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A theoretical investigation has been made of electromagnetic waves in a two-layer semiconductor
system in the presence of a static electric field parallel to the interface. The dispersion relation is ob-

tained using the specular-reflection approach of Kliewer and Fuchs, taking into account retardation
and carrier damping. Numerical solutions of the dispersion relation are presented for both retarded
and nonretarded cases. These calculations indicate that an interaction takes place between space-
charge waves of adjacent media. In some instances, this interaction gives rise to amplifying instabil-
ities. The calculations including retardation show a space-charge-wave —electromagnetic-wave in-

teraction, which results in an evanescent wave localized at the interface.

I. INTRODUCTION

For almost two decades, there has been interest in ex-
ploring solid-state plasmas for the various instabilities ob-
served in gaseous plasmas. ' ' Among the latter, for ex-

ample, are "resistive-wall" space-charge-wave (SCW) in-

stabilities, ' ' which have been used for amplifying mi-
crowaves. Such instabilities can also occur in solid-state
plasmas, ' but their properties have not been extensive-

ly investigated.
Consider a metal or a doped semiconductor. SCW's are

set up when a static electric field is imposed and the free-
charge carriers, electrons, for example, are modulated by
an ac electric field. An electron stream is created that has
a drift velocity proportional to, and in the direction of,
the dc field. The ac modulating field causes variations in
the electron number density and, as a consequence, creates
SCW's. They arise in pairs, one wave having a phase
velocity greater than, and the other having a phase veloci-
ty less than, the electron drift velocity. This velocity
difference depends on the plasma frequencies, the drift ve-

locities, and the system geometry. '
It has been observed' ' that in the interaction of

SCWs with an adjacent resistive medium, a'mplification
of the slow SCW takes place (resistive-wall amplification).
The question arises of whether the interaction of SCW's
with electromagnetic waves (EMW's) can lead to polariton
amplification. Polariton-dispersion theory provides a
basic approach for investigating such interactions, as was
shown in previous work.

In what follows, results are presented on a theoretical
investigation of SCW's and EM%"s in two contiguous,
semi-infinite semiconductor media, The current direction
is taken to be parallel to the media interface. An infinite-
ly thin insulating layer is assumed to separate the two
semiconductors. The specular-reflection approach of
Kliewer and Fuchs is used to satisfy the electromagnetic

boundary conditions at the interface and to obtain the
dispersion relation. This relation takes into account retar-
dation and spatial dispersion (the wave-vector dependence
of the dielectric tensor). Calculated results are presented
for a two-layer system, both with and without retardation.
The possibilities for mode amplification are explored.

Sturrock's criteria are used for determining whether
or not a mode is amplifying. So-called convective and
nonconvective instabilities occur in plasmas and are la-
beled according to whether or not the signs of the group
velocities of the interacting modes are the same prior to
the interaction. If the group velocities have the same sign,
then the interaction can result in a convective instability
which is an amplifying wave. If, however, the group ve-
locities have opposite signs, the interaction is nonconvec-
tive and not amplifying.

Section II presents the dispersion relation, with retarda-
tion, for the two-layer system. Section III gives numerical
results and discussion. Conclusions are given in Sec. IV.

II. THEORY

In what follows we consider two semiconductor media
containing free-charge carriers that are in contact along a
planar interface and are subjected to a static electric field
parallel to the interface. The dispersion relation for polar-
itons localized at the interface is derived using the
Kliewer-Fuchs procedure, as mentioned above. Calcu-
lated results are presented for several cases of interest.

Specifically, the system consists of one semiconductor
with dielectric function et(k, co) occupying the half-space
z &0 and a second semiconductor with dielectric function
e2(k, to) occupying the half-space z ~0. A static electric
field is taken to be in the y direction, as is the direction of
propagation of the electromagnetic waves.

The approach used here is essentially that used previ-
ously for vacuum-semiconductor systems, ' i.e., the trans-
port equation for an average carrier is linearized (small-
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field approximation) and the elements of the conductivity
tensor are obtained. In the absence of thermal-pressure-
gradient effects, the result is'"

(7 p(k, co)=

(5 p
—k kp) +iv

(Pk~+kV0 )(Pkp+ kVop)

p(p+i v)
(2.1)

where p=co —k Vo Vo is the drift velocity, and k~ is the
a component of the unit vector in the k direction. The
quantities no, q, m*, and v are, respectively, the carrier's
density, charge, effective mass, and scattering frequency.
The dielectric tensor is related to the conductivity tensor
by the relation

4mi
e p(k, co)=e„5 p+ (T p(k, co), (2.2)

where e is the high-frequency background dielectric con-
stant.

Using the specular-reflection approach of Kliewer and
Fuchs, one can obtain the dispersion relation for inter-
face modes in the presence of the electric currents in the
two media from the electromagnetic boundary conditions.
The dispersion relation is found to be

00 T~(I)0= dk,z T(l)T()) (T(1))2
P3' ~ 3'~

OO T~(2)

+ f dkz (p) (z) (z) 2 ~ (2.3)
Tyy T —(Ty, )

where T~~=(co~/c )e~~ —k„T~,=T~=(co /c )e„,
+kzk„and T~=(coz/c2)e~ —kg. Putting the dielectric
tensor components from Eq. (2.2) into Eq. (2.3) and in-
tegrating, one obtains the result

2 a,p,
) e'„'[co, P, (P, +—iv, ) '„e'( co—Vz, /c )]' [co, P, (P, +—iv, )]' (2.4)

where co, =(4~n, q, /m, *e")' is the plasma frequency of
medium s, p, =co —k&Vz, n, is the carrier concentration,
and u, is the decay constant given by

(s)

S (2.5)

For the nonretarded limit, which gives the dispersion rela-
tion for interface SCW s, we take c = ~. In this limit the
dispersion relation is a fourth-degree equation in either kz
or co and, of the resultant four branches, two originate in
medium 1 and two in medium 2, as will be discussed
below.

The uncoupled dispersion relations (i.e., the bulk SCW
dispersion relations in each medium. separately) are given,
in the nonretarded limit, neglecting damping, by

V,0—g
~o

2

s =1~2 (2.6)

where A=co/coo, g= Vok„/coo, coo is a reference plasma
frequency, and Vo is a reference drift velocity. In what
follows, the frequency 0 is taken to be real and the wave
vector g to be complex, i.e., g=g +i)gz

It should be mentioned at this point that the nonretard-
ed dispersion relation for the case in which the two media
are n- arid p-type InSb was discussed some years ago by
Steele and Vural. Our dispersion relation, Eq. (2.4),
reduces to theirs in the limit c—+ao, e' '=e' ' —+1, and
V) =V2~0.

III. RESULTS AND DISCUSSION

A. SC& dispersion in the nonretarded limit
(undamped carriers)

Previous investigations' ' were made of a semicon-
,ductor with a vacuum interface in the presence of a dc
field parallel to the interface. For this system, elec-
tromagnetic surface waves occur that are evanescent in
character. Now consider replacing the vacuum half-space
with a semiconductor having zero drift velocity and
described by a Drude dielectric function. The dispersion
relation in the nonretarded limit for this configuration is
obtained from Eqs. (24) and (2.5) simply by taking one
drift velocity, say V2, equal to zero and by letting c—+ ao.

Figure 1 shows the dispersion results where the parame-
ters coo ——co) ——co2, Vo ——V), and v( ——v2 ——0 were used. The
reduced wave vector g) increases as the frequency in-
creases from zero and becomes infinite at 0= 1/v'2. For
0 & 1/v 2, we have complex-conjugate wave vectors, with
one branch (the slow SCW) showing amplification and the
other coincident branch (the fast SCW) showing damped
behavior. In the case of no carrier damping being con-
sidered here, the slow- and fast-SCW branches have the
arne 0-vs-g) curve for 0 & 1/v 2; however, the inclusion
if damping (see Sec. III 8) separates the two branches. It
hould be emphasized that the SCW's in Fig. 1 have their
lectric and magnetic fields localized at the interface and

are therefore interface modes rather than bulk modes.
In the terminology of Sturrock, the slow-SCW branch

for 0 & 1/v 2 is amplified and is said to exhibit a convec-
tive instability. This behavior is analogous to that
described by Birdsall et al. ' ' for the resistive-wall insta-
bilities mentioned previously.



3826 8 G. MARTIN AND ~AI I-Is 32

0.4 C-C.

10
i

-8
l.4

1

p f labels the fastVo, and +2f r co~=~2=ithout damp gSCW d& pe"i " z.ves in the nonretar e
te wave vectors.

FIG. j.
c.c. the complex-conguga ebranc, sh the slow one, c.c. t e c

or 0~ 1/V 2, the slow. 1 we see that for1d~h gqPand as
vector initia y ecy, t esow-

n increases slaw y.
ith

around, and then
r that increases wi

turns ar , n 1

on the other han, as a

d d ofthFi ure s
d' h 1rres on ing

'g. ' P g
amplification. n a, u

be determined from t e v

1tant
e t,

o drift eloc ty.
S
In this situation t e

su orts a slow and a fastPPo
th . 1t.CW. In obtaining e

V /V =3 andCO~ =N2=COO,

ies e
' f

V =3.
ies below the point o

' . 3 that for frequencies e
ofb hb th te hase velocity o

of branchh h h 1

ium 2. As long as this co
reater t an e

ndition
i e an

' '
between the slow

thhh df 1o
h 1o d 'f 1o-

SCW o
f the medium having t ethe fast SCW o t e m

2.0

1.6-

1.2—

0.8—

0.4

/
/

/
I

/.
/'

I

10 12 14

SCW wave vector vs qs fre uencyFIG. . g a ypr art of the
=6)2=COolimit without amin the nonretarde

' ' t am
V) ——Vp, and V2 ——0.

FIG. 3.
ed limit
V2 =3Vo.

ersion curves in the nonretard-Uncoup e
~r =~2=~o

&
= o~without damping for co

&

——



THEORY OP DISPERSION INSTABII.ITIES ASSOCIATED. . .
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FIG. 4. SC% dispersion curves in the nonretarded limit without damping for co&=My=a)0 V& = Vo and V2 3Vp (soM curve),
V2 ——6 Vo (dashed curve).

city, giving rise to a convective instability.
Figure 4 shows the coupled dispersion curves obtained

by solving Eq. (2.4) for the system of Fig. 3. The a and b
branches still correspond to the slow and fast SCW's in
medium 1. Similarly, branches c and d correspond to the
slow and fast SCW's in medium 2. However, for the cou-
pled case, the complete localization of SCW's to a given
medium does not occur. Instead, the SCW's are localized
at the interface with fields decaying exponentially into
each medium with decay constants specified by Eq. (2.5).

Consider first the case V2/Vi ——3 of Fig. 4. For branch
a, the real part of the reduced wave vector increases near-
ly linearly with frequency, much the same way as in the
decoupled case of Fig. 3. Branches b and c coalesce in the
frequency range 0& Q & 1.9, their wave vectors forming a
complex-conjugate pair. For this degenerate b-c branch,
the real part of the wave vector, gi, increases with increas-
ing frequency. The b-c branch is decoupled for frequen-
cies Q ) 1.9 and the resultant b and c branches have a fre-
quency dependence similar to that shown in Fig. 3.
Branch d has negative values of g'& for Q & 1, crosses the
frequency axis at Q=1 (the plasma frequency), and has
positive values of g& for Q ) l. As this branch crosses the
vertical axis from right to left in Fig. 4, it hybridizes with
the b branch of Fig. 3 and increasingly acquires the char-
acter of the b branch as gi becomes increasingly negative.

Consider now the case V2/Vi ——6 of Fig. 4. The a-
branch behavior is nearly coincident with that of
V2/Vi ——3, except at the lower frequencies. Branches b
and c have complex-conjugate wave vectors for Q& 1.2;
thus, the frequency range wherein branches b and c
coalesce is shorter than is the case for V2/V, =3. In oth-
er words, increasing the drift-velocity ratio decreases the

frequency range of the b cdegene-rate branch. After
decoupling, the b branch for Vz/Vi ——6 approaches that
of Vz/Vi ——3. On the other hand, the c branch after
decoupling moves nearly parallel to the c branch for
Vz/Vi ——3, but is displaced toward smaller wave-vector
values. The d branch for V2/Vi ——6 is also displaced
from the d branch for V2/V, =3. The reason for the rel-
atively greater displacement of the branches associated
with medium 2, as compared with medium 1, is that the
reduced drift velocity of the latter was kept fixed at
Vi/Vo ——1, but the reduced drift velocity of medium 2

was increased from 3 to 6.
Figure 5 shows dispersion results for the case in which

the drift velocity in medium 1 is opposite that in medium
2, namely, V2/V, = —3. This situation corresponds to
carriers of opposite electrical charge. As before, the plas-
ma frequencies of the two media are equal.

In comparing the dispersive behavior shown in Fig. 5
with that of Fig. 4, a number of differences are evident.
Branch a of Fig. 5 is a nearly linear function of frequen-
cy, as in Fig. 4, but lies in the region of negative wave vec-
tors. This is a consequence of carriers moving in opposite
directions. Consider next the b and c branches. They
form a degenerate pair for 0&Q&0.9, a consequence of
the wave vectors being complex conjugates. This degen-
erate b cbranch bend-s back from positive to negative
wave vectors at Q—=0.65. For frequencies Q)0.9, the
b-c branch decouples, with the b branch moving back
across the frequency axis nearly parallel to the d branch.
Note that the frequency range for the unstable b-c branch
is smaller than it is for carriers moving in the same direc-
tion (Fig. 4). In terms of the Sturroek criteria the unsta-
ble branch of Fig. 5 (b-c) exhibits a nonconvective insta-



S. G. MARTIN AND R. F. WALLIS

—1.0 —0.8 —0.8 —0.2 0.2 0.4 0.6 0.8 1.0

FIG. 5. SCW dispersion curves in the nonretarded limit without damping for co& ——co2 ——cop, V~ ———Vp, and V2 =3Vp.

bility, i.e., a nonamplifying instability.
Figure 6 shows the frequency dependence of the abso-

lute value of
~ gz ~, the reduced, imaginary part of the

wave vector, for the degenerate b ebran-ches of Figs. 4

and 5. For all cases,
~ gz ~

is zero for Q=O, increases
with 0 to a maximum, and then rapidly decreases, reach-
ing zero again when the branches decouple. Note that the
maximum value of

~

g'z ~, and hence the maximum value
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FIG. 6. Imaginary part of the SCW wave vector vs frequency in the nonretarded limit without damping for ~& ——co2 ——cop and

V~ ——Vp, V2 ——3Vp (solid curve), V~ ——Vp, V2 ——6Vp (dashed curve), and VI = —Vp V2=3Vp (dot-dashed curve).
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TABLE I. Approximate values of maximum. gain and band-
width vs drift-velocity ratio for the case of no damping with
V&

——Vo and co& ——co2 ——mo.

V2

V(

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
2.0
3.0
4.0
5.0
6.0
8.0
10

(42)max

0.74
0.55
0.46
0.40

0
0.33
0.30
0.28
0.25
0.20
0.17
0.15
0.13
0.12
0.10

0

Bandwidth

(units of co/cop)

0.71
1.4
2.3
3.4
9.0

11
6.0
4.3
3.0
2.0
1.6
1.4
1.3
1.2
1.1

of both slow-SCW amplification and fast-SCW attenua-
tion, is smaller for V2/V~ ——6 than for V2/V& ——3. How-
ever, the maximum value of

~ g2 ~

is nearly the same for
V2/V~ ——3 as it is for V2/V& ———3. For the latter case,
which is not amplifying, the maximum

~ $2 ~

occurs at the
frequency where, in Fig. 5, the degenerate b cb-ranch has

g&
——0, i.e., the SCW's have infinite phase velocity.
The above results indicate that the SCW coupling and

resultant instability are a function of the drift-velocity ra-
tio of the media. Table I shows the effect of the drift-
velocity ratio on parameters characterizing the SCW in-
stability.

From Table I we note that the maximum amplification
of the slow SCW, as well as the maximum attenuation of
the fast SCW, increases with decreasing drift-velocity ra-
tio. This trend continues until V2/V~ ——1, at which point
there is no SCW interaction, i.e., the imaginary part of
each wave vector goes to zero. The bandwidth decreases
rapidly as the drift-velocity ratio moves away from unity.
The frequency at which the maximum in

~ gz ~
occurs in-

creases substantially with decreasing drift-velocity ratio,
as does the cutoff frequency.

In addition to the drift-velocity-ratio effects discussed
above, the effect of media plasma-frequency differences
on SCW instability was investigated. Table II gives some
data on the effect of plasma-frequency variations on the
maximum slow-SCW gain, neglecting carrier damping.
The drift-velocity ratio V2/Vq was kept fixed at 3. The
data of Table II show that the maximum gain increases
essentially linearly with increasing plasma frequency
when co~/coo ——co2/coo. The frequency Il at which the gain
is maximum also increases essentially linearly with plas-
ma frequency.

Keeping the plasma frequency co@ fixed (the plasma fre-
quency of the medium with the higher drift velocity) and

TABLE II. Effect of plasma-frequency variations on the
maximum gain of slow SCW s when carrier damping is neglect-
ed, V& ——Vo and Vz ——3Vo.

coo

I
2
4
2
4
1

1

coo
2 max

0.20
0.39
0.79
0.26
0.35
0.29
0.41

(at max)

1.3
2.6
5.0
2.3
44
1.5
2.1

increasing co~ also results in an increase in gain, as well as
an increase in the frequencies at which the maximum gain
occurs. However, the gain increase is not as great as when
both co& and ~2 are increased. Similar behavior occurs
when col is kept fixed and co2 is increased.

B. SCW dispersion for damped carriers
in the nonretarded limit

Figure 7 presents dispersion curves for the situation in
which carrier damping is taken into account; specifically,
we consider the damping parameter values v~ =v2=0. 1~p.
We take the drift-velocity ratio Vq/V~ ——3 and the plasma
frequencies co& and co2 to be equal.

Consider branch a of Fig. 7, Its linear dependence on
frequency and its relative position remain substantially
unchanged by the imposition of damping (compared to
Fig. 4). Likewise, branch-d dispersion remains essentially
unaffected by carrier damping. The interaction of
branches b and c, however, differs in one noticeable as-
pect from the case in which there is no damping, namely,
the degeneracy of these branches for II & 1.9 is removed
and the wave vectors, though complex, are no longer com-
plex conjugates. Relatively large values of v& and vq were
used to make the removal of the degeneracy evident in
Fig. 7. In the frequency range 0 & 0 & 1.9, the c-branch
SCW (slow SCW) has a negative imaginary part of the
wave vector which corresponds to an amplifying wave.
The b-branch SCW (fast SCW), on the ohter hand, has a
positive imaginary part of the wave vector, corresponding
to an attenuating SCW. The frequency at which amplifi-
cation of the c-branch SCW ceases is 0 -=1.9.

Figure 8 gives the frequency dependence of
~ gq ~

asso-
ciated with the dispersion curves of Fig. 7. Consider first
the c( —) branch which corresponds to the amplified
SCW. Its frequency dependence is qualitatively similar to
that corresponding to Vq/V, =3 in Fig. 6. Quantitative-
ly, the inclusion of damping decreases the maximum gain
and increases slightly the frequency range of amplifica-
tion. The c( —) branch terminates at Q =2, and for 0 & 2
the c(+) branch represents an exponentially attenuating
SCW. Note from the figure that 0 increases rapidly with
increasing

~ gq ~

for the c(+ ) branch.
The a, b, and d branches of Fig. 8 are for SCW's that

are exponentially attenuating in the direction of propaga-
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C. SC% dispersion including retardation

Dispersion results have been obtained when retardation
is taken into account for two media with different plasma
frequencies, but carrier damping is excluded. Making the
plasma frequencies different introduces interface modes
(IFM's). The dispersion relation for interface modes in
the absence of drift currents is

a,
E~ (CO) —CO )

(s} 2

where a, is given by Eq. (2.5) and specifies the decay of
the electric and magnetic fields into medium s. The IFM
dispersion curve is asymptotic to the frequency specified
by co = —,

'
(cot+co2) ~ In Fig. 9 we present the IFM disper-

sion curve for the case e' "=e' ' = 1 1.7 (silicon),
0 & ~coo = 1, and coz ~coo =v 2.

When drift velocities are imposed on the two media, the
IFM becomes Doppler shifted and acquires the character
of a SCW. The introduction of retardation causes an in-
teraction between the Doppler-shifted IFM and elec-
tromagnetic waves leading to Doppler-shifted interface
pol aritons. Figure 10 shows the resulting dispersion
curves obtained from Eq. (2.4) for the same parameters as
Fig. 9, but with drift velocities V&

——0.0015c and
V2 ——0.0005c. For this situation, the interaction leads to
not only an interface polariton (branch 1), but also to
branch d - 1 which is degenerate with complex-conjugate
wave vectors. With increasing frequency, this degenerate
branch moves rapidly toward smal 1 wave-vector values
and finally terminates (see figure insert). A Sturrock
analysis of this degenerate branch reveals that it is an
evanescent wave. It is reminiscent of the behavior investi-
gated previously' of a single current-bearing medium
against vacuum.

The branch-2 interface polariton of Fig. 10 no longer
shows the asymptotic behavior it exhibited in the uncou-

pled case of Fig. 9. Instead, it acquires the character of
the SCW d branch of Fig. 4 at large positive wave vectors.
The SCW branches a, b, and c are essentially unaffected
by the introduction of different plasma frequencies and
retardation. The degenerate b -c branch stil 1 has convec-
tive instability.

Figure 1 1 shows SC%' and IFM interactions where the
carriers in one medium are moving in a direction opposite
to those in the other medium. Recall that Fig. 5 showed
the results for this situation, neglecting retardation and
IFM's.

The a and d branches of Fig. 1 1 show behavior similar
to that of Fig. 5, as does the b cde-generate branch. In
addition, the IFM branch 2 behaves essentially as it does
for the situation shown in Fig. 10. However, there are a
number of features in Fig. 1 1 that are different from their
counterparts in Fig. 10. For example, the b -c degenerate
branch crosses both the 1 and 2 IFM branches for fre-
quencies Q = 1.08. In this crossing there is no evidence of
a SCW-IFM interaction. At 0= 1, the b -c degenerate
branch decouples and, with increasing frequency, the
wave vector associated with the b branch increases. With
increasing frequency the c branch rapidly moves to the
right and then couples with the IFM branch 1, forming
the c- 1 degenerate branch, which quickly moves in to-
ward the frequency axis. For reduced wave vectors g& & 1,
the c- 1 degenerate branch behaves in a way similar to that
shown in the inset of Fig. 10, except that it crosses the Q
axis and moves nearly vertically, .but slightly to the right
of the Q axis.

Table III lists decay constants [Eq. (2.5)] corresponding
to Fig. 10 for selected frequencies. Note that for SCW
branches a, b, and c, the decay constants a

&
and a2 are

identical for all the frequencies considered. This is be-
cause the wave-vector contribution is dominant in Eq.
(2.5). In other words, a& ——a2 ——k». For the SCW d
branch, however, a~&aq&k» for frequencies Q & 1.1. In
this case, the wave vector is not dominant. Finally, for
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FIG. 9. Interface-mode dispersion curves including retardation but without damping for coi =coo~ coz= ~2~oi and V~ ——V2 ——0.
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TABLE III. Decay constants for the retarded case with V&
——0.0015', V2 ——0.0005c, co~ ——cop,

coq= V 2coo, and v~ ——vq
——0. The mode indices correspond to those in Fig. 10.

Mode

1

2
a
b

d

CCX)

COp

(real, imag. )

0.972, 0
0.915, 0
4.22X10, 0
9.03 X ]0, +3.54X 10
9.03X10', —3.54X10'
1.57X10, 0

ca2
COp

(real, imag. )

3.56, 0
3.54, 0
4.22X10, 0
9.03X10, +3.54X10
9.03X 102 3 54X 102

1.57X10', 0

1.2 1

2
a
b
C

4.96, 0
3.94, 0
4.42X10, 0
1.01X103, +3.83X102
1.01X10', —3.83X10'
29.0, 0

6.02, 0
5.22, 0
4.42X10', 0
1.01X10', +3.83X10'
1.01X10, —3.83X10
29.2, 0

1.3 1

2
a
b

d

1

2
a
b
C

d

0.021, 3.83
87.7, 0
4.62X10, 0
1.11X10', +4.09X10'
1.11X10, —4.09X10
0.021, —3.83

1.58X10-', 3.42
1.97X10', 0
4.81X10', 0
1.23X103, +4.29X102
1.23 X 10, —4.29 X 10
1.58X10, —3.42

0.046, 1.72
87.8, 0
4.62X10', 0
1.11X10', +4.09X10'
1.11X10, —4.09X10
0.046, —1.72

3.79 X 10-', 0.143
1 97X10 0
4.81X10, 0
1.23X103, +4.29X102
1.23X10', -4.29X10'
3.79X10-', -0.143

2.4 1

2
a
b
C

d

0, 5.58
1.04X10', 0
6.8X10', 0
2.48X10, +1.44X10
2.48X10', —1.44X10'
0, —5.58

0, 4.41
1.04X10', 0
6.8X10', 0
2;48X10', +1.44X10'
2.48X10', —1.44X10'
0, —4.41

2.5 1

2
a
b

0, 5.83
1.12X10', 0
7.01X10, 0
2.80X10', 0
2.41X10', 0
0, 5.82

0, 4.72
1.12X10', 0
7.01X10', 0
2.80X10, 0
2.41X10', 0
0, 4.72

2.6 1

2
a
b
C

d

0, 6.1

1 ~ 19X10, 0
7.21X10', 0
6.64X10', 0
3.06X10', 0
0, —6. 1

0, 5.0
1.19X103, 0
7.21X10', 0
6.64X10', 0
3.06X10', 0
0, —5.0

needed to determine the practicality of SCW devices util-
izing GaAs-Ga Al& „As heterostructures, prepared by
molecular-beam epitaxy, in which very high mobilities in
the GaAs layer can be attained. One design ' presently
being investigated involves a high electron mobility
transistor (HEMT) —inverted-HEMT structure when the
electron drift velocity in the HEMT channel is greater by
a factor of 2—5 than that in the inverted HEMT channel.

The close proximity of the two electron channels assures
the interaction of the space-charge waves.
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