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Explicit formulas for the calculation of stress are presented based on the stress theorem and the
local-density-functional approximation. Norm-conserving pseudopotentials are applied in a plane-
wave basis for calculations on the semiconductors Si, Ge, and GaAs. Besides the lattice constants
and bulk moduli, complete sets of elastic constants are given, together with the optical I' phonon
frequencies and internal-strain parameter £. Electronic charge density structure factors, deforma-
tion potentials, and strain-induced splittings of phonons are given, as well as the nonlinear third-
order elastic constants. Good agreement with experiment is found throughout, except for persistent

deviations from the x-ray diffraction values for £.

I. INTRODUCTION

Calculation of total energy is a fundamental method
capable of describing ground-state properties of a wide
range of solids. Much of the work in recent years relies
on the local-density approximation®? for exchange and
correlation, where a single-particle Schrédinger equation
is solved self-consistently. The nontrivial problem of
evaluating the total energy to a precision of 10~ or better
has in recent years been the subject of many investigations
using various techniques.’>~% In particular, the pseudopo-
tential technique has been utilized for calculations of lat-
tice constants and phase transitions,’ “frozen” pho-
nons,*” 1% complete phonon-dispersion curves and other
properties,'*!! and elastic properties.!> There are several
reviews of recent work in this area.'3

Notwithstanding the role of total energy as the funda-
mental quantity in density-functional theory and other
theories of interacting many-body systems, the utility of
its derivatives with respect to structural parameters has
been clearly demonstrated in recent years. Firstly, the
“Hellmann-Feynman” theorem'* (which was originally
derived by Ehrenfest!®) gives the force conjugate to atomic
position. The great simplifications arising from direct
calculation of forces are evident, e.g., from recent applica-
tions to phonon properties where many inequivalent
forces can be calculated from a single self-consistent cal-
culation. Accurate results have been obtained using
forces, despite the traditional experience that forces can-
not be accurately calculated.!'® Applications cover, e.g.,
frozen phonons,'® phonon dispersion,'! internal degrees of
freedom in complex crystals,!” and surface reconstruc-
tion. 819

Secondly, the stress tensor in a solid is the derivative of
the total energy with respect to the strain tensor. Recent-
ly, we have derived the stress theorem'? which gives ana-
lytic expressions for the stress tensor (preceding paper,?
hereafter referred to as I). A similar expression was given

32

earlier by McLellan.?! This result is a generalization of
the virial theorem?>? for pressure, and offers together
with the force theorem the complete description of the
equation of state of any finite or infinite system. The de-
tailed interpretation of stresses and forces and their inter-
connection is given in paper 1.

The purpose of the present paper is to investigate a
number of -properties of perfect crystalline solids, which
are particularly convenient to study via evaluation of the
macroscopic stress tensor together with forces and total
energy. The results could in principle be obtained through
extensive calculations of the total energy versus distortion
parameters with subsequent fitting and differentiation.
However, dramatic gains in efficiency are achieved with
the present method which enables calculations that would
otherwise be intractable.

The most straightforward application is the determina-
tion of equilibrium lattice parameters. In the present
study cubic crystals of a fixed symmetry are considered,
and the problem simplifies to the vanishing of the isotro-
pic pressure versus lattice constant.’> This problem is
found to be significantly easier than locating the
minimum of the total-energy curve. In more general crys-
tals neither the unit-cell shape and dimension nor the
atomic positions are given by symmetry, and the optimi-
zation problem involves multidimensional parameters
such as c/a ratios and interatomic distances. In such
cases stress and force become even more powerful tools, as
shown by the recent work!”"** on low-symmetry crystal
structures using the methods derived here.

The evaluation of the elastic properties of solids is
greatly simplified by direct calculations of stress, in the
same way that direct evaluation of restoring forces due to
atomic displacements leads to simplifications.'®!! For an
arbitrary strain in the solid, all components of the stress
tensor may be computed from a single calculation. For
example, harmonic elastic constants are for small strains
defined as the ratio of stress to strain. It is furthermore
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possible to go to large strains where the stresses are very
anharmonic. A related structural property of solids is the
possibility of internal degrees of freedom appearing in the
unit cell when its symmetry is lowered sufficiently by the
strain. An example is the diamond lattice strained along
the [111] axis, where the [111] bond length is no longer re-
lated to the three other atomic bonds. Simultaneous cal-
culations of stress and force enable an efficient solution of
this problem, as demonstrated in Ref. 12 and in the
present paper.

We explore in this paper the calculation of the lattice
constants and a number of properties related to low-
symmetry distortions of crystals, exemplified by the semi-
conductors Si, Ge, and GaAs, using the ab initio pseudo-
potential technique.?>~2" The present calculations include
all three cubic elastic constants cq;, ¢12, and c44, and con-
stitute the first complete sets calculated for any material
with an ab initio method. The paper contains in Sec. I a
formulation of the stress theorem suited for calculations
with plane-wave basis sets, and in Sec. III a description of
the method for ab initio pseudopotential calculations.
Section IV describes the equilibrium structure and charge
density. Section V addresses the harmonic elastic proper-
ties. Another effect of the application of uniaxial strain is
the splitting of states that are degenerate in the cubic crys-
J
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tal. In some cases the splittings can be observed by opti-
cal experiments, as will be considered in Sec. VI for defor-
mation potentials, and in Sec. VII for phonon splittings.
The nonlinear elastic properties of Si under large strains is
the topic of Sec. VIIL

II. RECIPROCAL-SPACE EXPRESSION
FOR STRESS

The local-density-approximation (LDA) expression for
total energy! consists of the single-particle energies (kinet-
ic plus potential energy, or alternatively the sum of eigen-
values) of the occupied states, Hartree electron repulsion,
the exchange and correlation energy, and the ion-ion
Madelung energy. For some calculational schemes, such
as the pseudopotential method employed in the present
work, it is advantageous to express all quantities in re-
ciprocal space where a manageable plane-wave basis set
gives a high calculational accuracy. This method was
described by Wendel and Martin* and explicit reciprocal-
space expressions were given by Ihm, Zunger, and
Cohen®® who also covered nonlocal potentials and
Hellmann-Feynman forces. The expressions were ela-
borated by Yin and Cohen.?®

The expression for the total energy E,, (in atomic Har-

tree units) per unit-cell volume Q is
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where k extends over the first Brillouin zone, G are the reciprocal-lattice vectors, W is the wave function, i denotes the
occupied states for a given Kk, p is the charge density, >, denotes a sum excluding G=0, 7 labels the atoms in the unit
cell, S,(G) is the structure factor, V'L is a local (l-independent) spherically symmetric potential, ! labels the angular
momentum (! =0,1,2,...), AVN! is a nonlocal (I-dependent) correction superposed on ¥, a, denotes the average non-
Coulomb part of V1,2 Z_ is the ionic charge, and ¥ gyaq the Madelung energy of point ions in a constant neutralizing
background.’® Equation (1) may be rewritten by noting that kinetic plus potential energy equals the sum of eigenvalues,
yielding an equivalent expressnon for total energy.?

The average stress o, is derived from Eq. (1) by applying the scaling procedure of Ref. 20, r—(1+€)r. A symmetrlc
strain tensor €,g transforms, to first order, G into (1 —€)G. Since Qp(G) and S,(G) are invariant under scaling, we find
the average stress:
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The explicit forms of the nonlocal and Y gy.4 terms are

given in Appendixes A and B, respectively. This expres- .

sion is essentially the Fourier transform of Eq. (30) of I
with the Coulomb terms grouped into a properly defined
‘form and the ion-electron term explicitly separated into
G =0 term?® involving a,, plus the G=£0 term.
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III. CALCULATIONAL METHOD

The present work employs ab initio normconserving
pseudopotentials of the Hamann-Schliiter-Chiang®® type,
which were derived from all-electron LDA calculations of
the free atom. For Si we use the form derived by Bachelet
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et al3! (employing Wigner correlation), and the potentials
covering H to Pu developed recently by Bachelet et al.*
(employing Ceperley-Alder correlation) are used for Ge
and GaAs. In the latter cases we use the / =2 potentials
as the local potentials, since this is the most consistent
procedure for high angular momenta, and it furthermore
makes the local as well as nonlocal potentials significantly
weaker than with the choice suggested in Ref. 32.

A large number of plane waves (=550) are used in all
calculations, corresponding to #*/2m (k+G)? <24 Ry ki-
netic energy, in order to eliminate computational uncer-
tainties due to cutoffs. This large cutoff is necessary with
the present potentials which are relatively hard core, in
order to achieve the high accuracy needed to compare reli-
ably calculated values of elastic constants, etc., with ex-
perimental values that are known with great precision.
The plane waves of high energy (> 12 Ry for Si, > 16 Ry
for Ge and GaAs) are treated by second-order Lowdin
perturbation theory.’»* The Lowdin-wave cutoffs were
chosen by a test starting from no Loéwdin waves and
lowering the cutoff to the minimum required for repro-
ducing accurately the all-exact-waves calculation. In the
noncubic lattices suffering large strains the basis includes
the same plane waves as in the undistorted crystal, i.e., we
apply an ellipsoidal cutoff instead of a spherical one.

The Brillouin zone (BZ) k integration is performed by
the special-points method of Chadi and Cohen® and
Monkhorst and Pack,?® suitably generalized for distorted
lattices: The set of undistorted k points is strained
[k—(1+€)~'k] and the symmetry of the strained lattice
is used to identify equivalent k points. This procedure as-
sures a smooth transition from high- to low-symmetry lat-
tices. For Si we use the sets of two and ten special k
points in the irreducible fcc BZ, as noted. From these cal-
culations we estimate the error introduced by using the
smaller set of special points to be < 1% for the lattice
constant and ~5% for the elastic constants. Tests show
that going beyond 10 special k points has neglegible effect
on the calculated quantities. For Ge and GaAs we have
used only two special k points, since their pseudopoten-
tials require a larger numerical effort than the one used
for Si.

Self-consistency is achieved with a simple mixing-
coefficient scheme®® (with a@=0.5). A very good initial
guess for the screening in a distorted structure is given by
adding the screening potential plus the difference in ionic
potentials (screened linearly) from some reference struc-
ture whose self-consistent screening potential is already
known. Five self-consistent cycles are then usually suffi-
cient to converge total energy, force, and stress to within
10~3 eV, 10~% dyn, and 10~3 kbar, respectively. When
evaluating expressions in succeeding cycles of self-
consistency, it is important that all quantities refer to the
same cycle. For example, when using the sum of eigen-
values in a modified version of Eq. (1),® the input poten-
tial energy should be subtracted and the output potential
energy added to the sum of eigenvalues.

A consistency check has been performed by comparing
the pressure P calculated from Eq. (2) with the derivative
—0E /39, obtained from values of E,(2) calculated
from Eq. (1). It follows from the derivation of Eq. (2)
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that these quantities should be equal if the basis set is held
fixed for the calculations at different volumes. This holds
even if the basis is not complete. In our case this means
that the finite set of reciprocal-lattice vectors used in each
calculation is specified by the same set of integers times
the primitive vectors of the reciprocal lattice. To deter-
mine the derivatives we fit the calculated energies with
the empirical Murnaghan equation of state,>’

—1/B'

& ) (3)

Qo

BI
14P—
* B

where g denotes the equilibrium volume, B is the bulk
modulus, and B’ its pressure derivative 0B /dP. With a
constant number of plane waves corresponding to
| k4G |2<32(27/a)* (=12 Ry for a near the equilibri-
um value) and two special k points, E;, and P were cal-
culated for Si for several lattice constants between 5.25 A
and 5.60 A. Fitting with Eq. (3) leads to the result that
E. and P agree to within the numerical accuracy of the
calculation, since, for example, the derived lattice con-
stants are 5.3697 and 5.3695 A, respectively.

On the other hand, if the basis set is not complete and
is different for different volumes, the slope of the calcu-
lated energy versus volume will not equal the pressure
given by Eq. (2). For example, with a constant energy cut-
off of 12 Ry for all lattice constants, the equilibrium lat-
tice constants deduced from E,, (a=545 A) and P
(a=5.36 A) differ by 2%, since the number of plane
waves varies significantly with the lattice constant. A
constant-energy cutoff may be the physically most realis-
tic one, and 2% uncertainty in lattice constant may be
sufficient in certain cases,” but for elastic properties
greater accuracy is needed, however. For example, the
bulk modulus B has an uncertainty AB/B
=3(0B/0P)(Aa/a), which is an order of magnitude
larger than the fractional error in a, since 0B /0P ~4.
With the cutoff of 24 Ry used in the work described
below, the basis set is sufficiently near completeness that
the difference Aa/a is reduced to <0.2%. We believe
this is a good estimate for our numerical uncertainty in a,
so that at this cutoff the corresponding uncertainty in B is
<3%.

IV. STRUCTURE AND CHARGE DENSITY
' OF Si, Ge, AND GaAs

The equilibrium structure is the diamond structure for
Si and Ge, and the zinc-blende structure for GaAs, as was
verified in recent theoretical work.?3® With the given
structure as the only input, we have calculated the lattice
constant a using the stress expression Eq. (2). A first cal-
culation of pressure at a guessed lattice constant permits a
very good final estimate of a using an estimated bulk
modulus. Two calculations of pressure near this value
give by linear interpolation the final lattice constant where
P =0, as well as the bulk modulus from the slope of pres-
sure. The results are given in Table I, showing good
agreement with experiments. The deviations are state-of-
the-art accuracy, and are believed to be due mainly to the
local-density approximation, since our results agree well
with all-electron linear-muffin-tin-orbital—atomic-



32 STRESSES IN SEMICONDUCTORS: 4B INITIO. ..

3795

TABLE I. Lattice constants a, bulk moduli B, elastic constants c;; of Si, Ge, and GaAs. The “bare”
elastic constant c$} [cf. Eq. (9)], the optical I'-phonon frequency, and the internal strain parameter ¢.

Si Ge GaAs

Calc. Expt. Calc. Expt. Calc. Expt. Units
a 5.400 54312 5.59 5.65% 5.55 5.6422 A
B 0.93 0.992° 0.72 0.768° 0.73 0.784° Mbar
cn 1.59 1.675° 1.30 1.315° 1.23 1.223¢ Mbar
c12 0.61 0.650° 0.45 0.494° 0.53 0.571° Mbar
Caq 0.85 0.801° 0.63 0.684° 0.62 0.600° Mbar
e 1.11 0.77 0.75 Mbar
or 15.64 15.68¢ 9.05 9.11¢ 8.09 8.187¢ THz
& 0.53 0.73(4)8 0.44(2) 0.72(4)* 0.48(2) 0.76!

2J. Donohue, The Structures of the Elements (Wiley, New York, 1974).
°H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); H. J. McSkimin and P. Andreatch, Jr., ibid. 35, 3312

(1964).

°C. W. Garland and K. C. Park, J. Appl. Phys. 33, 759 (1962).

9T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
°G. Nilsson and G. Nelin, Phys. Rev. B 3, 364 (1971).

fA. Mooradian and G. B. Wright, Solid State Commun. 4, 431 (1966).

8References 50 and 51.

hC. S. G. Cousins, L. Gerward, K. Nielsen, J. Staun Olsen, B. Selsmark, B. J. Sheldon, and G. E. Web-

ster, J. Phys. C 15, L651 (1982).

iC. N. Koumelis, G. E. Zardas, C. A. Londos, and D. K. Leventuri, Acta Crystallogr. A 32, 84 (1975).

sphere-approximation (LMTO-ASA) calculations.’® The
present results for a,B also agree with other pseudopoten-
tial calculations to within calculational uncertainties due
to plane-wave cutoffs and slightly different pseudopoten-
tials,2%-38:40

The electronic charge density p is itself a physical ob-
servable which can be studied by x-ray or y diffraction. It
is, however, necessary to add the core density to the
valence pseudodensity before performing comparisons.
One possibility is simply to add the core density from an
all-electron LDA calculation of the free atom, but this
scheme is not exact when applied to the free atom itself.
We suggest a scheme which assumes only the frozen-core
approximation: A deformation density is defined as the
solid pseudodensity, pig,ps» minus the density of overlap-
ping neutral pseudoatoms, paiom,ps- This density describes
all effects of forming a solid out of free atoms, provided
the atomic cores are frozen, in which case it should be
identical to that from an all-electron calculation. Then
the total solid charge density is obtained by adding over-
lapping all-electron atoms, paom, i-€.,

Psolid =Patom + (Psolid,ps _patom,ps) . 4)

We believe this to be the most consistent scheme within
the pseudopotential approximation.

Figure 1(a) gives the total charge density of Si in the
plane of the zigzag chain along [110], using an atomic
s%p? configuration. A double-peak or dumbbell structure
is seen in the bonding region, which is present also in the
valence pseudodensity (not shown). This is solely a
geometric effect due to overlapping atoms, however, as is
seen from Fig. 1(b) which displays the deformation densi-
tY Psolid,ps—Patom,ps Almost spherical bond charges are
found to cover large regions around the atomic bonds,
representing an increase of up to 50% in the charge densi-
ty relative to overlapping free atoms. The bond charge is

accumulated from the back-bond region in particular, as.
well as from the interstitial “holes” in the diamond lattice.
The small accumulation in the top center of Fig. 1(b) is
due to another perpendicular atomic zigzag chain. Figure
1 thus reveals the well-known effect of covalent bonding:
Charge moves to the interatomic sites to screen the ionic
Coulomb repulsion. A similar picture is found for Ge and
GaAs.

The x-ray form (or structure) factors Fg can in many
cases be related to the total electron density.*! In the adi-
abatic and harmonic approximation the relation is
Fg=p(G)exp[ — W(G)], where the exponential denotes

FIG. 1. (a) Total charge density [cf. Eq. (4)] of Si at the
equilibrium volume, displayed in the (110)-(001) plane which
contains a zigzag atomic chain. The thick contour indicates the
average valence-electron density (eight electrons per cell), and
the contour steps are 20% hereof. (b) The deformation density
(Osolia, ps —Patom,ps)- The thick contour denotes zero, and the steps
are 10% of the average valence-electron density. Dashed con-
tours correspond to negative values.



3796

the Debye-Waller factor. When the crystal consists of a
single species of symmetry-related atoms (such as in the
diamond structure), the Debye-Waller factor is deter-
mined by ‘the atomic mean-square amplitude of vibration.
This is also the case when p(G) is assumed to consist of
overlapping free-atom densities, an approximation whose
quality increases for longer G vectors whose Fg are more
sensitive to the details of the atomic cores. For the
present crystals, Si and Ge Debye-Waller factors are given
at high temperatures (7 >>®p /6) in terms of the Debye
temperatures ®p.*>* The case of GaAs requires some
approximation for deriving p(G) from experimental Fg.
We have taken the average Ga and As mean-square am-
plitudes (which are very similar)*’ in the Debye-Waller
factor.

Table II lists the value p(G) given by Eq. (4), together
with experimental p(G) obtained from Fg by dividing by
the Debye-Waller factor. For GaAs the complex phase
angle of p(G) is also listed. The deviations are of order
1% for short G vectors increasing to 3% for the longer
ones. The core is less accurately described than the
valence electrons owing to the pseudopotential as well as
local-density approximations. The present results agree to
within a few percent with those of Raccah et al *
Zunger,* Yin and Cohen,?” and Wang and Klein.*¢

V. ELASTIC PROPERTIES OF Si, Ge,
AND GaAs

Calculation of the full stress tensor is a method ideally
suited to the derivation of elastic constants. The sym-
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metric elastic-constant tensor has one to six independent
elements, depending on the crystal symmetry. These can
easily be determined from the stress calculations described
here. To find the same information from the total energy
would require extensive calculations. The c¢;; and cj,
elastic constants can be found from the stress-strain rela-
tion with the application of an €, strain. (The Voigt nota-
tion is used, i.e., 11—1, 222, 333, 23—4, 13—5,
12——>6, thus €11=€1, €x3= %64, O11=01, and 033=04. See,
e.g., Ref. 47.) This strain scales the x dimension by
(1+¢€;) while maintaining the y and z dimensions. By
symmetry there are no internal displacements in the
present lattices for any €;. For small strains the harmonic
approximation defines the relations c¢;,=0/€,
c1p=0,/€; with the strains and stresses depicted in Fig.
2(a).

With a strain of €;= —0.004 we obtain the c; and ¢,
given in Table I. The differences from experiment are
—6% for Si, and up to —9% for Ge and GaAs. For Si,
we used 10 special k points (20, in the strained crystal),
whereas for Ge and GaAs only two (three, respectively)

~ special k points are used, resulting in slightly lower accu-

racy as estimated above. These numbers agree well with
the independently calculated bulk moduli
B =(c;;+2¢1)/3. The shear modulus 5(cq;—cy,) was
given previously for Si by Wendel and Martin* (0.54
Mbar), and for Si (0.54 Mbar) and Ge (0.37 Mbar) by Yin
and Cohen,?” by calculating the total energy under large
volume-conserving strains and fitting the energy curve
with an assumed equation-of-state, in reasonable- agree-

TABLE II. Fourier components p(G) (in electrons per unit cell) of the total charge density of Si, Ge,
and GaAs at their equilibrium volumes. The atoms are at positions *(1,1,1)a /8. Experimental data
from x-ray and ¥ diffraction, divided by the Debye-Waller factor. For GaAs is given |[p(G)| and 6g
in degrees, where p(G)= | p(G) | exp(iBg). The experiment measures only |p(G) |, and the table indi-
cates this absolute value. (Dashes indicate values that are not available.)

Si Ge GaAs
G Calc. Expt.»? Calc. Expt.° Calc. b Expt.¢
111 —15.12 15.25 —38.80 39.43 38.78 —178 39.4
200 0 0 1.48 —90 —
220 —17.26 17.43 —47.10 47.46 46.94 180 47.3
311 —11.31 11.43 —31.14 31.37 31.02 178 31.6
222 0.341 0.382 0.280 0.277 1.30 79 —_—
400 —14.83 15.03 —40.32 40.51 40.09 180 41.3
331 10.17 10.35 27.26 27.72 27.10 2 28.1
420 0 0 '1.45 90 —
422 13.31 13.55 35.67 36.11 35.42 -0 36.9
333 8.99 9.19 24.15 24.51 24.00 -3 24.9
511 9.03 9.20 24.17 —_— 24.01 3 25.0
442 —0.0231 —0.0057 1.56 —90
622 —0.0053 0.0013 1.51 —90

2R. Teworte and U. Bonse, Phys. Rev. B 29, 2102 (1984), reduced with the ®, =528(1) K of P. F. Price,
E. N. Maslen, and S. L. Mair, Acta. Crystallogr. A 34, 183 (1978).

YFor the F(5,), see R. W. Alkire, W. B. Yelon, and J. R. Schneider, Phys. Rev. B 26, 3097 (1982); for
the temperature dependence of F(44;) and F(ep), see J. Z. Tischler and B. W. Batterman, Phys. Rev. B

30, 7060 (1984).

°T. Matsushita and K. Kohra, Phys. Status Solidi B 24, 531 (1974), reduced with the ®p,=290(5) K of
B. W. Batterman and D. R. Chipman, Phys. Rev. 127, 690 (1962), and with Af’'= —1.31.

9T. Matsushita and J. Hayashi, Phys. Status Solidi A 41, 139 (1977), reduced as described in the text us-
ing ®@g,=278(10) K and ®,,=237(10) K from O. H. Nielsen, F. K. Larsen, S. Damgaard, J. W. Peter-
sen, and G. Weyer, Z. Phys. B 52, 99 (1983), and with Afg, = —1.354, AF,, = —1.011.
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FIG. 2. Perspective view of cubes (dashed lines) deformed by
strains to take new shapes (solid lines). Thick arrows indicate
the resulting directions of stress exerted by the solid. (a) A
strain €; <0 along [100] resulting in o and 0,=0; stresses. (b)
A strain €,=€s5=¢€4<0 along [111] resulting in a stress in the
same direction.

ment with the present results.

The calculation of the elastic constant ¢4y is inherently
more complicated than that of ¢;; and cj;. A strain
€,=€5=¢¢ along the [111] direction [Fig. 2(b)] of a zinc-
blende lattice makes the [111] atomic bond inequivalent to
the other [111] [111], and [111] bonds. The atomic posi-
tions in the unit cell are no longer completely determined
by symmetry, and a static displacement of the sublattices
(the k=0 optical T" phonon) is allowed. Kleinman*® de-
fined an internal strain parameter { such that the value
&=0 corresponds to a perfect strain of atomic positions:
r—(1+4e¢e)r. This is an elongation of the [111] bond by
€,aV3/4 and of the other bonds by 1/3(e,aV'3/4). An
actual elongation of the [111] bond of magnitude
(1—&)eqaV'3/4 defines £=1 as corresponding to rigid
bond lengths of aV'3/4. In practice ¢ is expected to fall
in the range 0 < < 1. The value of the internal strain pa-
rameter is important for many properties and has been the
subject of theoretical*®*® and experimental®®’! work. See
discussion in Appendix C. (For piezoelectric zinc-blende
lattices, such as GaAs, it is necessary to specify the elec-
trical boundary conditions. Here we calculate ¢4y and §
for vanishing macroscopic electric fields, which is the
same definition of internal strain parameter as in Ref. 49.
We do not here consider the piezoelectric effect which re-
quires the inclusion of macroscopic fields.)

In order to obtain values for &, ¢4, and wr (the optical
I-phonon frequency) the total energy of the distorted
crystal can be analyzed within the adiabatic and harmonic
approximations, where the energy increase per unit cell
due to displacements u, of the atoms 7 in the unit cell,

and a macroscopic strain € is given by

AE =+ 3 ud(r,7)u,4+Q 3 uD(r)e+ 3 QecVe .

77 T
(5

The force-constant matrix for atomic displacements is
denoted ®(1,7'), D(7) is related*® to the third-rank inter-
nal strain tensor, ¢‘? is a fourth-rank tensor which gives
the elastic constants in the absence of internal strain. Q is
the volume of the unstrained unit cell. Tensor contraction
is understood throughout. Thus the restoring force on an
atom is

F(r)=— ZCD(T,T’)u,./——QD('r)e , 6)

and the average macroscopic stress is

o=SuD(r)+c%%. M

The form of tensors in a cubic crystal are given by, e.g.,
Nye,*” and we find for a relative atomic displacement
u=u(1,1,1) along the [111] bond and a strain
€= %6‘4(1-—-5,15) the force +F(1,1,1) on the two atoms,
where

F=9®

;—Z—e4+u (8)

The force constant ® equals pw¥, where p is the reduced
mass of the two atoms, and wrp is the frequency of the
transverse optic phonon at the I" point. The stress is simi-
larly given by o,=04(1—8,p with

gy=cile+QTIesTu ©)
where ¢{3 denotes the elastic constant that would appear

in the absence of internal displacements. For a given
value of €4, the actual physical displacement u is defined
by F=0, so that the internal displacement u equals
—&a /4¢€4. Inserted into Eq. (9), this gives the stress-strain
relation

2

O4= Cﬁ)——ﬂ_l‘b €4=C44€4 , (10)

a
%

which defines the physically measured elastic constant
C44.-

Two independent calculations now suffice to determine
or, Cc4, and §. (1) With €,=0 and a small relative dis-
placement u =uV the force F'! determines o, from
®=FV/yV  and the stress oy’  determines
£=(4Q/a)0$V/FV. (2) With a small €’ and u =0, the
stress o) determines ¢) =o' /e, and the force F?
provides an independent calculation of § as
4y VF? /g€ FD, Thus the two force calculations deter-
mine § without necessarily calculating stress.

Our calculations are performed with u‘!/a =0.002
and e{?’= —0.004, respectively, and the results are given
in Table I. The phonon frequencies are within 1% of ex-
perimental values, and are in good agreement with previ-
ous calculations.’”>® The deviations from experimental
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c44 are of similar magnitude as for B, c; i and cy,. The
values of ¢4, are approximately 80% of c., showing that
accurate calculations of the internal strain § are crucial to
the determination of cy4, since ¢ enters Eq. (10) as £2
The two independently calculated values of § are con-
sistent within < 1% for Si and < 5% for Ge and GaAs,
and the average values are given in Table 1.

The present theoretical values for { show interesting
differences of 30—40% from those determined by
analysis of two recent x-ray diffraction experiments by
D’Amour et al.’® and by Cousins et al.’! We believe this
is much larger than the calculational uncertainties in view
of the accuracy obtained for all other quantities, including
or and cy44. Furthermore, the deformation potentials con-
sidered in Sec. VI lend independent experimental and
theoretical support to the present values. Appendix C
considers different theoretical approaches and discusses
some possible effects upon the internal strain parameter
due to nonlinearities and anharmonicity. We find that all
theoretical results support the present results and that our
analysis indicates that the corrections to the present
values of £ are small. Thus there persists the difference
from experiment, which was also pointed out in Ref. 12.
It could be speculated whether in the experiments the very
low x-ray intensity of the (006) reflection is affected by
multiple-scattering or extinction effects, or whether
nonuniform stresses play a role. These points might be
addressed in future experiments.

The charge densities of uniaxially strained crystals re-
veal interesting information on how electrons as well as

FIG. 3. Si with a strain €;=—0.03. The function plotted is
the deformation density of strained Si minus the deformation
density of unstrained Si, after the strained crystal has been
brought to the scale of the unstrained crystal. Contour steps are

0.2% of the average valence-electron density, and dashed con-

tours indicate negative values.

nuclear positions respond to macroscopic strain. We con-
sider first a strain along [100] in Si, with €; chosen to be
—0.03. Firstly the deformation density is constructed,
and secondly this function is brought to the same scale as
the undistorted crystal. Thirdly the deformation density
of undistorted Si is subtracted. Thus Fig. 3 displays the
solid’s response to strain, less the term from rigidly dis-
placed atoms. This response is to first order proportional
to €, and it is therefore quite small. However, we see
clearly that the regions at roughly the midpoints between
the bond charges experience a significant accumulation of
charge, screening the approaching bond charges of the
strained lattice. Also, a slight enhancement of the bond
charges accompanies the decrease in interatomic distance.
A strain applied along the [111] axis in Si gives a quite
different picture. Figure 4 displays the total charge densi-
ty for a large strain €,=—0.03 (with ;= —0.0073 and
£=0.57). Due to the internal strain it is not meaningful
to subtract densities of the undistorted crystal, as was
done for the [100] strain. The figure shows a relative in-
crease of the bond charge on the bond oriented along
[111] and a decrease of the bond charge along [111] (and
its equivalents), compared to Fig. 1(a). To measure this
charge transfer we have integrated the valence pseudo-
charge contained within spheres of diameters equal to half
the bond lengths. Although such spheres do not uniquely
define bond charges, they do permit qualitative results.
Subtracting the overlapping atom density, we find 0.1063
and 0.1003 “‘surplus” electrons in the left- and right-hand
bond charges in Fig. 4, respectively. The undistorted den-
sity of Fig. 1(b) contains 0.1020 surplus electrons in every
bond charge. Thus the three weakened bond charges are
roughly compensated by the strengthened fourth bond

FIG. 4. Si with a strain €= —0.03. See caption of Fig. 1(a).
The left-hand bond is oriented along [111].
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TABLE III. Terms in the elements of the stress tensor (in units of kbar) for Si at the theoretical lat-
tice constant (Table I). The columns give results for undistorted Si, and with strains €; along [100], and

€,=€s=¢€g along [111].

€= —0.004 €,= —0.004
Undistorted £=0.51
oy Ao(«cyy) Aoy(xcyp) 04( < Ca4)

Kinetic 2243.83 16.32 11.52 2.99
Ion-electron 1452.45 24.27 4.75 —17.61
Hartree 196.06 —1.79 1.19 2.40
Ewald —3118.06 —28.37 —11.09 5.22
Exchange-correlation —774.10 —3.89 —3.89 0
Total 0.18 6.54 2.48 3.00

charge around each atom, although other charge transfers
are evident from Fig. 4 as well. We find that bond
charges adjust to screen approaching ions, a picture that
holds also for an optical I'-phonon displacement which
has the same symmetry as the lattice strained along [111].
The same picture was previously found for the TO(T)
phonon by Wendel and Martin,* Yin and Cohen,?’ and
Resta and Baldereschi.*?

It is interesting to break down the stresses into separate
contributions according to Eq. (2). This is given in Table
III for oy and 0,=07 resulting from an €, strain, and for
o4 resulting from an €, strain. For both o; and o, the
Ewald term is negative, indicating the instability towards
collapse that results from the attractive ion-background
interaction. The negative contribution to the shear oy —o0,
is a consequence of the strong repulsion between the
nearest neighbors. The increase of kinetic energy results
from the compression and is greater in the 1 or x direc-
tion. The ion-electron interactions are positive and are the
most important terms in stabilizing the solid against
shear, i.e., in making o;— o, positive. This latter effect is
a clear manifestation of the directional covalent bonding
which is necessary for the shear stability of the diamond
structure.

The contributions to the stress have very different char-
acter for the off-diagonal shear stress o4. The signs of
each term except the kinetic one is opposite to that for the
other shear stress o;—o0,. We believe that this qualitative
difference results from the inequivalence of the bonds and
the associated internal strain in the case of o, stress. The
Jbalance of the repulsive nearest-neighbor ion-ion terms
and the bonding electronic terms is different leading to
different individual contributions. The total is, neverthe-
less, comparable. It is interesting to note that in this case
the negative ion-electron stress is almost exactly compen-
sated by the Ewald and Hartree repulsion so that the total
stress is close to the value of the kinetic stress.

VI. DEFORMATION POTENTIALS IN Si

The indirect optical gap of Si occurs between the
valence-band maximum at k=0 (I';s state) and a
conduction-band minimum near the X point.>* Applica-
tion of strain shifts and sometimes splits these states. To
first order in the strain this effect is described in terms of
deformation potential parameters, as discussed in detail by
Laude, Pollak, and Cardona.’® All parameters may be

found by applying [100] and [111] strains. The present
work considers the splitting of the I',s state, yielding the
b, d, d’, and d, deformation potentials. The spin-orbit
interaction can be neglected without causing any prob-
lems, since it is relatively insensitive to the applied
strain.>®> Although the local-density eigenvalues do not
represent well the physical energies (see discussion of
Sham and Schliiter™®), the fractional errors are small rela-
tive to the overall scale of bandwidths and we can expect
the deformation potentials to be accurate on the level of
order 10%, to which they are known experimentally.

The definitions of Laude et al. lead to the following ex-
pressions for the I',s splitting:

AE1=3p(e;—¢,) ,
AEM"=313de,

(11a)
(11b)

for [100] and [111] strains, respectively, thereby defining
b and d in the absence of spin-orbit splitting. Due to the
internal-strain degree of freedom, d may be decomposed
ing(s) a pure-strain ({=0) part d’ and a phonon part d,
as

d=d'—+¢&d, ,

with & defined as in the preceding section.

With a [100] strain €;= —0.03 (using two fcc special k
points) we calculate b in good agreement (Table IV) with
the optical-absorption experiments of Laude et al.3> A
[111] strain €;_¢g= —0.004 and €;_3;= —0.001 and several
values of § give the d, d’, and d, in Table IV. The linear-
ity assumption of Eq. (11c) is well fulfilled. Independent
calculations have recently been performed by Christen-
sen’® using the relativistic LMTO-ASA method both with
and without spin-orbit interaction (Table IV). References
to earlier work may be found in that paper. Although the
two methods solve the local-density Schrodinger equation
by different methods, very close answers are found for b,
and for d with values of § around 0.5, whereas d differs
somewhat. Christensen does not calculate § directly, but
in view of the experimental d values (Table IV) he con-
cludes that {~0.4—0.6. If the experimental value of
£=0.73 (Table I) is assumed, the calculated d will be
about —7 eV, in sharp disagreement with experimental d.
Thus the experimental deformation potentials are found
to support a value of { close to the present theoretical
value of 0.53, rather than the experimental £ of Refs. 50
and 51.

(11¢)
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TABLE 1V. Band-splitting parameters, or deformation-
potential parameters, of Si [cf. Eq. (11)] in units of eV. The
values of d correspond to the internal strain § indicated in
parenthesis. Furthermore, the optical I'-phonon-splitting pa-
rameters S0 and 511, and mode-Griineisen parameter ¥ [cf.
Egs. (12) and (13)]. .

Present work Christensen® Expt.
b —2.28 —2.270 —2.10(10)®
d —5.47 —5.29 —4.85(15)°
(£=0.53) (£=0.50)

do 29.83 22.7 26.6°

d' —1.52 —2.46 —_

S100 0.131 0.24¢

S —0.90 —0.93(5)¢
y 0.9 0.98¢

2Reference 56.
bReference 53.
°C. Jacoboni, G. Gagliani, L. Reggiani, and O. Turci, Solid State
Electron. 21, 315 (1978).
dReference 57.

“°B. A. Weinstein and G. J. Piermarini, Phys. Rev. B 12, 1172
(1975).

VII. STRAIN-SPLITTING OF THE TO(T")
PHONON

The threefold degenerate optic-phonon modes at k=0
(T") of the diamond structure are split when uniaxial strain
lowers the symmetry of the crystal. One mode is polar-’
ized parallel to the strain and the remaining two are per-
pendicularly polarized. This effect is due to inequivalent
force-constant changes in the three directions. ‘We consid-
er the case of a strain along [100] with phonons polarized
along [100] and [001], respectively, and the case of a
strain along the [111] direction, and calculate the phonons
_polarized along [111] and [112], respectively.

Since the splitting is small (proportional to strain), care
must be taken to minimize the effect of anharmonicity.
By choosing both positive and negative displacements for
strain along [111] the third-order anharmonicity is can-
celed, whereas the fourth-order term is negligible for the
present small displacements. We define the phonon-
splitting parameters s, and s;7; by

(12a)
(12b)

ACO]*:CL)]"[ 100] —-—wr[OOl]:Slooa)r(Gl —6),

Aor=o0r[111]—wor[112]=510r€; ,

respectively, where the brackets denote polarization direc-
tion. A calculation with €,=—0.004 (and €;=—0.001;
two fcc special k points), and one with €;= —0.004 give
the values shown in Table III. The value s;;; is in good
‘agreement with the optical data of Chandrasekhar et al.,”’
but the s,qg is only one-half of the experimental value.

In addition to the splitting, a shift Aw; of the center of
gravity of the three phonon modes occurs owing to the
hydrostatic component of the strain. The first-order shift
is

Aw, = —3yore, , : (13)
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where y defines the mode Griineisen parameter. Of
course, this parameter can be most easily calculated by
changing the volume and this has been done by Yin and
Cohen.”” Here we extract this information only as a
check on our present lower-symmetry calculations. The
strain €; is to first order given by c4€;/3B. From
€,=—0.004 we find ¥ =0.7, and from €,=—0.03 we find
v=0.9. We estimate these values to be calculated to
within ~20%, most accurately for the strain €,=—0.03.
This value agrees satisfactorily with experiment (Table
IV), and with the more accurate calculation by Yin and
Cohen?® which was aimed at obtaining .

VIII. NONLINEAR ELASTIC PROPERTIES

Elastic properties beyond the harmonic approximation
are conveniently described by the stress method. For

large strains it is customary to Taylor-expand the total en-

ergy using Lagrangian strains 7, with the coefficients
thereby defining higher-order elastic constants.’® If € is
the usual strain tensor, 7 is defined by

Both ¢ and 7 are symmetric (rotation free). The Lagrang-
ian stress 2,3 =0E o4 /07,g is defined from the usual stress

OaB by
t=det(1+€)X1+€)"lo(l+e) . (15)

We consider two types of large strains. Firstly, a strain
€; which scales only the x direction of the crystal, leading
to the fourth-order expansion of stress:

(16a)
(16b)

1 2 1 3
ti=cym+zcmM+ s’
s 1 2, 1 3
L=ty=cpMm+3C12M+cCn12M »

where =€, + -;-e% Secondly, for a combination of strain
along the [111] direction (€;=€5=¢€¢) and a volume scal-
ing (€; =€, =€), the third-order expansion of stress is

ty=ty=ty=(cy; +2¢ 1)1+ 3(c111 +6¢112+2¢123)7]

+ 3(Craa+2¢166)15 » (17a)

TABLE V. Higher-order elastic properties of Si. Third- and
fourth-order constants, pressure derivative of bulk modulus,
0B /9P, and rates of change of internal strain { with macroscop-
ic strain stains. Experimental data: H. J. McSkimin and P. An-
dreatch, Jr., J. Appl. Phys. 35, 3312 (1964).

Calc. Expt.
Cii1 —-15 —8.25(10) Mbar
Ci12 —4.8 —4.51(5) Mbar
C123 =0 —0.64(10) Mbar
C1as+2C166 —5.8 —6.08(20) Mbar
Cas6 —0.8 —0.64(20) Mbar
0B /3P 3.8 4.15
C1i11 ~0 —_— Mbar
C1112 32 —_ Mbar
64‘/861 —4.5 —
35 /0€s —1.3 —_
BE/3€4 | expr —2.7 —




TABLE VI. Total energy and pressure of Si as a function of
lattice constant (using 10 fcc special k pgints) relative to the
value of E,,;= —215.6638 ¢V at a =5.400 A.

a (A) AE,, (eV) P (kbar)
5.40 . =0 =0
5.30 0.0453 59.6
5.20 0.1774 135.1
5.10 0.4099 229.8
5.00 0.7625 347.5
ty=ts=te=CaaNa+(Craa+2C166)M1Ma+Cas6M4 - (17b)

The pressure derivative 0B /3P of the bulk modulus B is
from Eq. (17a) given by

aB/8P=——(0111+6c112+2c123)/9B . (18)

First, we calculate energy and pressure for Si, using 10
fcc special k points, as a function of lattice constant
(5.25 <a <5.60 A). This corresponds to 7140 and 17,=0
in Eq. (17), and fitting yields B =0.95 Mbar in good
agreement with Table I, and 0B /9P as given in Table V.
The value differs slightly from Ref. 20, which used the
equation-of-state Eq. (3) instead of Eq. (12). The actual
values of E,, and P are interesting both for studying
phase transitions,'”"?* and for comparison with other cal-
culations, and the values are listed in Table V1.

Second, the o and 0, =03 stresses are calculated (using
the equivalent of two fcc special k points) for a uniaxial
[100] strain with —0.1 <€; < + 0.03. Using Eq. (16) the
third-order elastic constants c¢;;; and c;;;, and the
fourth-order ones c;y; and cq13, are found. Fairly good
agreement (< 10% error) with experiment® is found for
ci11 and ¢y, whereas ¢y;1; and ¢y, have not been mea-
sured, to our knowledge. From Eq. (18) the constant ¢ ;3
can now be deduced, but with the present accuracy we can
only conclude that ¢;53~0. Experimentally, c,; is close
to zero (Table V).

Third, the 0y=0,=03 and 04,=05=0y stresses are cal-
culated for [111] strains with —0.1<e€4< + 0.03, and
61=—1+(1—5€5)'? so that 1;=0. We define ¢ for
large €4 as above, {=4u /(ae,) [cf. Egs. (8)—(10)]. For
each €, the internal strain parameter { is optimized to
yield zero forces on the atoms. With Eq. (17) the con-
stants c144+2c166 and cys¢ are derived (Table V), with
fairly small deviations from experimental values. We did
not calculate c¢44 and c¢¢ individually, although it can in
principle be done by choosing suitable strains yielding
other linear combinations of these constants.

In Fig. 5 are plotted the Lagrangian stresses as func-
tions of Lagrangian strains, corresponding to the above
described calculations. The internal strain parameter &
derived by the above procedure is displayed in Fig. 6
(dashed curve), showing significant anharmonicity at large
strains. An ideal experiment applying uniaxial pressure
along [111] will yield strains different from the ones used
above, however. The stress tensor will be o,5=P/3 for
all a,, where P is the external uniaxial pressure, corre-
sponding to zero stress in the directions perpendicular to
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FIG. 5. Lagrangian stresses [cf. Eqgs. (16) and (17)] as func-
tion of Lagrangian strains [cf. Eq. (14)]. The V denote the iso-
tropic pressure-volume relation [Eq. (17a)]. The @ denote ¢,
stresses, and M denote ¢, stresses for [100] strains [Eq. (16)].
The O denote t, stresses, and O denote ?, stresses for [111]
strains [Eq. (17)].

[111]. For a given €4, this requires optimizing the internal
strain § as well as the macroscopic strain €;. Such calcu-
lations show that the volume of the crystal is further de-
creased, in good agreement with Eq. (17) and with the
elastic constants in Table II, and that { increases more
rapidly as displayed in Fig. 6 (solid curve). Fitting the
two curves in Fig. 6 with a polynomial quadratic in €; and
€, yields the rates of change 3¢ /¢, for €,=0 and 3¢ /0¢,
for €;=0. The rate of change that would be seen in an ex-
periment corresponds to the solid curve in Fig. 5, where to
first order €,=cy€,/3B. The rate of change of { are
given in Table V, but are unknown experimentally. The
present results predict the § as a function of uniaxial pres-
sure (indicated by the top scale in Fig. 6). )

Thus we find significant changes in § with applied pres-
sure, up to A{~ + 40% at pressures P ~200 kbar. This
increase makes physical sense, since large strains force the
repelling cores to approach each other, and the energy can
thus be lowered by an outward relaxation. However,
current experimental techniques obtain uniaxial pressures

Uniaxial pressure (kbar)
200 150 100 50 0

0.7

Silicon

.
.
e

0.6 -

~N

Internal strain parameter ¢

05 .
0.4 1 1 1 1 L 1
-0.08 -0.04 0.00
Uniaxial strain ¢,
FIG. 6. Internal strain parameter { as function of [111]

strain €4. The solid curve is derived for zero transverse pressure,
corresponding to experimental conditions. The uniaxial pressure
indicated on the top axis refers to this case, only. The dashed
curve gives { when 17,=0 in Eq. (17), as derived from the calcu-
lations of elastic constants.
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in the 10—15-kbar range, where { is changed only by a
few percent. Large uniaxial pressures are experimentally
unattainable at present, and a hydrostatic pressure of
about 125 kbar will transform cubic Si to the metallic -
tin structure. Phase transitions of Si under uniaxial pres-
sure have not been reported, to the authors’ knowledge.

IX. CONCLUSION

We have given explicit local-density-functional expres-
sions for the stress tensor in a form for evaluation in re-
ciprocal space. This result is based upon the stress
theorem given previously by the authors, and is the
Fourier transform of the real-space expression given in I
Calculations were performed with ab initio normconserv-
ing pseudopotentials as parametrized by Bachelet
et al’1*¥ With large basis sets it was possible to obtain
full convergence of total energy, force, and stress. We
studied the lattice constants, bulk moduli, elastic con-
stants, I'-phonon frequencies, and x-ray form factors and
found very good agreement with experiment. The internal
strain parameter { deviates strongly from that found in
x-ray diffraction experiments, but our values are support-
ed by comparing calculated deformation potentials with
experimental ones. An independent calculation®® of defor-
mation potentials by the LMTO-ASA method supports
our result for £. We also obtained the strain splitting of
the T" phonon, in good agreement with experiment for
strain along [111] but only half the experimental value for
strain along [100]. An almost complete set of third-order
elastic constants for Si agrees well with experiment, and
we present a prediction of the anharmonicity of the inter-
nal strain parameter and several fourth-order elastic con-
stants.

In conclusion, we have established the great utility of
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APPENDIX A

The nonlocal contribution to the stress Eq. (2) is given
as follows: The (K,K’) plane-wave matrix element of a
nonlocal potential ¥'N* for an atom labeled 7 and for an-
gular momentum ! is>

VEL(K,K')=%’(21 F1)P(cosO)F (K,K'), (A1)

where P; is the Legendre polynomial, 0 the angle between
K and K’, and the factor F,, is

F K.K)= [ ? KPR P VN ) 2dr (A2)

0
with j;(x) denoting spherical Bessel functions. The strain
derivative of Eq. (A1) with respect to €,g is, using the
scaling of reciprocal-space vectors,

calculating stress in addition to forces and total energy, 9K,
and we have demonstrated that accurate results can be ob- Ben —8uKp (A3)
tained for a wide variety of properties related to macro- ap .
scopic distortions of perfect crystals. equal to
,
IVNMK,K')  4r OF (K,K")
—=——2I+1){— F.(K,K' —_—
deus a (21 +1) { —84pP;(cosO)F (K,K') + P;(cosB) dens
K,Kg KoK (K Kg+K,Kg)
+ |cos@ ;{23 + I::zB — =k ‘;(K’ B \p; (cosG)F,,(K,K’)‘ . (A4)

Here P; (x) denotes the derivative of Pj(x).

Several methods may be chosen to calculate the nonlocal stress. For example, if VN'(r) is expressed in terms of a
Gaussian, exp(—72/R?) (R being a decay length), the expression for VNY(K,K’) is given by Heine and Weaire,*® and the

strain derivative of F,; used in Eq. (A4) is

AEAMKKD _ VT s, -wok w2

aéaﬁ 4

—+KK'R?

K,Kpg

K2

(K,Kg+K,Kp)5R*B(7KK'R?)

K.Kp
K12

[B;(+KK'R?)+B/ (+KK'RY)] | . (A5)

The function denoted B;(x) is a well-behaved function related to the modified spherical Bessel functions of the first kind

I; 41 0(x) by
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12
I 1 p(x) .

—_—p —X
B,(x)—e %

(A6)

B(x) satisfies the same recursion formulas as I;  ; ,(x), and the first two functions are

e—2x

1—
d B =
and By(x) %

—2x
B_l(x)=1_t_e___

(A7)

Alternatively, if F,(K,K’) is calculated numerically from an interpolation table, the partial derivatives are easily

evaluated, and we have
dF(K,K') OF, KoKg  8F, K.Kj
T 8K k? K K»?

aé‘aﬁ

(A8)

APPENDIX B

The stress contribution from the ion-ion Coulomb interactions in a compensating negative background is given from
the Madelung energy ¥ gywaq Which is calculated by the Ewald transformation.3%?® The strain derivative is

Y Ewald __m e —G"/4e Sz s 212G,Gg
desp 20 &y Gilhe |27 2
D, D
+1e2 3 2,2, H(2D) L
77T

(D=x_,—x,_+T=0)

Here € denotes a convergence parameter (and not the
strain €,g) which may be chosen for computational perfor-
mance. Z, denotes the atomic core charge of atom 7, T
the lattice translation vectors, and x, the atomic positions
in the unit cell. The function H'(x) is

H'(x)=9[erfc(x)]/0x—x~lerfc(x) (B2)
with erfc(x) denoting the complementary error function.

APPENDIX C

Different theoretical approaches for calculating the
internal strain parameter § (see Sec. V) are discussed, fol-
lowed by possible corrections to the simple analysis
presented in Sec. V.

The earlier theoretical approaches employed empirical
phonon models to fit the experimental phonon dispersion
or the elastic constants. The obtained §{ values were re-
viewed by Cousins.®® The most reliable phonon model for
the covalent semiconductors is the adiabatic bond-charge
model,’! which gives £=0.50 (Si) and £=0.52 (Ge), in
fairly good agreement with the present results. Consider-
ing the scope of empirical phonon models, their disagree-
ment with reported experimental values of § has lead to
limited concerns, only.

The first ab initio calculation of § was reported by
Harmon et al.% for Si (6=0.61) using a localized Gauss-
ian basis set to calculate total energy. A large €, strain
(e4=—4.7%) was applied while maintaining a constant
volume. They deduced § from a shallow minimum of to-
tal energy (their Fig. 3), which may be compared to our
large-strain determinations of ¢ (see Fig. 6). Their value
agrees well with the present results, given their large
strain €, and the values of ¢ and d£/de; in Table V.
Sanches-Dehesa et al.%® applied a similar procedure using

(G%/4e+1)—8,p

+ 30 |22+ b B1)

I

local pseudopotentials for Si and a six-atom unit cell, ob-
taining the values {=0.86 and c4y=1.2 Mbars. In our
opinion, there are inaccuracies in this calculation so that
it is not a stringent test of the ab initio methods. Cardo-
na et al.% used the planar force constants found by super-
cell calculations for GaAs (Ref. 10) and for Si (Ref. 11)
(the latter calculation employed an ad hoc adjustment to
fit frozen-phonon calculations). The values of & were 0.72
(GaAs) and 0.57 (Si). Using the stress method we found
£=0.65 in GaAs with the empirical pseudopotential used
in Ref. 10, showing the results of Ref. 64 to be of fair ac-
curacy.

We conclude that the most accurate theoretical values
for & are the ones obtained with the present stress method.
These are the only calculations which are sufficiently ac-
curate to demonstrate that the theoretical value for & is
definitely below that which has been gotten from the
analysis of experiments. Since so many other properties
are given well by these ab initio calculations we believe
the theoretical results must be taken seriously.

Notwithstanding the present results, it is necessary to
address possible sources of theoretical uncertainty. For
example, the harmonic approximation results are con-
firmed since, for the given strain €4, an internal displace-
ment u =§aey/4 yields a force F which is essentially
zero. We discuss in addition several effects due to finite
strains which might conceivably affect the value of §.

Firstly, { will have anharmonic contributions at large
strains (Fig. 6). We have investigated this in detail for Si
(see below), and find for the experimental conditions
(P < 15 kbar) an increase in £ of about 5% over the value
of Table I, which is much smaller than the discrepancy
with experiment.

Secondly, the analysis of the x-ray diffraction data as-
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sumed free-atom form (structure) factors, which neglect
solid-state effects on the charge density. However, for the
[006] reflection used to determine &, we found negligible
difference between the solid form factors, and the free-
atom ones used by Cousins et al’! Furthermore, as a test
we compared our calculated p(G) with the analysis of
Ref. 50, and found good agreement with our value of § as
given in Table I.

Thirdly, anharmonic thermal vibrations will in general
shift the atoms when the cubic symmetry is lowered by
[111] strains. A cubic anharmonic energy term gives rise
to a thermally averaged force —+®{uu), where ® is the
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third-order force-constant matrix, and {uu) is a displace-
ment correlation matrix. With Keating’s®® anharmonic
force constant, which is close to that found in ab initio
calculations (=~3X10'? dyn/cm? and a typical mean-
square displacement ((u2)~0.01 A?, and a geometry
factor proportional to the €, strain (€,~ —0.01), a force of
order =~ 1078 dyn results. In comparison, the force result-
ing from Eq. (8) with €¢,=—0.01 and u =0 is ~10~°
dyn, so that anharmonic displacement does not appear to
be important. Thus we do not find any important correc-
tion terms to the theoretical calculation of &, and the
discrepancy with experiments seems to persist.
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