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Density-functional theory of the band gap
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There is a correction to the energy band gap obtained from the eigenvalues of the exact one-
electron density-functional equation due to the discontinuity in the exchange-correlation potential in
an insulator. This correction is expressed. in terms of the electron self-energy. If the local-density
approximation is used for the exchange-correlation potential, then an additional correction to the
gap is needed. Both terms are evaluated for a two-plane-wave model vrith exchange only. Empirical
evidence is also given for the discontinuity.

I. INTRODUCTION

The density-functional theory' gives a framework for
the interaction effects in an inhomogeneous system which,
in the simple local-density approximation (LDA), has
proven to be quantitatively rather good for many ground-
state properties. The one-electron Schrodinger equation
with the effective LDA potential derived from the
density-functional theory yields wave functions which
form a quite accurate ground-state density. This is the
basis of the good approximation for the ground-state
properties. The eigenvalues from the same equation do
not, however, yield accurate band gaps for semiconductors
and insulators. Errors of the order or larger than 50%%uo are
not uncommon. This is the famous "band-gap problem. "

One approach is to say that there is no theoretical basis
for interpreting the eigenenergies of the effective one-
particle Schrodinger equation (even with the exact
density-functional potential) as the one-electron excitation
energies. Instead, one should construct the self-energy
functional to obtain energy eigenvalues defined correctly
in terms of the poles of the one-electron Green's func-
tion. Much recent progress has been made in this direc-
tion.

A second approach is to investigate whether density-
functional theory can, in principle, predict band gaps, and
whether improvements beyond the LDA would yield
better band gaps. This approach does have a firm theoret-
ical basis for the problem of fundamental band gaps even
though it does not rigorously apply to the general band
structure. In a semiconductor or insulator the band gap is
rigorously defined as the difference between the lowest
conduction-band energy and the highest valence-band en-
ergy, which, in turn, are defined as the lowest energies to .
add and remove, respectively, an electron from the X-
electron system. By emphasizing the X dependence of the
density functional of energy, we can examine the change
in total energy with N and arrive at an expression for the
energy gap. The perturbative expression for the total ener-

gy gives a basis for approximations.
One factor of an accurate determination of the energy

gap is the correct exchange-correlation potential for the

N-particle ground state. Whether improvement over the
LDA will change the gap needs to be investigated. A
more interesting finding of our investigation, which is in-
dependently reached by Perdew and Levy, ' is the ex-
istence of a discontinuity in N in the density-functional
derivative of the exchange-correlation energy, i.e., in the
potential. This discontinuity contributes to the band gap.

Our goal is to investigate the relative importance of
these two contributions to the band gap, namely the im-
provement over the LDA potential and the discontinuity
in the exchange-correlation potential. We have made
some progress towards this goal by finding field-theoretic
expressions for the exact exchange-correlation potential
and for the discontinuity, and by evaluating these expres-
sions for a two-plane-wave model for an insulator in the
exchange-only approximation. This simple model calcula-
tion is meant as an illustration fear the unfamiliar concepts
introduced here. The effect of correlation is studied in
another paper.

As a lead-in, the discontinuity in 6T, /5n, where T, is
the kinetic-energy functional, is examined in Sec. II. In
Sec. III an expression for the band gap is derived within
the density functional theory. The discontinuity 6 in the
exchange-correlation potential V„, is given in terms of the
self-energy. Section IV describes the two-plane-wave
tnodel for a semiconductor. Section V gives some empiri-
cal evidence for the contribution of the discontinuity in

V„, to the energy gap in real materials. Section VI sum-
marizes our findings.

II. DISCONTINUITY IN THE KINETIC-ENERGY
FUNCTIONAL DERIVATIVE

As a prelude to the demonstration of the discontinuity
in the functional derivative of the exchange-correlation
energy, we study a similar discontinuity in the kinetic en-
ergy of the noninteracting system, T,[n]. Throughout
this paper we sha11 consider an extensive system, i.e., a
system of N particles with N~ao such that, in an equa-
tion, errors, which become negligible in the large-N limit,
are understood. Vfe also restrict our attention to spin-
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compensated systems and neglect spin. Extension to in-
clusion of spin is straightforward.

Consider a noninteracting electron system with a mono-
tonically increasing energy spectruxn e~, e2, . . . with a gap
between eN and eN+~. To be more precise, as X~ oo the
energy difference between successive levels is O(N ~), p
being a positive fraction, except that @~+i—e~ ——O(l).
Then the X-electron ground state is an insulator, with an
energy gap

&g =&N+i —&N (2.1)
/

The ground state with M electrons will have a density
distribution n (r) given by

eluding Vo) and a chemical potential p, there is an M
which minimizes the free energy and a unique correspond-
ing density nM(r)

Consider still the noninteracting case. The density is a
functional of V(r) and p given by

n (r) =pe(p —ej )
~ +J (

(2.6)
J

where +J is the wave function associated with the energy
ej. A change 5n due to a small change in 5V suffers a
discontinuous jump when p goes from just below ez to
just above eN+~. Similarly, let us express the kinetic ener-

gy as

&&s,~
5n

+ V=p~, (2.2)
T, [n j=pe(p —ej )Idr VJ ( —, V ) Il~—. (2.7)

where V is the potential and a subscript M is attached to
the kinetic energy to emphasize the dependence on the to-
tal number of electrons as well as the density-functional
dependence. The chemical potential pM is well defined,
being

It is a functional of n because Vl, ej are functionals of
( V,p), which are, in turn, functionals of n Exp. licit per-
turbation calculation of 5T, /5n involves a term 5(p —ez).
The gap between eN and eN+~ then yields a discontinuity
in 5T, /5n given by Eq. (2.4).

lJM=&M+«M ') (2.3) III. THE BAND GAP

5T,
Eg =

5n+
5T,
5n

(2.4)

for all M except M =X. pM can be anywhere in the gap
between e~ and e~+i. Taking the difference of the two
limits of Eq. (2.2) with M tending from above to %+ I
and with M from below to X, we obtain

A. Definition for an interacting system

The band structure in a semiconductor can be rigorous-
ly defined as the energies of one-particle excitations,
which are, in turn, related to the difference between total
energies of states differing by one electron. In particular,
the lowest conduction-band energy is given by

where ~c EN+1 (3.1)

5Ts,M
lim

5n+ M iv+ i 5n
(2.5)

This demonstrates the discontinuity in the functional
derivative of the kinetic energy.

The discontinuity arises from the gap in the energy
spectrum. In the Hohenberg-Kohn theory, ' the energy
functional is defined only for each given M. The varia-
tional equation (2.2) from their theory is strictly valid
only for a given M. The derivative 5TsM/5n is then re-
stricted to variations 5n not changing M. To extrapolate
the meaning of the I.agrange multiplier pM to be the ener-

gy of adding an electron to the system would involve the
difference in functionals TsM+i and Ts M. The function-
al derivative is well defined if TsM is a sufficiently
smooth function of M. It is valid for conductors but not
for insulators across a gap.

These subtleties come from the fact that the
Hohenberg-Kohn theorem establishes a one-to-one map-
ping between the N-particle density n~(r), and not just
the potential V(r) but the combined set of V(r) excluding
an additive constant Vo plus the total number of particles

An energy functional of n~(r) is defined specifically
for a subspace of n&(r) functions with X particles. As X
changes we see an example above a functional not chang-
ing smoothly.

The discontinuity also shows up in the zero-
temperature limit of the energy functional defined by
Mermin's procedure. ' For a given potential V(r) (ex-

where EM is the total energy of the M-particle ground
state, and the X-particle state corresponds to the insulat-
ing ground state. Similarly, the highest valence-band en-

ergy corresponds to

~v EN EN —1 ~

The fundamental band gap is then

Eg =ac —eu ~

(3.2)

(3.3)

and the zero-temperature-limit chemical potential at
mldgap is

p=(e, +e„)/2 . (3.4)

B. Relation to the Kohn-Sham eigenenergies

For an M-particle state the density is determined by the
wave functions of the Schrodinger equation2

[——,
' V' + V(M)]VJ(M) =ej(M)+J(M), (3.5)

where V(M) is the Kohn-Sham potential for M particles:

V(M) = V,„,+Iun(M)+ V„,(M), (3.6)

where, for simplicity, the coordinate dependence of the in-
tegral is understood. The right-hand side of Eq. (3.6) is
the sum of the external potential V,„„the Coulomb po-
tential through the interaction u due to the charge distri-
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bution n (M) and the exchange-correlation potential

V„,(M) =
n

(3.7)

5Ts
e~+,(N +1) e—~(N) =

5n+
5' + V(+)' V{—)

XC XC

(3.16)

e, =a~+i(N+1),
e„=@~(N}.

Define a density function

(3.8a)

(3.8b)

E„, is the exchange-correlation part of the total energy.
Similar to the metal case, where the highest "occ'upied"
eigenenergy for the N-electron system e~(N) is the Fermi
energy, it is easy to show that

where

V'„-, ' =5E„,/5n+ (3.17)

(+) ( —)5„c=Vx, —Vxc (3.18)

The discontinuity in V„, is a constant.
Alternatively, from the total-energy difference (3.1),

are defined similarly to Eq. (2.5). Using Eqs. (2.4) and
(3.14), we obtain

nM(N)= g ~
VJ(N)

~

(3.9) e, =E[n~+i(N)] —E[n~(N)], (3.19)

By Ref. 2, n&(N) is the density of the N-particle ground
state. From the definition of the valence-band edge, Eq.
(3.2),

~„=E[n„(N)]—E[n„,(N —1)l . (3.10)

We wish to find terms of 0 (1) on the right-hand side and
can neglect the difference between E[nz i(N —1)] and
E[n~, (N)], which is, by the variational theorem, ' of
second order in the difference in the (N —1)-particle den-
sity n& i(N) —n& i(N —1), and thus is 0 (N '). Thus,
Eq. (3.10) becomes

e, = a~+i(N)+E„,[n~+ i(N)] E„,[ ~n(N—)]
—f V„,(N) )4'~+i(N}

~

(3.21)

where the variational theorem has again been invoked to
replace the exact density n~+ i(N + 1) in E&+ i by
nN+i(N) By th. e usual separation of the total energy,

X[n]=T,[n]+ f V,„„n+—,
' f fnun+E„, [n], (3.20)

where, for simplicity, the coordinate dependence in the in-
tegrals is understood, Eq. (3.19) becomes, to first order in
the density change,

e, =E[n~(N)] —E[n~ i(N)]

=f ~
e„(N)

~

'=a~(N), (3.11)

In the evaluation of the total-energy difference, we have
not implicitly assumed that E„, has a smooth derivative
across ¹ Thus, we take the limit

by virtue of the variational equation (2.2), which, with V
replaced by V(N), is equivalent to Eq. (3.5).2 The proof
of Eq. (3.8a) is similar.

Thus, the energy gap is related to the eigenenergies of
Eq. (3.5):

V„.(N) = V„' (3.22)

E„,[n„+,(N}]—E[ ~n( N)]= f "'
~e~+i(N) ~'.

5n+

Es a~+i(N+ 1)——e~(N) . — (3.12) (3.23)

es ——e~+,(N) e~(N), — (3.13)

only in replacing ez+i(N) by e&+i(N + 1). We write the
deviation as

Note that it differs from the naive definition of the band
gap in terms only of the N-particle eigenenergies

By the definitions (3.13) and (3.14) of es and h„„we have

b,„,=f ( V'„+' —V„', '}
~
%~+i(N)

~

(3.24)

The results in Sec. II up to this point have been in-
dependently obtained by Perdew and Levy. '

Eg ——eg+ 6„, , (3.14) D. The discontinuity in V„,

with the subscript xc in anticipation that it is due to the
exchange-correlation effects. The deviation is given by

6„,=a~+, (N +1) e~+ i(N) . — (3.15)

C. Band gap in terms of the discontinuity in V„

For an interacting system, the variational equation (2.2)
is valid provided that V is replaced by the total effective
potential V(M) in Eq. (3.6). The difference of the two
limits of M tending to N+ 1 from above and to N from
below then gives

In the preceding subsection it is established through the
density-functional theory that the contribution to the
band gap can be divided into two components: eg, which
is the gap from the Kohn-Sham equation for the ground
state, and A„„which is due to the discontinuity in the
exchange-correlation potential. An improvement over the
LDA would' yield a better value for eg. It is not yet estab-
lished if the LDA gives a good approximation to es.

It is, however, clear that the LDA yields no discon-
tinuity in V„, and, thus, gives zero b,„,. It is therefore im-
perative to demonstrate that, beyond the LDA, such a
discontinuity in V„, does exist for an insulator. We shall
do so by deriving an expression for the discontinuity from
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56p(r, r', co)=2mi 5(co—e, )'P, (r)%',*(r') .

From Ref. 8,

E„,=i Tr[ln(1 —XGp)+XG]+ Y'„, ,

(3.25)

(3.26)

where F„ is the sum of skeleton diagrams in G. The
functional derivative of the first term is

the perturbation expression of E„,[n] in the preceding pa-
per.

The root of the discontinuity lies in the existence of a
gap in the one-electron energy spectrum. The discontinu-
ity in V„, arises in a way similar to 5T, /5n from expres-
sion (2.7). We take the field-theoretic expression for E„,
in the preceding paper and calculate the difference on the
left-hand side of Eq. (3.23) to yield the V„',+' on the right-
hand side. The unperturbed Green's function in Ref. 8,
Gp, is given by the effective potential with the exchange-
correlation component V„', ' in Eq. (3.22). For simplicity,
denote the (%+1)th orbital of the equation for X parti-
cles by a subscript c. The change in Gp corlespondlng to
the density change of

~
%'iv+~(X)

~

is

I —I /z ikxP R) (4.1)

I. being the length of the system along the x axis and
g(R) the wave-function dependence in the y-z plane de-
caying in a distance of the order 1/8&. 8 is the
Brillouin-zone boundary in the x direction so that 28 =Q
is the reciprocal-lattice vector. The effective Hamiltonian
1S

—,
' (k+8)'

—,
' (k —8) (4.2)

where Vis the strength of the Fourier component of wave
vector Q of the one-electron potential. The energy disper-
sion of the two-band model is given, for —8 (k (8, by

consistencies in its application to the exchange-energy cal-
culation. ' We therefore settle for a quasi-one-
dimensional two-plane-wave model which can be solved
exactly.

The basis set for the wave function consists of two
plane waves, Pk+z, where

i Tr[X56 —(X+XGX)56p] .

The functional derivative of the second term is

(3.27)
& (k2+82)+[(k8)2+ V2]I/2

&vk
(4.3)

5F„,= i Tr[—256] .

Together, they give, for Eq. (3.23),

b,„,=fdr fdr'0',*(r)X(r,r';E, )V, (r'),

(3.28)

(3.29) 4'„k ——g C~(vk)gk+ a (4.4)

The higher band is taken to be the conduction band and
the lower the valence band. The associated wave func-
tions are given by

where the improper self-energy is given by the integral
equation

(3.30)

in terms of the exchange-correlation part of the self-
energy.

—Slngk

(4.5)

with coefficients for the conduction and valence band
given by

C+ (ck) cos8k

C (ck)

IV. THE TWO-PLANE-%'AVE MQDEL

A. The model

C+ (uk)

C (uk)

r

SlnOk

COSOk

Unlike the metal, where the jellium serves as an excel-
lent simple model to study the many-electron effects, the
semiconductor lacks a simple counterpart. The Penn
model, ' a spherical two-wave model, which serves admir-
ably for the purpose of a dielectric function, has some in-

—Ok = —,
' tan '( V/k8) . (4.6)

The Coulomb interaction matrix element for a plane-
wave scattered from k] to k2 while the second scatters
from k3 to k4 is

(k, —k, )'+8',f«f «'yk, (r)pk, (r) (r r')Qk4(r')pk3(r') ~ ln —
k z 5k3 —k4, k, —k, = (k2 kl)5k3 —k, , k2 —k, /I .

2 I

(4.7)

B. The exchange potential and its discontinuity

With this simple model of the band structure and in-
teraction it is a straightforward matter to construct the
exchange energy E„[n] and demonstrate the discontinuity
in V„directly. We also verify that the formula (4.3) in
Ref. 8 of V„ in terms of the exchange self-energy con-

l

firms the result.
Following the procedure of Ref. 8 we construct the

single-particle band structure of the Kohm-Sham equa-
tion. Thus, the energy bands in Sec. IV A are the eigenen-
ergies of Eq. (3.5), with the potential V in (4.2) corre-
sponding to the Q component of the total effective poten-
tial (3.6). In the approximation with exchange only,
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V= V,„,(Q)+u (Q)n(Q)+ V„(Q) .

The density distribution

n (x)=n (0)+2n (Q)cos(g. x)

(4.8)

(4.9)

where the plus sign corresponds to p, in the conduction
band (n ty-pe semiconductor) and the minus sign for the
valence band (p-type semiconductor). Then,

is determined by the two Fourier components n (0) and
n(Q). If the system is filled to the Fermi level (u, the
functional relation between n (x) and V(x) is given by the
two functions of n (0),n(Q) in terms of )M and V. Later,
we shall determine V„(Q) and thus obtain a functional re-
lation between the density n (x) and the bare lattice poten-
tial V,„,(x).

It is convenient to use the Fermi wave vector kz in
place of tu,

tu= ,'(kF~—B )+[(kpB) ~ V ]'i (4.10)

g2
n (0)= (B+kF)2~2

BiV Bk~~(B kg+ V )'/
n( )= ln

4&B B'+(B'~V')'"

(4.11a)

(4.11b)

The + signs in (4.1 la) have the same meaning as above.
kz ——0 corresponds to the insulating state.

From Eq. (4.1) of Ref. 8, we can express the exchange
functional E„[n]in terms of kF and V:

dk r dkExfn]= —L g &N p, ~ p f p p(k)+ f „ p p(k)
7 0 j

X f pp (k')+ f k pp (k') u(k k'+(P —P')B), — (4.12)

where the indices a, etc. run over +1, and the one-particle
density matrices are given by+, 1+cos(28k ) + sin(28k )

+»n(28k) 1+cos(28k)

The exchange potential, as 5E„/5n, is given by the
Fourier components

aE„
0 an(0)

4m an(Q)
av

1 aE 4n an(0) an(Q)/ak
L ak Bi ak " an(O)/ak

(4.17)

Since, in (4.12), E [n] is a function of k~ and V, we use
the chain rule to obtain the exchange potential

V (G)= 1 aE„
(4.16)

aE.
2Q an (Q)

'

(4.14) We take the semiconductor limits by letting kF —+0 for
tu given by Eq. (4.10) in the valence and conduction bands.
We find that

0=4nL/Bi .
V(+)(Q) V( —

)(Q) (4.18)

b,„=V„'+'(0)—V„' '(0)= —f u(k)sin(28k) —2V„' '(Q) . (4.19)

Alternatively, the results for V„and b, can be obtained directly in terms of the self-energy X„ in the insulating
ground state.

Since

X„(r,r') = ——,
'

u (r r')p(r, r')—
in terms of the one-particle density matrix p(r, r ), the matrix elements of X„are given by

Xg, (k) =fdr fdr'P), ~,s(r)X„(r,r')Pk~g. s(r') = L'gu(k —a ~(s—cr)B)C~(uk)C~—,~,.(uk) .

(4.20)

(4.21)

From Eq. (4.3) of Ref. 8, the exchange potential is given by

( )
& dk cos(28k )

V„(Q)X(Q,Q) = —
2 i f —,

' [X++(k)—X (k)]sin(28k)+ X+ (k)cos(28i, )],[(kB)2~ V2]i/2 2 + + (4.22)



3888 L. J. SHAM AND M. SCHLUTER 32

where P(Q, Q) is the Fourier transform of the density
response X(r,r'), given by

g2 (g4+ V2)1/2 g2X(,Q)= +ln(g4+ V2)i/2 V

For simplicity, we have set Bz ——8.
D. Numerical results

It is convenient to express energy in units of the
valence-band width,

(4.23)
The resulting expression for the exchange potential is the
same as that from Eq. (4.16). When X„ is substituted in
Eq. (3.29), we obtain Eq. (4.19).

C. The local-density approximation

8'= —82

and Coulomb energy in r„
1/3

3m 8
S

(4.25)

p„(n) = —e [ln( 4 )+tan '2](2n/m)'/ (4.24)

2.0

1.4

Since for this model we have the exact exchange poten-
tial, it would be interesting to compare it with the LDA.
However, since the interaction given by (4.7) is not exactly
Coulombic, we need to produce the appropriate LDA for
the exchange potential, which is given by the one-plane-
wave approximation for X„at the chemical potential, i e.

The results for V„, which scales with r„are plotted for
r, =2 and a range of external potential V,„, in Fig. 1 (bot-
tom), and compared with the LDA as defined by (4.24).
In this model the I.DA is not a particularly good approxi-
mation to the exact V„. In Fig. 1 (top), for a range of
values of V,„,/W, we plot the exact gap Ez, the partial
gap eg given by Eq. (3.13), and the LDA gap. The differ-
ence between ez and the LDA indicates the extent of im-
provement possible in the gap by improving the exchange
potential. The contribution from the discontinuity in V„,
as indicated by the difference between Zg and ez, is clear-
ly substantial, being of the order of ez itself. By compar-
ison, the deviation of the LDA V„ from the exact V„ is
small.

V. REAL SEMICONDUCTORS

1.2

&.0

~ O, B

0.6

0.4

02
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0.7-- AE (eV)
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The study of the exchange and correlation potential
beyond the LDA and its discontinuity 5„,for real systems
is underway. We do not yet know if the LDA is a good
approximation to V„', '. However, if we assume that this
is the case, as suggested by the success of computations of
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FIG. l. Exact and LDA exchange potentials V„(Q) plotted
vs the eternal potential V,„, in units of 8; the valence-band
width (bottom). Exact gap Eg, pseudogap eg {calculated from
the ground-state equation), and the LDA gap es, plotted for a
range of external potential V,„, {top).
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FIG. 2. Difference between measured and LDA band ener-
gies at symmetry points in silicon vs the measured energies. The
points calculated by %"ang and Pickett are taken from Ref. 16.
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some of the ground-state properties, then the discrepancy
between the measured gap and the LDA value is a mea-
sure of the discontinuity b,„,. In Fig. 2 we plot the differ-
ence in energy values between experiment and the LDA
for various symmetry points in silicon' versus the mea-
sured energy E—p, placing p at midgap and assuming
that the top of the valence band is given by the LDA
value. The steplike distribution of data points appears to
be an indication that the low-lying conduction-band ener-
gies deviate from the LDA gap more or less by a constant,
which might be interpreted as 6„,. The corresponding
Wang-Pickett' values, shown for comparison, do not
exhibit such a steplike feature Th. e values are from a ver-
sion of their calculation where only the energy dependence
but not the nonlocality of the self-energy is changed from
the LDA. This suggests that in semiconductors nonlocal-
ity plays an essential role in determining the gap.

true band gap and the one obtained from the ground-state
one-particle equations. This partial contribution to the
gap arises from the difference between the conduction-
band valleys obtained from the ground-state self-
consistent equations for the N and (N+ 1)-particle sys-
tems, which, in turn, comes from the difference in the ex-
change and correlation effects between the two systems.

The simple model for an insulator illustrates the ex-
change potential beyond the LDA and its discontinuity.
It serves as a counterexample to arguments' purporting
to show that an exact exchange-correlation potential in
the self-consistent potential for the N-particle ground
state suffices to yield the exact band gap, and that, by im-
plication, the discontinuity in V„, is zero. We hope that
this paper will serve as a starting point for the study of
both the exchange and correlation contributions to the en-
ergy gap of real materials.
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