D
80- (c)

30

20 '"

FIG. 19. s-band density of states for (a) polytope 240, (b) po-
lytope t5, 3,3I, (c) "polytope 864" [I3,3, 5I with a pair of dis-
clinations of the type shown in Fig. 13(b)].

In this section we embark on more detailed electronic
and optical structure calculations for one of the polytope
models described above, polytope 240. There is evidence
that this polytope provides a more realistic model of
amorphous Si than the other polytopes. For example, it
has been shown that unlike I5,3,3I and polytope 3000,
polytope 240 has an atomic density which is comparable
to both a-Si and to diamond x-Si. In addition, polytope
240 is known to provide a reasonable description of the lo-
cal order in certain continuous random-network models of
tetrahedrally-bonded amorphous semiconductors, ' the
Connell- Temkin model in particular. We have previous-
ly provided a rationale for the occurrence of'polytope-
240-like local order by demonstrating that small finite
clusters of polytope 240 (on the order of 24 atoms) can
have fewer dangling bonds than diamondlike clusters of
comparable size, and thus may be energetically favorable
on this small scale. " The boatlike rings in the polytope-
240 structure have a twist-type distortion, but this does
not preclude its formation; it can be shown that this twist
requires no bond-length and no band-angle distortions,
and thus may occur with little energy cost. In fact, this
twisted ring actually occurs in a high pressure crystalline
phase of Si, Si III (Ref. 30) [also shown as "BC8" (Ref.
31)]. This crystal may be viewed as a Frank-Kasper
phase of Si with ideal polytope-240 structure threaded by
a dense network of disclination lines. '

For these reasons we have performed a more quantita-
tive study of the electronic and optical properties of po-
lytope 240. While it is known that the s-band models of
electronic structure described above give a qualitatively
correct description of the valence band of Si or Ge
through the Weaire- Thorpe transformation, these
models have certain pathologies (e.g., an infinite-mass p
band at the valence-band edge) and provide a poor
description of the conduction-band structure. Therefore,
in this section we reexamine the electronic structure of Si
in the polytope-240 structure using a more extensive-
tight-binding model developed recently by Vogl, Hjalmar-
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(a)

FIG. 20. Tight-binding atomic orbital basis set of Vogl et al.
. (Ref. 33).

(sp P, Isp~g~ )sp lsp&&,

sp, &, =-,'(Is&+ Ip„&+ Ip, &+ lp, &),

I sp3 &2 '( I
s &+

I p. &
I p& &

—lp. &»—

I sp3&3 —4( l~& —Ipx&+ lp&& —lp. &»

I
sp3&4= —.'(Is& —lp. &

—lp &+ lp. &) .

The matrix elements in this basis are

(47)

son, and Dow which gives a quantitatively correct
description of the valence and conduction bands of Si. In
this model the normal sp3 molecular basis set for Si is im-
agined to be augmented by a fifth orbital, a high energy s
orbital (denoted s*), which is required for a correct
description of the free-electron-like conduction band. In
this model, matrix elements of the Hamiltonian are as-
sumed to extend only to first neighbors, and the two-
center approximation is used. These matrix-element pa-
rameters are then fitted so that the known energy bands of
diamond Si are reproduced. The quality of the fit is ex-
cellent for both the valence and conduction bands, lending
support to the physical motivation for adding an extra or-
bital. The matrix elements which Vogl et al. use in the
s-p„-p„-p, -s~ orbital basis set (shown schematically in
Fig. 20) are listed in Table VI. We have checked the
transferability of Vogl's sp3-s~ model by using these ma-
trix elements in a calculation of the energy-band structure
of hexagonal Si, that is, Si in the wurtzite crystal struc-
ture. The results are in reasonable agreement (to the 0.5-
eV level) with previously published empirical pseudopo-
tential calculations. ' This result is significant for our po-
lytope calculations because like polytope 240, the wurtzite
crystal contains a different dihedral angle (/=0') than in
the diamond crystal.

In our polytope studies, we have found it more con-
venient to work in a hybrid orbital basis related to the
atomic orbitals through a unitary transformation; these
hybrids are shown in Fig. 21. They are given in terms of
the atomic orbital basis by the unitary transformation:

yi ——„'(E,+3E~), —

y2
——

~ (E, Eq), —

y3= —„(V„—3V —6V„y —6V,p),
y4= —„(V„+V„„+2V„y—2V,q),
y5= —„(V„+V —2V„y+2Vp),

y6 ———,', (V„—3V +2V„„+2V, ),
y7 ——E,g,

3
y8 ——,Vg

1X9= 8 ~,*

(48)

FIG. 21. (a) Hybrid-orbital basis set constructed from linear
combinations of the orbitals in Fig. 20. (b) Hybrid-orbital Ham-
iltonian matrix elements as defined in Eq. (48) of the text. (c)
Definition of the dihedral angle P. It is the angle between bonds
A and B when viewed along bond C.

E,= —4.2
Eq ——1.715
V„=—8.3
V =1.715

V y
——4.575

V,p
——5.7292

E g ——6.685

V g ——5.3749

TABLE VI. Atomic orbital matrix elements in F3-s* basis
set (in eV).

The values of these hybrid matrix elements as derived
from the original parameters are given in Table VII. The
hybrid orbitals point along the four tetrahedral bond
directions, and as such are easier to define in curved space
(recall that the bonds are just defined as geodesics in S ).
As we show below, they also make the construction of a
model optical-absorption function more natural. The ma-
trix elements of these basis functions, indicated in Fig. 21,
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TABLE VII. Hybrid orbital matrix elements (in eV).

y )
——0.236

y2 ———i.479
y3 ———4.704
y4 ———0.556
yg ———0.267
y6 ——0.448
y7 ——6.685
ys ———2.016
y9 ——0.672

still involve only coupling between states on neighboring
atoms. However, they depend on the dihedral angle P,
which does involve the positio~ of more than two atoms
(it is, as Figs. 21 shows, the angle between bonds 2 and 8
on neighboring atoms as viewed down the common bond
C). The dihedral angle is different in polytope 240 than
in diamond Si. It may be obtained by projecting the
structure locally into Euclidean space, in which the
dihedral angle is well defined. (P may also be directly de-
fined in the non-Euclidean space by a parallel transport
operation in S .) We find the dihedral angle P to be about
37.1', intermediate between the eclipsed /=0' and the
staggered /=60' configuration. With use of the standard
two-center approximation "' the matrix elements y' for
any arbitrary dihedral angle P are given by a simple linear
combination of the Y5 and Y6 for the eclipsed dihedral an-
gle, as follows:

'Y =
3 ('Y5 'Y6)coso+ 3 Y5+ 3'Y6 (49)

For the polytope-240 dihedral angle (/=37. 1') this gives,
using the parameter values of Table VII,

y5
———0.27eV,

(50)
y6 ——0.45 eV .

It is these parameters, along with the y~ —y4, y7, y8 de-
fined above, which we use in the electronic structure cal-
culation for polytope 240.

As in Sec. III above, we use the order 30 cyclic Abelian
subgroup of the polytope-240 group [which corresponds
to the screw rotation axis along the channeling direction
of Fig. 16(a)] to diagonalize the electronic Hamiltonian.
Then, as above, the structure has an eight-atom "unit
cell, " and the size of the secular matrix is 40, that is, 8
(atoms) times 5 (orbitals). The one-dimensional "wave
vector" k can take on 30-discrete values, since it is simply
the label of the 30 one-dimensional irreducible representa-
tions of the 30-element cyclic group. We have diagonal-
ized the secular matrix at these allowed k points, produc-
ing the points on the "band structure" of Fig. 22. As a
consequence of the finite size of the polytope model, the
system has only discrete, "molecular" energy levels rather
than having continuous energy bands. Nevertheless, the
simple structure of the symmetry label permits a c'ontinu-
ous energy-band structure (the lines in Fig. 22) to be con-
structed in a natural way. As shown in the simpler s-
band secular equation in Table IV, the wave vector k
enters only in factors of the form exp(2m. nk/30). Thus we

may simply diagonalize the secular equation for any arbi-
trary value of k; this amounts to performing a smooth an-
alytic continuation between the energy points in Fig. 22.
While these eigenvalues have no meaning for polytope 240
itself, they could be relevant, for example, in a structure
where the channeling structure of Fig. 16(a) extended for
a distance larger than -35 A, i.e., further than the linear
dimensions of the ideal polytope.

Comparison of Fig. 22 with Fig. 18(b) reveals a strong
similarity between the s bands of polytope 240 and the
lower part of the sp3-s* valence bands. This is a simple
consequence of the %'eaire- Thorpe mapping ' between
the s bands and an sp3 Hamiltonian for which Y4 9

——0
(Ref. 35). However, in the Weaire-Thorpe model, the con-
duction bands would be a mirror image of the valence
bands. In the sp3-s~ model they are not, which is simply
a result of the greater realism of the Vogl et al. model.
Also, in the Weaire- Thorpe electronic structure the
closely-spaced set of bands near the top of the valence
bands in Fig. 22 (the "heavy-hole" bands) would all lie on
the line E =0 and have zero bandwidth, rather than the
-3.5-eV bandwidth in the F3-s*calculation.

The main overall feature of the energy bands of Fig. 22
[and of Fig. 18(b)] is that the bands almost repeat along
the X axis with a period of If =2m/3, a third of the fun-
damental period X=2m. The reason for this can be seen
in Fig. 16(a). The —', , channel consists of three (110)-like
chains; the symmetry operation I, which is reciprocal to
E, returns to the same chain every three turns. Thus, the
phase of the Bloch function advances by e ' ' from one
segment of a chain to the next. Therefore, from the point
of view of a single chain, the Brillouin-zone periodicity is
given by 3X =2m., as seen in the figures. This periodicity
is not exact because of chain-chain coupling

Other aspects of these energy bands are elucidated by
an approximate analogy to the surface energy-band struc-
ture of a diamond Si crystal. Imagine the walls of the
channel in Fig. 16(a) to be a free surface which has been
rolled up on itself. Then the (110) chains running along

ip

—10

0
K(30/11)

FIG. 22. Energy bands of polytope 240, calculated in the
sp 3 -s *basis. The allowed energy eigenvalues of the polytope are
shown as solid circles.
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this "surface" make it somewhat reminiscent of the un-
reconstructed (111) surface of a diamond crystal (see Fig.
23) The —„screw translation T in Fig. 16(a) corresponds
to the surface lattice translation T in Fig. 23. In addition,
since the —', , channel contains just three chains, the atoms
labeled A and B in the Si(111)surface are identified with
the same atom in the polytope-240 structure. This means
that eigenstates of polytope 240 should be identified with
the surface energy states of a Si diamond crystal which
are periodic upon translation in the surface from atom A
to atom B. This restricts the surface wave vectors of in-
terest to the line shown in Fig. 24. This figure shows the
reciprocal space of the Si(111)surface in the repeated zone
scheme. The states along the line shown [in a (451) direc-
tion when referred to the bulk diamond crystal] have k
perpendicular to Tz~. Thus k~~ ——0, and the state is
periodic in the direction TzB as required. The K( —,', )
wave-vector labeling of Fig. 22 can be mapped onto this
line in Fig. 24. As this shows, one Brillouin zone of the
channeling axis maps extends through three Brillouin
zones of the (111)surface. This observation provides and
alternate explanation for the occurrence of a quasiperiodi-
city in the energy bands of Figs. 19 and 22 with three
periods inside each Brillouin zone.

This surface analogy also explains why the —', , energy
bands have a "filled-in" appearance, that 'is, with entire
regions of the E vs K plot filled up with bands. These
simply correspond to the projected bulk bands in the sur-
face problem. The valence bands have a maximum at
K(—'„)=0; this can be thought of as a simple consequence
of the fact that the valence-band maximum in the bulk di-
amond structure at I is projected onto X( —,', ) =0, as indi-
cated in Fig. 24. On the other hand, the bulk
conduction-band minimum, which in x-Si occurs 0.85 of
the way along the I —X line, does not project onto the
X(—„)line in Fig. 24 (see the open circles) This h. elps to
explain why the conduction-band edge for the polytope is
quite flat. While these analogies are quite useful for
understanding the general form of the energy bands of the
polytope, it is important to remember that these compar-
isons should not be taken too literally. While the local
bonding geometry of the —",, axis is similar to that on the
x-Si (111) surface, the ouerall topology is quite different

8 Q

.~La L.

li ll

FIG. 23. Schematic unwrapping of the structure in Fig. 16(b)
onto a (111)surface. Atoms A and 8 are identified as identical
in the polytope structure. The translation I corresponds to the
screw symmetry operation T in Fig. 16(a).

o conduction band minima

FICi. 24. Surface reciprocal space corresponding to Fig. 23.
The —„reciprocal lattice in Fig. 22 maps onto the 451 line

shown. This line passes through the surface I point, but it
avoids the points which corresponds to the projected bulk
conduction-band minimum in Si (open circles).

In no sense should there be an exact correspondence be-
tween the two energy-band diagrams, and in fact similar
approximate comparisons can be made between the —„
bands and the bands of other Si surfaces, e.g., (110) (Ref.
11).

VI. OPTICAL PROPERTIES

In crystalline solids translational symmetry leads to the
vertical selection rule of optical absorption,

kf —k =0. (51)
Amorphous solids have no translational symmetry. The
normal conclusion from this has been that no selection
rules of any kind govern optical absorption: an optical
transition is equally likely from any valence-band state to
any conduction-band state. In this section we explore the
consequences of the polytope model for optical selection
rules. Since the polytope symmetries cannot be exact
symmetries of the amorphous solid, no exact selection
rules will come out of this model. However, to the extent
that the amorphous solid looks like the polytope locally,
e.g., if a —„channel with N turns occurs in the amor-
phous solid, then an approximate selection rule will be ob-
tained in terms of the polytope "wave vector" defined
above, viz. ,

~
+(+, )f —z( —",, ),

~
&~rN . (52)

We begin by supposing that the amorphous solid is
composed of local regions of polytope which have been
flattened out so as to fit into Euclidean space; this is the
so called "orange-peel carpet" picture of an amorphous
solid ' (see Fig. 25 for a two-dimensional example). In
the independent particle approximation, the imaginary
part of the dielectric function of this system is given by
the usual expression

2 12

e2(h v) =
2 g I %'vB(r)p~+cB(r)d r, (53)

&0" VB CB

2

y qlvB(r)[x, H]ecB(r)d r . (54)
+0 VB,CB
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FIG. 26. Orange peel rewrapped back onto curved space. We
have carried the contours of the optical field along. Locally
they still look like the optical field in flat space (circled region).

FIG. 25. Orange-peel carpet picture of the amorphous solid.
The equicontours of the optical field are superimposed.

Here Qo is the volume per atom in the solid, and the
valence-band (VB) and conduction-band (CB) wave func-
tions are normalized to 1/~X within one atomic volume,
with X being the number of atoms in the solid. 0 is the
Hamiltonian, and v is the frequency. The polarization is

assumed to be in the x direction, shown in the Fig. 25.
The equivalue contours of the x operator merely consist
of straight lines normal to the x direction as shown. Our
goal is to construct a sensible idealization of this quantity
which is computable directly on the polytope itself. We
accomplish this by imagining that we perform the inverse
orange-peel mapping, i.e., that we rewrap one of the
patches of Fig. 25 back onto a sphere. In addition, we im-
agine that the equicontours of the optical-absorption
operator x are also carried back onto the sphere by this
inverse mapping (see Fig. 26). Our approximation for the
dielectric functions would then be given by

2 2

&z(hv) y f +va(r )lf(rs) H i+ca(rs)d "s (f( )) '
+0 Va, CB

(55)

Here f(rs) is the optical operator x of Eq. (54) after map-
ping back into curved space. It is a vector field obtainable
from the gradient of the function shown in Fig. 26. The
angular brackets indicate an average over all possible
mapped fields. Note that while for illustrative purposes
we show and describe our approximations to e2 in 20, the
necessary generalization to 3D is very straightforward. In
this formulation the strain disorder resulting in a change
of the local orientation of the polytope structure with
respect to the electric field direction is included, but the
disorder in the electronic eigenstates is ignored, i.e., the
perfect polytope Hamiltonian H is used.

We now discuss the details of the evaluation of Eq. (55).
In second-quantized notation the valence- (or conduction-)
band wave functions can be written

)'&i I(fII II f) lj &"— (57)

Here the asterisk denotes complex conjugation and f is
the optical operator defined above. We now insert a com-
plete set of states

I
k):

«va)'(&i If I
k &&k IH I j&

—&i IH I
k)&k

I f I j))cca . (58)

We now use the standard approximation within tight-
binding theory for the position matrix element 5

+va= gcva Ii & (56) &
'I f I j)=&jf(;) .

The matrix element can finally be written

(59)

where
I
i) represents the tight-binding state centered at

site i, and cv~ are the eigenstate coefficients as computed
in Sec. V. The matrix element inside Eq. (55) can then be
written

M= g(cva)'H, (f(rs;) f(rsj))cica . —

Therefore, our expression for E2 becomes

(60)

2 2

g (c'va)*~ij~'(f «s ) f(rsj ))c'ca (f(;)) . —
+0 VB,CB i,j

(61)
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X I Vvii(r~)[xj, H ]+cB(r~)d3r~ (63)

is formally a symmetric second-rank tensor. It can be
shown that within the symmetry group of polytope 240
(O' X I"/Z g), there is only one distinct symmetric

%'e must now discuss our approximation to the mapped
optical field f(rz). In Fig. 26 we see that while the typi-
cal field f(rz) is strongly disordered in regions near the
cut lines of the orange-peel map, there are large regions of
the sphere in which it will have a very regular structure
(see the circled region of Fig 2. 6). Within these regions
f(rz) may be approximated by an idealized field whose
equivalue contours are shown in Fig. 27(a), consisting of
simply the "latitude lines" of the sphere. The equation
for the field f in this latitude approximation is

f(r, )=x;,
where x; is one of the four Cartesian coordinates of the
Euclidean space in which the polytope is embedded. This
approximation to f is very appealing because the optical-
absorption expression obtained by using it,

r

egg, (»)= J +vu(rg)[xi, ~' ]+cB(rg)&'rs
Qov

FIG. 27. An idealized optical field corresponding to the lati-
tude lines of the sphere.

second-rank tensor which transforms as the identity repre-
sentation; i.e., ezj'Ez6j'This means that polytope 240
is optically isotropic, so that the direction of the optical
field does not matter. Therefore, in the average ( ) (f(g ))
of Eq. (61), which represents an averaging over both the
shape and orientation of f(rs), the average over orienta-
tion need not be done. We will make the further approxi-
mation of discarding the average over the shape of the
field, and we will compute the optical absorption for one
particular idealized mapped field:

e 2
ez(hv)= g g (cvs)*~iq (f' '"(r~;) f' '"(rs/))&—JcB

+0 VB,cB i,j (64)

While we could use Eq. (62) for f' "', we have actually used a more complicated form. The field of Eq. (62) has the
defect of any Mercator projection on a sphere, namely that it causes a severe elongation of lengths near the poles. The
form which we use more nearly preserves length on the entire sphere:

f' "'(r;) f' '(r J)=(R ——(w ) —(x ))' [tan '(z;/y;) —tan '(zz/yi)] . (65)

Here

( z) I
( 2+ ~2) (66)

and R is the radius of the three-sphere. Equation (65) de-
fines the form of f' '" which we use in our calculation of
optical absorption, Eq. (64). This choice of f' "' corre-
sponds more nearly to using "longitude lines" rather than
"latitude lines" as in Eq. (62). Equation (65) has the
disadvantage that eq is no longer exactly a symmetric
second-rank tensor; it is therefore not precisely rotational-
ly invariant. However, since the f' '"'s of Eqs. (65) and
(62) are very closely related, we expect the dependence of
ez on the orientation of the optical field to be insignifi-
cant. In addition, there is a symmetry argument which
shows that the optical absorption remains unchanged
when f'~"' is oriented along any of the equivalent
directions. It is easy to show that any atom in polytope
240 belongs to 12 distinct —', , channels, which run off in
the directions shown in Fig. 28. It can be seen from this
figure that it is impossible to orient f' "' more than about
20' away from a —'„direction; therefore, the optical ab-
sorption cannot vary much as a function of direction.

I

2

4
5

30/l l

40/9
l 0-fold
6-fold
8- fold

2::

FIG. 28. Symmetry axes to which a given atom in polytope
240 belongs. The directions from the center of the sphere to the
points indicated on its surface give the directions of the various
screw axes. -The directions are shown with reference to an
icosahedral pattern. There are 12 —,, channels for a given atom,
more than any other type. There are also four sixfold axes (go-
ing out along directions corresponding to the vertices of a cube),
six tenfold axes (passing through the vertices of an icosahedron),
three eightfold axes (in octahedral directions), and six 9 axes.
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We can show the existence of vertical selection rules by
studying the symmetry properties of optical absorption in
Eq. (64). Consider a symmetry translation of the
screw type, i.e., the operation T in Fig. 16(a). The Hamil-
tonian is of course invariant with respect to this opera-
tion. The hf of Eq. (65) also remains invariant under this
operation [recall that f is measured locally along the x
direction of Fig. 16(a)]. Therefore the operator 8hf of
Eq. (64) is invariant under T and belongs to the identity
representation of the —', , group. According to the normal
rules of group theory, this means that nonzero contribu-
tions to Eq. (64) only occur when the eigenvectors cvB
and ccrc belong to the same, representation of the group.
In our language above this means that they must have the
same E(—', , ). Therefore, optical transitions are Uertical

Under the assumptions which we have made, the polytope
structure has optical selection rules which are as strong as
in crystalline solids. Of course, many of these assump-
tions cause this result to be only approximate for the real
amorphous solid. For example, our optical field [Eq. (65)]
lacks the strong disorder along the cut lines of Fig. 26,
which are an inevitable consequence of the orange-peel
mapping. However, we know that for certain special
kinds of disorder (e.g., disclinations), the selection rule is
preserved (see Appendix B).

Nevertheless, we believe that the typical effect of these
cuts, spaced by a dimension a, (see Fig. 25), is like that
of placing a piece of the polytope inside a box of length
Ic ' (the curvature of the polytope). From the uncertainly
principle, this confinement should lead to a wave vector
spreading on the order of m/a ' [see Eq. (52)]. Since the
typical size of a ' is expected to be several lattice con-
stants, this should lead to a breakdown of the vertical
selection rules such that transitions over -20—30% of
the Brillouin zone are allowed. So, the vertical selection
rule should only be relaxed, not destroyed. There is a po-
tentially more serious assumption we have made, namely
that the Hamiltonian is simply that of polytope 240. We
thus neglect all bond-length and bond-angle disorder, any
effects due to odd-membered rings of bonds, any states re-
sulting from dangling bonds, and any impurity states.
(However, see Appendix B.) Still, a preliminary examina-
tion of continuous random-network simulations ' seems
to suggest that the disordered network can have large re-
gions with small bond length and angle disorder, with no
dangling bonds, and with polytope-240-like bonding to-
pology. The use of 0 is justifiable under these cir-
cumstances.

Figure 29 presents the results of our model e2 calcula-
tion using Eq. (64). Since the ensemble averaging of Eq.
(55) has not been performed and since polytope 240 con-
tains a finite number of atoms, the result of evaluating
Eq. (64) is actually a discrete line spectrum. We have
turned this into a continuous spectrum by giving it a
small Gaussian broadening. Its overall magnitude has
been adjusted to that the optical sum rule is satisfied.
This curve has the overall features which one would ex-
pect for any semiconductor: a low absorption region at
low energy followed by a fairly sharp rise at the funda-
mental gap. The wiggles in the spectrum above threshold
are a remnant of the underlying line spectrum and should

5 P
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FIG. 29. Solid line: The imaginary part of the dielectric
function e2 as a function of energy, calculated using polytope-
240 selection rules [Eq. (64)]. Dashed line: ez calculated by ig-
noring optical selection rules; This quantity is simply propor-
tional to the joint density of states as shown in Eq. (67). Note
that e2 is smaller than E'2 JDos near the band edge; the selection
rules suppress optical absorption in this energy range. The
structure in these curves is an artifact of the finiteness of the po-
lytope model.

not be taken seriously.
We wish to compare this optical absorption with one

computed by more standard arguments. The usual
method of performing this calculation in amorphous
solids to assume that there are no selection rules of any
kind, and that a transition is equally likely from any
valence-band state to any conduction-band state. Under
this assumption e2 is given as a convolution of the
conduction- and valence-band densities of states:

1
e2 gDos

——
2 Q NvB(Et)Nca(Et+hv) . (67)

R (AR)

Here R is a normalization factor which has been chosen
to satisfy the sum rule, and NvB and NCB are the valence-
and conduction-band densities of states. Equation (67)
has been used as a justification of the usual Tauc plot for
optical absorption in amorphous semiconductors; the
fundamental assumption which goes into Eq. (67), namely
that the optical matrix element is constant in energy, has
been explored experimentally with varying results. We
cannot address as subtle a question as the energy variation
of the optical matrix element; however, we will show that
the inclusion of polytope-like selection rules can have a
real effect on the calculated e2.

To do this, we have first computed the conduction- and
valence-band densities of states N(E) from our —', , band
structure. The results have appeared earlier ' and are
shown in Fig. 30. This density of states has the normal
features of any model for N(E) of Si; a three peak-ed
valence band separated from the conduction band by a
—I-eV gap. This is consistent with a great deal of previ-
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FIG. 30. sp3-s' density of states for polytope 240. This
quantity is used in Eq. (67).

VII. DISCUSSION AND CONCLUSIONS

The polytope model is just one element of a large and
rapidly growing effort to understand the structure and
properties of noncrystalline materials. We believe that the
concept of using lattice structures of higher dimensionali-
ty will be a powerful unifying concept in this area.

In the area of close-packed disordered solids, a Gauss-
ian model based on a polytope order parameter has al-
ready provided a reliable theory for the glassy structure
factor, that most fundamental of structural probes. With
use of this order parameter, it is predicted that the real
disordered solid can be thought of as a dense tangled ar-

ous work45 46 2 4~ 4s which shows that X(E) is almost en-
tirely a function of only the local tetrahedral bonding to-
pology of Si. With this X(E) we have performed the con-
volution indicated in Eq. (67), and the resulting spectrum
is shown as the dashed line in Fig. 29. As for e2 calculat-
ed the other way, the peaks and valleys are artifacts of the
finiteness of the underlying structural model. Setting this
aside, however, it is clear that there is a distinct difference
between these two curves, with the e2 computed without
selection rules lying generally higher than the other over
the entire energy range shown. This is quite a natural re-
sult for Si, which is an indirect band-gap material in its
crystalline form, meaning that the absorption of the crys-
tal near the fundamental gap is very weak because of
selection-rule effects. We speculate that the small value
of the e2 curve in Fig. 29 computed with full selection
rules may be manifestation of a sort of band indirectness.
Even though Fig. 22 does not show an indirect gap in the
conventional sense, it appears that some selection rules in
addition to the vertical E selection rule keep the optical
matrix element between states near the band edges weak.
These additional selection rules could arise, for example,
from other screw symmetries of polytope 240 (see Sec.
III F), and it is possible that the energy bands appropriate
to one of the other symmetry axes should show a real in-
directness. These questions await further investigation.

ray of disclination lines in a polytope medium this point
of view is supported by the occurrence of the Frank-
Kasper crystalline phases, ' ' which can be described
as materials with an ordered array of such disclination
lines. A renormalization group has been constructed for
such a close-packed order parameter which shows that a
sensible continuum theory does exist for these materials.

No such order parameter yet exists for the covalently-
bonded amorphous solids, but there is substantial reason
to believe that it can be constructed. Many approaches
are possible, but one which appears promising would take
the orientational part of the order parameter to be octahe-
dral rather than icosahedral as in the close-packed materi-
als. A tentative study of the "BC8"high-pressure crystal-
line polytope of Si (Ref. 30) lends support to this order pa-
rameter; "BC8"seems to be the analog of a Frank-Kasper
phase for covalent materials, with an ordered array of
120' disclination lines. There are many questions which
this order parameter must answer to make these ideas into
a complete theory. For example, the polytope-240
description implies that the tetrahedrally=bonded amor-
phous solid should have a local handedness; if experimen-
tal investigations prove this to be true, it must be incor-
porated into a more systematic theory. A complete classi-
fication of defect lines must also be considered. One hint
in this direction is provided by the result of Riviers5 that
odd-membered rings must occur in strings; one would
strongly suspect that these strings are disclination lines
within a correct theory. However, it also seems likely
from looking at "BC8" and at the Connell-Temking
random-network model (which contain only even-
membered rings) that a complete classification of disclina-
tions include "strings" of even-membered rings as well.
In searching for a complete description of the covalent
solids it is possible that useful analogies with the better-
understood close-packed solids can be made; the relation-
ship between these materials Uia "decoration" might result
in an association between the defect lines of the covalent
material and an associated close-packed solid.

On other important issues we must at the present admit
a total lack of understanding. A close link must exist be-
tween the occurrence and structure of defect lines and the
electronic and transport properties of the amorphous ma-
terial. Despite some tentative suggestions elsewhere' and
in the present paper (Appendix B), no such link has been
established. In particular, it is not clear whether the sym-
metry quantum numbers discussed in the present work
will be preserved in a rigorous sense in a theory containing
defects. On another front, an entirely new class of materi-
als have been recently discovered which have long-
ranged icosahedral orientational order (like polytope
I3,3,5I), but quasiperiodic translational order. It is not
clear if polytope-type models have any role in describing
these fascinating new solids.

To summarize, we have further extended the polytope
model in its application to tetrahedrally-bonded amor-
phous semiconductors. The central motivation for intro-
ducing the polytope structure as a model for local order is
that certain types of propagated short-range order are not
compatible with long-range translational order, but are
compatible with a polytope lattice. Therefore, polytope
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symmetries should provide approximate quantum num-
bers labeling eigenstates in the disordered solid. We have
reviewed the symmetry groups and representations of
several of the polytopes, and have demonstrated the way
in which eigenstates may be systematically indexed with
these symmetry groups within a simple tight-binding
model. Polytope 240 is the best candidate for lacal order
in amorphous Si; therefore, we have performed a detailed
calculation of its electronic structure using a more realis-
tic multiorbital tight-binding model. We can show a
strong resemblance between the results obtained and a
conventional band structure for crystalline Si. We shaw
that an approximate vertical selection rule pertains to op-
tical absorption in this model, and we speculate that this
may contribute to the depressed optical absorption near
the fundamental band edge in hydrogenated amorphous
Si.

with, the relations

S, = —,
' (a +a ), V, = —,

' (a —a ) . (A8)

a =cosa+y sinu, (A9)

or

a =exp(ay), (A10)

where y is a pure imaginary quaternion. Remember that
quaternion multiplication is not commutative so

exp(ay)exp(Pz) =exp(ay+ Pz )

only if y =z.
(A 1 1)

A quaternion is said to be real if V, =0 and pure imagi-
nary if S, =0. Finally, a unit quaternion (of unit norm)
can be written
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We briefly recall the main properties of quaternions.
For a more complete description, see Refs. 18 and 19. We
follow the presentation of Ref. 19. Quaternions can be
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V&=J .

One can then define the conjugate a of a quaternion
a =u +UJ:
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APPENDIX 8: TOPOLOGICAL DEFECTS
AND ELECTRONIC SPECTRA

We begin with a simple two-dimensional polytope, the
cube (see Fig. 6). A disclination of angle m/2 along the
fourfold "vertical" axis transforms the cube into a pentag-
onal prism (Fig. 31). This structure is topologically relat-
ed to the infinite ladder on the right-hand side of Fig. 6
by identifying every fifth (rather than every fourth) site
along the ladder. The eigenvalues are given by diagonaliz-
ing the same expression as the for the cube (Table II), but
the "allowed" k values are now

n =0, 1,2, 3,4 .2''Pl

5a

In this simple example we see that the defect-induced
modification of the spectrum is described mast simply
when the disclination axis and the symmetry axis coin-
cide. This remains true in the polytope case.

Figure 13(b) shows the local effect of a 2m. /5 disclina-
tion line threading a fivefold symmetry axis in {5,3,3j.
This fivefold axis along with another one constitute the
pair of spherical torus axes described in Fig. 8. If 2m/5
disclinations are introduced along both of these axes, a
864-vertex structure with lower curvature than t 5, 3,3) is
produced. The electronic spectrum of this polytope is ob-
tained by the diagonalization of the same 12&& 12 matrix
of Table V, but the "allowed" k values are

a =u —vJ

Also the norm N, is

%, =aa =aa =uu+UU ~ 0 .

(A4)

(A5)

)) A4 (b)

Another interesting way of writing the quaternion a is

a =ao+a &i +a2j+a3k, ao, a I,a2, a3 &8,
with i =j =k =ijk = —l. Yet another way in which a
can be written is as a scalar part S, and a vector part V~:

a =S,+V„S,=ao, V, =a&i+a2j+a3k, (A7) FICx. 31. Insertion of a disclination into a cube.
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kI —— , n =0, 1,2, 3,4,5,
6a '

The s-band density of states of "polytope 864" is shown
in Fig. 19(c). Compared with I5,3,3), the lower band
edge has been pushed (very slightly) toward the antibond-
ing limit at —4. This is a consequence of the introduction
of some even-membered (6) rings along the disclination
axes. The presence of these six-membered rings correlates

with the appearance of eigenstates between —2 and —1 in
the figure. This is why we attribute the gap in the I 5,3,3)
spectruin to the extreme "oddness" of the structure [see
discussion below Eq. (46)].

The s-band density of states of "polytope 864" bears a
strong resemblance to the density of states of I 5,3,3I. At
first sight one could say that the former could be derived
from the latter by some broadening process. The advan-
tage of the spherical torus method is that it brings to light
the exact relationship of that broadening to the topologi-
cal defect.
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