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A first-order phase transition in the face-centered-cubic Ising antiferromagnet
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The nearest-neighbor antiferromagnetic Ising model on a face-centered-cubic lattice and in zero
magnetic field is investigated by the methods of series analysis. The low-temperature free-energy
series is extended to seventh order. Low- and high-temperature free energies are extrapolated and
their crossing locates a first-order phase transition at temperature 1.746 (+0.3/o) in units of the
nearest-neighbor coupling constant. The energy, susceptibility, and staggered magnetization are also
investigated. A "second-order Clausius-Clapeyron" equation is derived which enables the curvature
of the phase coexistence line to be determined from the above data.

I. INTRODUCTION

The best understood first-order phase transitions are
those in which the two coexisting phases are related by a
symmetry operation. Such a transition occurs in, for ex-
ample, a ferromagnet when the magnetic field vanishes at
sufficiently low temperatures (i.e., less than the critical
temperature), because the phase approached through posi-
tive fields is the mirror image of the phase approached
through negative fields. This paper deals with the less
well understood problem of first-order transitions which
lack such symmetry. Specifically, we study the nearest-
neighbor spin- —, Ising antiferromagnet on a face-
centered-cubic lattice, which exhibits a first-order transi-
tion as temperature is varied at constant field. We attack
the problem using the methods of series analysis.

The fcc Ising antiferromagnet presents interesting un-
solved problems at all values of the temperature T and the
magnetic field H. However, because it is difficult to pro-
duce arbitrary-field high-temperature series expansions,
our study is restricted to zero field. The H =0 free ener-

gy can be extrapolated from high- and low-temperature
series with high precision: the estimated error is at worst
0.07%. The crossing of the high- and low-temperature
free-energy curves locates the transition temperature, and
once this is known other series can be extrapolated to
yield any desired thermodynamic property of the transi-
tion: the change in energy, the change in susceptibility,
even the curvature of the first-order line in the (H, T)
plane. These properties do not extrapolate as precisely as
the free energy does, and their estimated errors range
from 2% to 8%.

The fcc Ising antiferromagnet has been intensively
studied, in part because it models such important binary
alloys as copper gold. It has been subjected to such
theoretical tools as the cluster variation method, ' series
analysis, ' position-space renormalization group, " and
Monte Carlo simulation. ' ' (Reference 4 is a useful re-
view. Much of this work concerns the model in general
magnetic fields. } Needless to say, no exact solution has
been forthcoming. Even the existence of a first-order
transition, although universally accepted, remains unprov-

en. The studies most relevant to our own are the series
extrapolations of Liu et al. , and the Monte Carlo simu-
lations of Polgreen. ' Liu et al. present a series analysis
of the zero-field problem quite similar to our own work.
We improve upon their study by deriving one additional
term in the low-temperature free-energy expansion, by us-
ing McKenzie's additional term in the high-temperature
free-energy expansion, and by extrapolating the series us-

ing differential as well as Pade approximants. Liu et al.
use only Pade (rational) approximants, which approximate
the thermodynamic functions poorly near the spinodal
singularity. ' Because the first-order transition is reached
long before the spinodal, this is not a serious difficulty.
Nevertheless, the use of differential as well as Pade ap-
proximants increases the number of approximants obtain-
able from a given series, and the close agreement of many
approximants increases ones confidence in the resulting
estimates. Polgreen has used a special purpose computer
to perform very high precision Monte Carlo simulations
of the zero-field fcc Ising antiferromagnet. His estimates
for the transition parameters are similar to, but incon-
sistent with, our own.

In outline, this paper proceeds as follows. Section II
discusses the derivation of low-temperature expansions for
the free energy and other thermodynamic properties. Sec-
tion III uses this free-energy expansion, together with a
published high-temperature expansion, to locate the tran-
sition temperature. Section IV produces numerical esti-
mates for the thermodynamic properties of the first-order
transition by comparing low- and high-temperature ext;ra-
polations. Finally Sec. V compares our results with those
of other approaches. An appendix derives a Clausius-
Clapeyron-like equation which permits determination of
the curvature of the two phase coexistence line from
zero-field thermodynamic data.

II. DERIVATION OF LOW-TEMPERATURE
EXPANSIONS

In the usual method for deriving low-temperature series
(the "primitive method" of Domb ), one first determines
the ground state and then perturbs that ground state by
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overturning small numbers of spins. When this method is
applied to the fcc Ising antiferromagnet, difficulties arise
at the very first stage. If the lattice portion considered is
a cube L conventional unit cells on an edge (thus with
X=4L points), there are O(2 ) different ground
states. Which of these many states should be perturbed
to produce low-temperature expansions? A reasonable
guess is that all. of them should be used, and that the
many resulting expansions should be averaged giving
equal weight to each ground state. ' This method is ap-
pealing, but it is wrong. Slawny has conjectured, and
Slawny and Bricmont have proven, that in situations
such as ours the correct expansion is produced by perturb-
ing only those ground states which have the greatest num-
ber of low-energy excitations, the so-called dominant"
ground states.

In the case at hand, the dominant ground states are
most easily described by dissecting the fcc lattice into four
interpenetrating simple-cubic sublattices. In the dominant
ground states two of the four sublattices are occupied by
up-spins and two by down-spins. This is the
metallurgist's AB or L lo structure (sometimes called the
P phase ' ). There are six such dominant states, reflecting
the 6=(4)(3)/2! ways of selecting two sublattices out of
four. A different but equivalent description of the dom-
inant ground states is obtained by dissecting the fcc lattice
into stacked planes of square lattice. (If the fcc lattice has
the conventional lattice constant a, then these planes have
lattice constant a/&2 and are stacked with spacing a/2. )

I

In this description, dominant states consist of fully mag-
netized planes stacked alternately (all spins up, all spins
down, up, down, up, down, etc.).

Once the dominant ground state is obtained, generation
of the low-temperature free-energy expansion is straight-
forward but extremely tedious. To fix the notation, we
define the Hamiltonian

PC =Jg 0; cTi —MHA Qo'g —PLHB +cTI
k I

where o.; = + 1. The first summation extends over
nearest-neighbor pairs, the second summation extends
over the sites of those two sublattices which are, in the
ground state, occupied by up-spins (the "up" or "A" sub-
lattices), and the third over the remaining "down" (or
"B")sublattices. Although both magnetic fields HA and

Hz will ultimately vanish, they are needed at this point to
permit the derivation of staggered magnetizations and
susceptibilities. In terms of the variables

—4J/k~ T —2mH~ /k~ T —2mH& /k& Tx=e ~, y~ ——e ~ ~, andy~ ——e

(2)

the free energy per site is

f (T,H„,HB ) = —2J—,' IHA + , m—HB—kB Tg—(x,yA, yB),

where

g(x, yA, yB) = x'[ —,'(yA+yB ')]+x'[4yAyB 'l+x'[ ——.'(yA+yB ')+10(yA'yB '+yAyB ')+2yAyB '—4yAyB ']

+x [ 8(yAyB '+yAyB )+(yA +yB )+12(yAyB +yAyB ) —36(yAyB '+yAyB )+4yAyB + 100yAyB ]

+x'[ 2(yAyB '+yA yB ')+ 5 6 (yA'+yB ')+26(yA'yB '+yA yB ) —104(yA'yB '+yAyB ')

+(3 AJ B '+3 A3B ')+»(yAyB '+yA3B ")+&42(yAJ B '+3 A3B ')+&8(yA3B '+3 AJ B ')

+12yAyB '+204y„yB —476y„yB ]

+x [ 2 (3 AyB '+yAyB ') —o (yAyB '+yAyB ') —8(yA +yB ')

+4(3 A3 B +3 AJ B )+88(3 A3 B +yA3B )+4~7(yA3 B +3 AJ B

+340(yA'yB '+y„yB )+8(y„yB '+yAyB ')+108(y„'yB +y„yB )

+ 1156(yAyB +yAyB ) —2956(yAyB +yAyB ) —12(y„yB '+yAyB )+60yAyB

+656yAyB +3032yAyB +820y„yB ]+0(x') . (4)

This expansion was obtained simply by overturning spins
from the dominant I. 10 ground state. Disconnected clus-
ters of overturned spins were counted by hand. Connect-
ed clusters were counted by computer using a variant of
the backtrack algorithm, except for those few (to be pre-
cise, three) relevant connected clusters with more than ten
vertices, which were counted by hand. This series was de-
rived to order x by Liu et al. , and the zero-field version
was independently derived (with a small error) to order x6
by Mackenzie and Young.

Low-temperature series for all thermodynamic proper-

I

ties of the model can be obtained from (4). We shall
study, in addition to the free energy, the zero-field energy
(all quantities are per site):

E( )/Jx= —2+8x +48x +248x +1480x

+10136x +76440@

the susceptibility

X(x)(kBT/m )= 4x +40x +96x +1316x

+7616x +. . . ,
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and the staggered magnetization

M (x)/m =— af af
A B

Pl = 67k — 0'~

= 1 —2x —16x —110x —792x

—6094x —49 272x

[The first summation in (7) extends over the 3 sublattices,
the second summation extends over the 8 sublattices, cf.
Eq. (1).]

III. LOCATION OF THE TRANSITION
TEMPERATURE

The expansions of the preceding section would be
directly useful if the fcc Ising antiferromagnet suffered a
critical transition to the disordered phase. However, the
transition is first order and must be investigated by com-
paring high- and low-temperature extrapolations. In par-
ticular, the transition temperature can be estimated as fol-
lows: Form approximants to the high-temperature free
energy and evaluate them at a selected temperature near
the transition point. Use these estimates to decide on a
probable range of values for the free energy at the selected
temperature, and choose an approximant at either end of
the range to form effective bounds on the free energy of
the disordered phase. Repeat this procedure using the
low-temperature expansion to find effective bounds on the
free energy of the ordered phase. Plot both pairs of
bounds and use their crossing to establish the transition
temperature. The remainder of this section merely details
the above procedure.

The high-temperature free-energy series has been de-
rived to 14th order by Sykes et al. and extended to 15th
order by McKenzie. (Note that McKenzie presents a
14th-order series for the energy. The 15th term in the
free-energy expansion can be found from these data using
Eq. (1.40c) of Domb: in his notation, it is
a Pz' ——505 350 753 785 —,

' . Although this expansion was
developed with the ferromagnetic problem in mind, the
free energy is analytic at J/k~ T=0, so it can be applied
to the antiferromagnetic problem by changing the sign of
J.

We have extrapolated the high-temperature free-energy
series down to k~ T/J = 1.74, which is near the transition
temperatures reported by previous workers. Six different
classes of approximants were used to effect the extrapola-
tion. The first two are standard Dlog Pade approxi-
mants and inhomogeneous differential (or "integral
curve" ) approximants (IDA's). The remaining four
classes take advantage of the well-studied ferromagnetic
singularity, where f ( T) —

~

T T,
~

. The criti—cal tem-
perature has been accurately located by McKenzie ' at
t an(hJ/~kT, )= —0.101724 (with an uncertainty of 50
parts per million), and Sykes et al. have concluded that

While it is unlikely that this result for the ex-

ponent is exactly correct, ' it is surely accurate numeri-
cally. The third and fourth classes of approximants are

thus Dlog Pade approximants and IDA's with the fer-
romagnetic singularity fixed at the above location, while
the fifth and sixth classes have both T, fixed and a fixed

1at 8 ~

For numerical ease, we approximate the reduced free
energy (where HT denotes high temperature)

fHT(y) =[f/kaT+»2
+6 ln cosh( J/k~ T)] /tanh (J/k~ T)

= 8 —33 tanh(J/k&T)+168 tanh (J/k&T)

—930 tanh'(J /k' T)+. . . (8)

and use the variable

y=lOtanh(J/kgT) .

The expansion for fHT'(y) is known to order y' .
Some of the free-energy approximants display singulari-

ties at temperatures in the physical regime (i.e., between
the ferromagnetic critical temperature T, &0 and the an-
tiferromagnetic first-order transition temperature T, &0),
where we have every right to expect ari analytic free ener-

gy. Such approximants are rejected. Approximants
displaying other signs of unexpected analytic behavior,
such as a pair of poles straddling the real line in the phys-
ical regime, or very slow convergence of the numerical in-

tegration, are also rejected. Of the 44 Dlog Pade approxi-
mants considered, 10 (or 23%) were rejected. The IDA's
faired much worse: of 138 approximants, 119 (or 86%)
were rejected. These rejection percentages did not vary
significantly between approximants with and without
fixed ferromagnetic critical properties.

The estimates for the free energy at kBT/J=1. 74
given by the accepted approximants are displayed in the
lower half of Fig. 1. Most of them cluster near the value
—2.03 but, as expected, a few are scattered erratically and
do not fit on the figure. It is interesting that 23%%uo of the
accepted Dlog Pade-approximant estimates fall off of the
graph, while only 5%%uo of the IDA estimates fall off: al-
though many more IDA's must be rejected, those IDA's
which are accepted seem to be better than the Dlog ap-
proximants. The reader is encouraged to form his own
opinion, but I conclude from Fig. 1 that, at k&T/J
= 1.74,

f ( T)/J = —2.0295+0.0015= —2.0295 (+0.07%) .

(10)
Two approximants which fall near the edges of the above
range are [e/6;6] and [e/8;4], both with a fixed fer-
romagnetic critical temperature.

We turn now to low-temperature series extrapolations.
The low-temperature series has no physical significance at
negative temperatures, so the last four of the six classes. of
approximants mentioned above cannot be used. On the
other hand, it is now profitable to use direct Pade approx-
imants. We approximate the function (where LT denotes
low temperature)

f~~T' ——(f/J+2)( J/kg T)e

=1+4x+15—,x +74x +422 —,x +2730x +. . .
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FIG. 1. Estimates for f(T)/J at k~T!J=1.74 produced by
several approximants. Solid circles represent estimates from
IDA's, open circles represent estimates from Dlog Pade approx-
imants, and pluses represent estimates from direct Fade approx-
imants. The lower half of the figure shows extrapolations from
high-temperature series. Estimates are segregated by row ac-
cording to the number of terms (10, 11, or 12) in (8) used to pro-
duce the approximant, and the overall estimate (10) is indicated

by a bar. The upper half of the figure shows the same informa-

tion for the low-temperature extrapolants.

IV. OTHER PROPERTIES OF THE TRANSITION

Now that the first-order transition has been located,
any property of interest can be found by extrapolating the
high- and low-temperature expansions for that property
out to the transition point. We execute this program for
some representative properties: for the energy and the
staggered magnetization to allow ready comparison of our
results to those of other approaches, and also for the sus-
ceptibility to allow the calculation of the curvature of the
coexistence line in the (H, T) plane.

The low-temperature energy expansion is given by (5),
while the high-temperature energy expansion is derivable
from the high-temperature free energy. These expansions
are extrapolated just as described in the preceding section,
except that the approxim ants are evaluated at
k&T/J=1. 746 instead of 1.74. The resulting graph of
energy versus temperature near the transition point is
shown in Fig. 3. Taking into account both the uncertain-
ty of the energy at a given temperature and the uncertain-
ty of the transition temperature, I conclude that the latent
heat of transition is

using the variable b,E/J =0.48+0.02=0.48 (+4%) . (15)
—4J/k Ty=10e ~ =10+ . (12)

The series for ft T'(y) is known to order y5, as shown
above.

The low-temperature approximants were better behaved
than their high-temperature brothers. Of 32 approxi-
mants (12 Dlog Pade approximants, 15 IDA's and 5 Pade
approximants) only one (an IDA) was rejected, and all of
the accepted estimates fall within the graph in the top
half of Fig. l. I conclude that, at ks T/J = 1.74,

f ( T) /J = —2.0310+0.0010= —2.03 10 (+0.05% ) . (13)

The "bounding" approximants are [0/3;0] and [0/1;2].
The two pairs of bounding approximants are plotted in
Fig. 2. The intersection places the transition temperature
at

bX(kgT, /m )=0.053+0.002=0.053 (+4%) . (16)

The phase diagram of the fcc Ising antiferromagnet in
the (H, T) plane is a matter of some controversy. This
study can do little to clarify the matter, but we can point
out that the slope, curvature, and, in fact, all derivatives
of a two phase coexistence curve T,(H) at a given point

It is not clear why the energy extrapolates so much less
precisely than the free energy.

The low-temperature susceptibility expansion is given
in (6), and a 15th-order high-temperature expansion has
been derived by McKenzie. ' The analysis of these series
is a mechanical application of the techniques previously
discussed, with the following result:

k~T, /J=1. 746+0.005=1.746 (+0.3%) . (14) —1.2
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FIG. 2. Estimated bounds for the free energy. The crossing

region determines the transition temperature estimate (14),
which is indicated by a bar in the inset.

k BT/7'

FIG. 3. Estimated bounds for the energy. The open circles
are the Monte Carlo data points of Polgreen (Refs. 18 and 34) ~

(The estimated sampling errors are smaller than the circles. )

The estimate (14) for the transition temperature is marked with

vertical dot-dash lines and Polgreen's estimate

(k& T, /J = 1.736+0.001) is marked with vertical dashed lines.
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can be obtained from sufficiently detailed knowledge of
the thermodynamic properties at that point. For the
slope, this relation is nothing other than the famous
Clausius-Clapeyron equation. In our case the slope of
T, (H) at H=0 vanishes by symmetry. The curvature is
obtainable from Eq. (A8):

1.00

M Im

0.90
d T(H)

djj AS

bX(ksT, /m )

(bE/J)(k~J/m )
(17)

(where S is the entropy) which evaluates to

d T (H) ksT = —0.110+0.009= —0. 110 (+8%) .
d~2 ~2

(18)

0.80
1.6

"i ~

II .
II

jII .
II j
II .
Ii l

1.9
kBT/3

FIG. 4. Estimate bounds for the staggered magnetization.
Symbols are defined as in Fig. 3.

The low-temperature staggered magnetization expan-
sion is presented in (7): in the disordered phase it of
course vanishes. These data can be extrapolated in the
usual manner, and the resulting bounds are graphed in
Fig. 4. The jump in staggered magnetization at the transi-
tion is

bM /m =0.895+0.015=0.895 (+2%) . (19)

V. COMPARISON WITH OTHER METHODS

As mentioned in the Introduction, the fcc Ising antifer-
romagnet has been analyzed with a variety of techniques.
Many of these extend readily to the finite-field problem,
where series analysis is ineffective. The zero-field prob-
lem is thus an important proving ground where the
several approximate techniques can be tested against each
other. We compare several analyses taken from the litera-
ture.

Table I presents the basic comparison. Although the
data speak for themselves, it is worthwhile to emphasize a
few salient features. The highest transition temperatures
are produced by the cluster variation method (CVM), and
the improved tetrahedron-octahedron approximation of
the CVM gives a lower transition temperature than the

tetrahedron approximation does. Although none of the
transition temperatures reported to four digits overlap
with any of the others, there is nevertheless a convergence
of results to the range between 1.7 and 1.8. The staggered
magnetizations also behave more or less satisfactorily.

There is a much wider range in the reported latent
heats: the largest is 50% greater than the smallest. To
underscore this disagreement, Fig. 3 presents both the
bounding approximants and the Monte Carlo data of Pol-
green. The disordered phase Monte Carlo data points
consistently fall outside of the series estimates.

This comparison has shown that the zero-field nearest-
neighbor fcc Ising antiferromagnet still deserves study
with a variety of techniques, and that attention should be
focused upon the thermodynamic parameters of the tran-
sition, such as its laterit heat, as well as upon its location.
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APPENDIX: A SECOND-ORDER
CLAUSIUS-CLAPEYRON EQUATION

The Clausius-Clapeyron equation (A7) relates the slope
of a first-order transition line to first derivatives of the
free energy (e.g. , entropy and magnetization). In this Ap-
pendix we derive a "second-order Clausius-Clapeyron"
equation (A8) which relates the curvature of a first-order
transition line to second derivatives of the free-energy
(e.g., susceptibility and specific heat). It is clear from this
derivation that the third derivative of the transition line is
related to third derivatives of the free energy . (e.g.,
aX/aH), and so on.

Suppose that two phases, 3 and B, coexist in a phase
diagram described by the variables H and T. Upon an ar-
bitrary displacement (5H, 5T) within a single phase the
free energy F(H, T) suffers a change

8 I'+ aH +
gT2 + aH~T +

gH2

—:—S5T M5H+ —,[—(CH/T)—(5T) +2czH 5H5T X(5H)'—]+ . (Al)

Here, the "coefficient of thermal magnetization change"
1s

so

(aM/a T—)„—=+[x(c„c)/T]'"—, (A2)
dTt0= AM+ 65
dH

where the second expression follows from a thermo-
dynamic exercise. (CH and CM are the specific heats at
constant field and magnetization, respectively. ) This ex-
pression for 5F is valid even if F(H, T) exhibits essential
singularities ' at the phase boundary, because the expan-
sion (A I) is not required to converge.

If the displacement (5H, 5T) follows the coexistence
line, then 5I' for the 3 phase must equal 5I' for the B
phase. Defining

1 d Tt ~CH dTt

2 dH T dH

dT,—26aH +AX (5H) +. . . . (A6)

The value of 5H is arbitrary, so all the terms in the first
set of large parentheses must vanish, whence (provided
b,S~O)

AM =My —Mg, 4X =kg —Lg,
etc. , we have from (Al):

0=65 6T+AM 6H

(A3)
d T, (H)

dH
AM
AS

(A7)

+ , [(ACH /T)(5T)—2b,irII5H 5T+—bX(5H )~]+. . . .

But if (5H, 5T) falls along the phase coexistence boundary
T, (H), then

d T(H)
dH

dT, ACH dT,
AX —2 AaH

dH T dH

'2

(A8)

dT(H) I d T(H)5T= 5H+ (5H)'+-. . . ,dH 2 dH2
(A5) This is the desired second-order Clausius-Clapeyron equa-

tion.
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