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Theory of excitons in semiconductor quantum wells containing degenerate electrons or holes
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A va, riational theory is presented, for the binding energy and optical strength of the quasi-two-
dimensional excitons created optically at low temperature in a quantum well containing degenerate
carriers of one type (electrons or holes). Both screening and the exclusion principle are taken into
account. Radiative recombination is also considered, and it is shown that either no exciton is in-

volved in the radiation, or the radiation is from an exciton identical to the one created optically. It
is shown that when the exclusion principle applies, binding is not obtained for arbitrarily large car-
rier density. It is shown that the binding energy can be very small while the optical strength is still
significant. Calculations are presented showing the binding energy and optical strength versus den-

sity for CxaAs wells of various widths and electron 3,nd hole densities 0 & N & 2& 10". cm

I. INTRODUCTION

The importance of excitons in understanding the optical
spectra of quantum wells can hardly be overemphasized,
because nearly every feature seen is due to an exciton. '

This remains true even when the wells contain a degen-
erate population of carriers, ' either electrons or holes in-
troduced by doping. Several papers have given calcu-
lations of the exciton binding energy 8 as a function of
well width L [the "quasi-two-dimensional (2D) exciton"]
in the absence of carriers. There is some experimental
confirmation of these calculations in that the observed
and calculated exciton term values 2S-1S have been
shown to be in good agreement. For quantum wells con-
taining carriers calculations on the effect of screening on
the binding energy of Coulombic impurities have been re-
ported. It has been emphasized that in the limit of high
carrier density X, 8 becomes independent of N and re-
tains a substantial part of its unscreened value. The effect
of free-carrier screening on bound states, mobility, and
transport effective masses at metal-oxide-semiconductor
(MOS) interfaces has been extensively studied theoretical-
ly.

None of these previous papers directly addresses the
problems considered here: (a) An electron-hole pair is
created by photon absorption in a quantum well contain-
ing a degenerate population of electrons or holes —does
the spectrum for this process have at least one discrete
transition to an excitonic bound state'? (b) The system just

. described relaxes to its ground state and ultimately decays
radiatively with the destruction of - an electron-hole
pair does the spectrum for this process have any struc-
ture or energy shift due to the Coulomb interaction of the
pair? There are, of course, many excitons possible in a
quantum-well spectrum corresponding to the various sub-
bands available to the electron and hole. The equilibrium
carriers are in the lowest electron or hole subband, and we
shall assume that no higher subbands are occupied. If
neither the electron nor hole of the pair in question (a) is
in a subband occupied by carriers the only effect of the

carriers is screening described by a dielectric function. In
this case it is known that an excitonic bound state exists
regardless of the size of N. If either the electron or the
hole is in a subband occupied by carriers the exclusion
principle restricts the phase space available for the
electron-hale pair and it is not clear that a bound state ex-
ists. Question (b) concerns the nature of the ground state
of a system of, say, a hole and a population of electrons at
low temperature. Do the annihilating electron and hole
occupy initially plane-wave states, an exciton state, or a
superposition of the two types of state? The answers to
both questions are required for the proper interpretation
of the excitation and luminescence spectra of quantum
wells containing carriers.

We have attempted to answer (a) by carrying out varia-
tional calculations of 8 using a momentum-space varia-
tional wave function with one parameter. This parameter
is directly related to the optical strength S of the exciton
transition. Both 8 and S are reported as functions of X
for GaAs quantum wells of thickness L =72, 109, 130,
230, and 630 A for both holes and electrons and for exci-
tons requiring and not requiring the exclusion principle.
The calculations assume parabolic energy subbands, car-
riers in only one subband, and the random-phase approxi-
mation (RPA) dielectric function at zero frequency (static
screening with spatial dispersion). For a typical case with
L —100 A, this limits the density to X~ &3)&10" cm
for holes and X, &2&& 10' cm for electrons; the validi-

ty limits are smaller for larger L.
The answer to (b) is obtained theoretically by two dif-

ferent approaches which lead to the same conclusion
about the radiating state. If the exciton binding energy B
is greater than the combined Fermi level E~, the exciton
ground state is stable against relaxation and radiation
occurs from this exciton; if 8 ~EF the exciton relaxes to
plane-wave states for the electron and hole from which ra-
diation occurs at the (renormalized) gap energy. In the
first case Coulomb effects are marufest in the radiation, in
the second case they are not. However there is always one
Coulomb effect, the band gap r-enormalization due to the
carriers which has been treated in another paper.
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II. EXCITONS IN THE FERMI SEA

'I[(q)=0 for
I q I &kr,

where kz is the Fermi wave number, r is the 2D relative
coordinate, and q the corresponding wave vector, and 3 is
an arbitrary normalization area. Since the total momen-
tum is zero, the separate electron and hole wave vectors
are q, —q, respectively. Note that 'P(r) contains only
Fourier components outside the Fermi sea to satisfy the
exclusion principle. The Schrodinger equation for kp(q)
for parabolic electron and heavy-hole bands is

qz%(q) —2(2m ) f u(q —k)%(k)dk=Ekli(q), (2)

where the units of length and energy are the Bohr radius
ai] ——eoA' /(e ][[,) and Rydberg R =e /(2eoa~ ), respectively
(p = reduced mass), and the potential

u(k) = [e(k)leo] ' f u(r)e '"'dr (3)

includes screening by the carriers through the dielectric
function e(k)/eo. As we have written (2), positive u(k)
corresponds to an attractive interaction. The zero of ener-

gy corresponds to the separated particles at rest.
For the interaction we choose the model potential, '

u(r) =(1—e r")/r, (4)

u(k) = [eo le(k)]2m [k ' —(k +y )
'i ], (5)

used previously for the biexciton. A calibration of y
against the well width has been obtained by comparison of
accurate variational calculations using the true Coulomb
potential with variational calculations using Eq. (4). Note
that in absolute units, y (cm ') depends only on L; in di-
mensionless units it depends also on the appropriate az.
For e(k)/eo we use the 2D RPA result" specialized to the
interaction Eq. (4) and zero frequency,

(ek) /oe=1 +( 2smlp)[k —(k +y ) ~ ]

&&[I—(1—4kF/k )'~ j,
where m, is the screening carrier mass, p the excitan re-
duced mass, and (x)'~ is considered zero when x &0. In
using Eq. (6) we are treating the exciton lifetime as infi-
nite.

If %(q)=%'(q ) is isotropic and normalized such that

4 q q q=1,
%'(r) ='P(r) =(2m) [&' f„"e(q)JO(qr)q dq, (7)

f [%(r)]zdr=l,

the energy functional is

We consider the ground quasi-2D excitonic state of an
electron and heavy hole in the presence of a. degenerate
population of electrons or heavy holes in the lowest
quantum-well subband. The exciton created by the ab-
sorption of a photon of zero momentum is described by a
wave function of the form

'Ii(r) = g kII(q)e'q'/v A

8 =kg —(E[V]);„. (10)

Note that kF includes both electron and hole energies at
the Fermi momentum kF. If 8 &0 the exciton is stable
and has an optical strength proportional to'

where p,„ is the interband momentum matrix element.
The formalism given above applies to the heavy-hole

exciton in a Fermi sea of either electrons or heavy holes
all in the lowest quantum-well subband. The density .is
assumed sufficiently low that the parabolic approximation
for the subband may be used. This formalism also applies
to a screened Coulombic impurity state if the bound car-
rier is the same as the screening carriers, providing the ap-
propriate values of p, ai], and y are used. If neither
bound particle is the same as the screening carriers (e.g.,
the light-hole exciton in a sea of heavy 'holes) the ex-
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FIG. 1. Wave function Eq. {9) in r space for b =kF/3, the
optimum value for electrons with L = 130 A. Plotted is
F=%{r)/4{0) vs X=br.

k[@]=f„k'[O(k)]'k dk

—2(2n. ) f u(g)gdgd8 f 4'(k)%(r)kdk,

r=(k +g 2—kg cos8)'~2,

k &kF, r&kF (in region I ) .

An example of kP(r) is plotted in Fig. 1. When kli and E
satisfy Eq. (2), E[+]=E, and E is the minimum value of
E[%] with respect to variations of kI[. We obtain an ap-
proximation to E from Eq. (8) using the variational func-
tion

2b l(q +b f )',—q&kF
q'(q) =

0, q &k~.

When kF ——0 this corresponds to the function
b(2/m )'~ e " often used in' exciton calculations. The pa-
rameter b is chosen to minimize E[%]=E(b) and the
binding energy of the exciton relative to the combined
Fermi level EF——k~ is
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elusion principle must be removed from (7)—(10), by set-
ting k~=0 while retaining k~ in Eq. (6).

The above formulation applies to the production of an
exciton by absorption of a photon. Subsequently the sys-
tem electron + hole + I'errni sea relaxes to its ground
state from which a photon can be emitted by radiative
recombination. We ask what if any Coulomb effects are
present in the radiating state. Without Coulomb interac-
tion the lowest electron-hole state is the electron-heavy-
hole plane wave X(q) =5~ p', with interaction we may plau-
sibly write the more general state

X(q) =a5& p+P(2vrl/I )'/ %(q),

I
~ I'+

Ill

I�
'= I

Q f
X(q)

I

'=1,
(12)

It follows that P= 1 if (E[%]);„&0corresponding to the
same heavy-hole exciton involved in absorption, or to
P=O if (E[ Ii]);„&0 corresponding to a plane wave (i.e.,
no Coulomb effects in emission). The crossover occurs
when the exciton binding energy B=k~, the combined
Fermi level. This conclusion does not depend on the par-
ticular form Eq. (9) for %'(q); %(q) could be the exact ex-
citon wave function satisfying Eq. (2).

These conclusions may seem surprising because it is
well known- that an attractive interaction in 2D always
produces for particles unrestricted by exclusion at least
one bound state. Our argument above has led to the con-
clusion that this is not necessarily so in the presence of ex-
clusion. However, there could be two weaknesses in the
argument just given: (a) it depends on the variation of an
energy functional which can only give an upper bound on
the energy, and (b) the form Eq. (12) may not be correct
even if %(q) is an exact solution of Eq. (2). Therefore we
consider a special case which is exactly solvable.

Consider the Schrodinger equation for X(q) in the form
(Bethe-Goldstone equation' )

X(q) =5 p+(E —E ) 'I (q)A ' g A, V(q, k)X(k),
k

1, q)kg
1(q)= 0 k

E Ep ——3 ' g A, V(O, k)X(k—),
k

(14)

where V(q, k) is an unspecified interaction that includes
screening, and A, &0 corresponds to attraction. If V(q, k)
is assumed to be separable, which is to say

V(q, k) = u (q) u (k)",

where %(q) is approximated by Eq. (9), and P is to be
determined along with b by minimizing the energy func-
tional. It is easy to show that the mixed term in the func-
tional involving both terms of Eq. (12) vanishes as
A~oo. This means that the exciton parameter b is in-

dependent of I3, and has the same value as for photon ab-
sorption with production of a heavy-hole exciton. The en-

ergy functional for X(q) reduces to

(13)

an equation can be obtained for gj, u(k)*X(k), from
which it follows that the eigenvalue E is a root of the
equation

A.
I
u(0)

I

' k ~ ~ k I
u(k)

f

/I (E—Ep) A q E EI,— (16)

We write the energy functional Eq. (8) as

E[qi] =E(b ) = T(b ) + U(b ),
T=b +kI;,

4g4
U(b) = — dk

~2 kF (k2+b2 k2)3/2

x I,
"

p=2kgl(k +b +g kg), —
r

0, g&k —k~
r

k +g —kg
cos

2kg

0, g) k+kp

v(g )gF( p, $)
(I 2+b2+g2 k2)3/2

k —kg &g & k+kp

(18)

I'( p, P) = I d8(1 —p cosP)'
2

2p sing

(1—p cosP)'/

where T and U are the kinetic and potential energies,
respectively. The region I" in Eq. (8) is contained in the
definition of P. Singularities (discontinuous slope) in the
integrand occur at k=k~ from Eq. (6) and at g=k+kz
from the kinks in P; the former causes no difficulty but
the latter require a transformation of variable to achieve
adequate numerical accuracy. Also the limits on the k
and g integrations were transformed to 0 to 1, and the in-
tegrations performed using the Gauss-Legendre quadra-
ture (8 points for k and 24 points for g). In trying to op-
timize b numerical "jitter" was encountered in E(b),
making it difficult for small binding energies 8 &0.1. To
remove this jitter a least-squares parabolic fit to 5—10
points near the optimum was computed and the optimum
b and E(b) determined from this parabola. The result
was considered significant if 8 was at least three times
larger than the rms deviation. For the no-screening case
[e(k)—:1], v(

I q —k
I

) can be integrated over the angle
l(q, k) in terms of complete elliptic integrals. The result-
ing double integral is quite different from the one in Eq.
(18), although the value should be the same. This check

where Eo ——0 in the present case. As A —+Do the first
term on the left is nonzero only at E=0 corresponding to
the plane wave X(q)=5& p. If A, &0 the second term gives
a root E & k~ corresponding to the exciton state,

X(q)„=CI (q)u(q)l(E„Eq), — (17)

with C a normalization constant. The larger
I

A,
I

is, the
larger kF E„=—B is. At sufficiently large

I
A,

I
the exci-

ton is stable (8 & kF); otherwise the plane wave is stable,
in complete agreement with our previous conclusions.

III. CALCULATIONS
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(1) L=72 A (y=13.9); (2) L =130 A (y=8.5); (3)
L =230 A (y=5. 1); (4) L =630 A (y=2.2). The dashed
line in Fig. 4 indicates the condition 8 =k~ which is criti-
cal for the exciton stability against relaxation in the Fermi
sea; above this line the same exciton is observed in both
absorption and emission. Figure 5 shows the correspond-
ing curves for b which according to Eq. (11) is a measure
of the optical strength. The relevant length and energy
units in Figs. 4 and 5 are a~+ and R+.

In Fig. 6 we show 8 and b along with N for a GaAs
well L =109 A (y= 10) containing heavy holes. For oth-
er values of L the behavior can be deduced quite closely
from the dependence on y shown in Fig. 5. Again a++
and R+ are the relevant units. In Fig. 7 we show a case
where the exclusion principle is omitted, the lowest light-
hole exciton in a sea of heavy holes. In this case the units
are az and R, and L =107 A (y=8.3). Note the
asymptotic approach to constant limits as k~~00. The
limit corresponds to density-independent Thomas-Fermi
screening.

IV. DISCUSSION

Returning to the questions (a) and (b) posed in the In-
troduction, we can summarize our findings this way: (a)
If N is not overly large there is an excitonic bound state,
but in the case of the lowest heavy-hole exciton not for ar-
bitrarily large X. The optical strength lags behind the
binding energy in falling off with increasing N, falling by
a factor -2 while the binding energy is falling by a factor
—10, but eventually falls off even faster than the binding
energy, both apparently going to zero at some critical
value of N which depends on L. (b) At low density the
exciton is stable in the Fermi sea (region above dashed line
in Fig 4), at .high density kF &8 it relaxes to a completely
dissociated plane-wave state. We have answered (a) by
calculations and (b) by theoretical arguments.

The calculations employ a model potential Eq. (4)
which is calibrated' to the well thickness by requiring

—1011

CV

2

C3
10 1 —10'0 z

"2
109

5
10 10-2 2 5 10 2

KF

FIG. 6. Binding energy (solid curve) of heavy-hole exciton 8
(units R+ ——3.7 meV), variational parameter (dashed curve) b,
and hole density X (cm ) for L =109 A (y=10). Optical
strength Eq. (11) is proportional to b~.

that the commonly used variation al function
b(2/n)'~ e ".give the same exciton binding energy as an
accurate calculation based on the true Coulomb potential.
Thus in the limit kF ~0, the variational function Eq. (9)
has a reasonable form and is guaranteed to give a good
value of B. The form of Eq. (9) is therefore quite reason-
able in general, so we propose that when b is optimized it
represents at least an approximate measure of the optical
strength through the relation Eq. (11). For kz&0 the
function Eq. (9) in r space has an oscillatory form as
shown in Fig. 1 due to cutting off all q & kF.

In a variational calculation one hopes that the energy
functional, being minimized, has a single sharp minimum
making the choice of optimum b unambiguous and
reasonably precise. This is the case when the functional
behaves as in Fig. 2 which is typical of most of the calcu-
lations. However, for holes, we sometimes observed the
behavior shown in Fig. 3. When the two extrema are of
nearly the same depth the choice of b becomes ambigu-
ous. Figure 3 illustrates this situation for the well calcu-

2'-
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I I I
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FIG. 5. Variational parameter b for the heavy-hole exciton
vs Fermi momentum k~ for electrons and the same L values as
in Fig. 4. Dashed line shows condition B=kF. According to
Eq. (11), b is proportional to the optical strength of the exciton.

KF

FIG. 7. Binding energy (solid curve) of light-hole exciton 8
(units R =4.6 meV), variational parameter (dashed curve) b,
and hole density X (cm ) vs Fermi momentum k~ for L = 107
A (y =-8.3). Optical strength Eq. (11) is proportional to b
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lated in Fig. 6. The ambiguous region lies in the range
1&k' &1.1, which is a very small range in Fig. 6 and
therefore not very important. Presumably this behavior
means that the true wave function makes a rather rapid
transition with increasing kF from being dominated by
the dielectric function at small k~ to being dominated by
the Fermi cutoff at large kF. It is interesting to note that
in Fig. 7, where the Fermi cutoff is absent, both 8 and b
start to saturate with increasing k~ around the same re-

gion kF I.
We have not offered any experimental evidence to com-

pare with the theory. Exciton binding energies are not
easy to measure experimentally. The optical strength is
more accessible to measurement than the binding energy.
It has been observed' that hole doping to about 5X10'
cm in a sample with I —100 A causes the
normally stronger heavy-hole exciton to be weaker than
the light-hole exciton, and at 3 & 10"cm the heavy-hole
exciton has disappeared. This is in agreement with our
Figs. 5 and 6, for about the same I., which show that
[b(hh)] &[b(lh)] for densities N&3X10' cm, and
[b(hh)] seems to be vanishing at about 3&(10" cm
Even though not confirmed by experiment the calcula-

tions of 8 should prove useful in understanding the spec-
tra, especially the Stokes shift between the hh exciton seen
in excitation and the luminescence peak. In good quality
undoped samples the Stokes shift due to imperfections is
usually & 1 meV. With doping the Stokes shift increases'
but sometimes considerably less than the expected com-
bined 'Fermi level. Figure 4 shows for the case of elec-
trons with I.=72 A that the dashed line intersects curve
(1) at N, -2.5X10' cm; at this and lower densities no
Stokes shift should be expected. At higher densities the
Stokes shift should be kz 8w—hich is essentially kz for
N & IO" cm . It is interesting to note comparing Fig. 4
(electrons) and Fig. 6 (holes) that holes extinguish 8 with
increasing N faster than electrons. For static screening
holes are more effective than electrons because of their
larger mass, as seen in Eq. (6).
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