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Subbands and Landau levels in the two-dimensional hole gas at the GaAs-Al„Gal „As interface
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The hole subbands and Landau levels in the inversion layer at the interface between GaAs and p-
type Al Gal „As are calculated self-consistently in the Hartree approximation. The degenerate
valence-band structure and the matching of the wave function at the interface are taken into ac-
count. Without magnetic field we calculate the subband dispersion parallel to the interface. The
subbands are found to be strongly nonparabolic and spin split. The calculated classical cyclotron ef-
fective masses do not agree very well with those found in cyclotron resonance experiments. We have
therefore included the magnetic field in the calculation. The B dependence of the 'Landau levels is
found to be strongly nonlinear. The calculated transition energies are partly in very good agreement
with experiment. The dependence of the results on areal hole density, doping concentrations,
valence-band discontinuity, etc. , is also investigated.

I. INTRODUCTION

Recently there has been an increasing experimental in-
terest in the properties of the two-dimensional (2D) hole
gas formed at the interface between nominally undoped
GaAs and p-type Al Ga& As. ' The integral and
fractional quantized Hall effects have been observed in
this structure, and it has been demonstrated that the com-
paratively high hole mobility can be utilized in a transis-
tor. ' Very recently it has been shown that the 2D hole
gas can be utilized in a new type of complementary
transistor structure. In a recent paper we showed that
the degeneracy of the valence band leads to unexpected
features of the subband dispersion parallel to the surface.
In that paper we used the Luttinger Hamiltonian' '" in
the spherical approximation. ' In this paper we have gone
further and used an approximation that should be better
for the (001) interface, which is usually studied experi-
mentally.

The experiments with which our results can be com-
pared are often carried out in magnetic fields. We show
that it is important to include the magnetic field in the
calculation to obtain good agreement with experiment.
Because the E(k)() dispersion is nonparabolic, the 8
dependence of the Landau levels is nonlinear and the an.-

ticrossing behavior between the levels leads to a quite
peculiar B dependence. The Landau-level structure can
no longer be described in terms of one effective mass per
subband, and the effective masses turn out to be depen-
dent on the magnetic field. Our results are in quite good
agreement with experimentally determined cyclotron reso-
nance effective masses.

This problem has recently been treated theoretically by
other authors' ' who have used similar methods but ob-
tained less good agreement with experiment. %e discuss
the differences between the calculations and propose ex-
planations for the discrepancies. In Sec. IIA we outline
the theory which we use to calculate the subband disper-
sion without magnetic field, and in Sec. IIB we describe
the modifications done when the magnetic field is

nonzero. The results are presented in Sec. III and dis-
cussed in Sec. IV. Finally, Sec. V contains the con-
clusions.

II. THEORY

~p(2)+Z(2)~(4) + ~p(2)XZ(2)~(4)

+ t p(2) )(J(2) ](4)

Here the J's are 4X4 matrices, which represent spin- —,
'

operators. In one convenient representation the matrix
can be written
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2mo
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A. Without magnetic field

In order to calculate the hole subbands one must take
the degeneracy of the valence band into account. We
neglect the splitoff band, which in GaAs is 0.34 eV below
the valence-band edge this consists of the heavy-hole
band and the light-hole band, which are degenerate at
k =0 in the bulk. Each of these bands has a twofold spin
degeneracy if we have inversion symmetry. These two
bands can be described by a 4X4 matrix with three
valence-band parameters y~, y2, and y3, which correspond
to inverse effective masses. ' This matrix was written by
Baldereschi and Lipari' with the use of second-rank ir-
reducible tensor operators in a way that clearly expresses
the symmetry of the different terms and that is con-
venient for calculation of acceptor levels

II=E — Vl 2+ 1 2 X3 (p(2) g(2)) X3 X22 +3
2mo 45mo &8~o
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Here I is the unit matrix and I, I denotes the anticom-
mutator. (With a magnetic field included the different k
components do not in general commute. ) We neglect the
linear terms in the Hamiltonian caused by the violation of
inversion symmetry in the bulk' because it has been
shown that these give quite a small effect. ' In our previ-
ous paper we used the spherical approximation, ' i.e., in
Eq. (1) we only included the first three terms, which have
spherical symmetry. This corresponds to replacing y2 and
y3 by y = (2yz+3y3)/5 everywhere in Eq. (2). For a (001)
interface it is not much more complicated to use the axial
approximation, which was introduced by Lipari and Al-
tarelli' for the calculation of indirect excitons. Then the
middle term in large parentheses in Eq. (1) is also retained
and the Hamiltonian becomes cylindrically symmetric. In
the matrix (2) this turns out to imply the replacement of

and y3 in the term C [Eq. (5)] by y =(y2+y3)l2. This
approximation implies that the anisotropy in the xy plane
is neglected. This is convenient in the self-consistent part
of the calculation, where the circular symmetry of the
Fermi surface leads to important simplifications.

We choose the z direction to be perpendicular to the
(001) interface between the semi-infinite GaAs layer
(z &0) and the semi-infinite Al„Ga& „As layer (z &0). In
Eq. (2) we replace k, by —i (d ldz), and along the diago-
nal we add the potential V(z), which is shown in a typical
case in Fig. 1. V(z) consists of two parts, the potential
due to the 2D hole gas in the inversion layer in GaAs,
V"", and the potential due to the ionized impurities in the
depletion layers, V '~.

V'"" is calculated self-consistently in the Hartree ap-
proximation by solving Poisson's equation numerically.
The calculations are done for T =0. Many-body effects
such as exchange and correlation for a two-dimensional
hole gas have been treated using a simplified valence-band
structure by Ohkawa' for the cise of a Si-Si02 interface.
Such effects remain to be investigated in the present case.
V '~ is treated in the depletion-layer approximation, i.e.,
all donors in the GaAs are assumed to be ionized for
—l„&z &0 (l„&0} and, similarly, all acceptors in the
Al„Ga~ „As for 0 &z ~ lz. In order to obtain high carrier
mobilities a thin undoped Al„Ga& ~ As layer (spacer
layer) of thickness d is often inserted between the undoped
GaAs layer and the doped Al„Ga& „As layer. The effect
on the band bending of this spacer layer can easily be tak-
en into account. In this case the depletion-layer widths l„
and lz are obtained from the equations
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FIG. 1. Band diagram for the (001) GaAs-Alo 5Gao 5As inter-
face. A portion of (a) is magnified in (b), where the calculated
energy levels at k~I ——0 and the potentials V„ in GaAs and V~ in
A105Gao5As are drawn. We have also separately drawn the
contributions from the holes in the inversion layer V„'"" and
from the depletion layer V„'~ to the total potential V„ in CxaAs.

where'

27Te
V„( I„)= Ngl„+—V'""(—oo )

E)

Here 5& and 5z are the Fermi levels in the GaAs and
Al~Ga] „As relative to the nearest band edge, respective-
ly (see Fig. 1), and E, and ez are the corresponding dielec-
tric constants. The valence-band discontinuity at the in-
terface is denoted by hE„, the acceptor concentration in
the Al Ga~ „As by N„ the donor concentration in GaAs
by N~, and the areal hole density in the inversion layer by
N, . [If the GaAs is compensated, N~ should be replaced
by N~(GaAs) —N, (GaAs) and similarly for the
Al„Ga) „As.]

Equation (6) comes from the charge-neutrality require-
ment while Eq. (7) comes from the requirement that the
Fermi level should be constant and can be verified from
inspection of Fig. 1, After each iteration in the calcula-
tion of V'"" new values of l„and 1& are determined.

Since the dielectric constants of GaAs and
Al~Ga~ ~As are slightly different, one should in principle
also include the image potential. In the commonly used
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form it has a singularity at the interface. Stern and Das
Sarma have pointed out that this singularity is unphysi-
cal and have done calculations for the 2D electron gas for
the more realistic case with a continuously but rapidly
varying dielectric constant. In this case they found that
the effect of the image potential is quite small and for this
reason we have neglected it in the present paper.

The matching of the wave function af the interface is
taken into account using a modified variational method '

described in more detail earlier. Instead of just finding
the eigenvalues of the Hamiltonian matrix, we find the
eigenvalues of a matrix with the following structure:

~A +JAN I~a

Hg+Igg (10)

4&,' =S'(z —a;)exp[ b;(z —a;) ] .— (12)

We have found that the convergence becomes good for six
suitably chosen pairs of the adjustable parameters (a;,b;)
In the general case we obtain a 96&&96 matrix, which is
diagonalized numerically for each value of k~~, the wave
vector parallel to the interface.

After the calculation of the subbands we have deter-
mined the classical cyclotron effective masses defined by

Hz and Hz are the usual Hamiltonian matrices [Eq.
(2)] with the y's and E, for material A (GaAs) and 8
(Al„Gai „As) inserted. The "interface functionals" I p
assure that the boundary conditions are fulfilled.

The envelope function is expanded in basis functions of
two types:

4&;=%exp[ —b;(z —a;) ]

this constant energy contour is a circle. In this case Eq.
(13) simplifies further to

m'=iii k (14)

B. With magnetic field

Many investigations of 2D electron and hole gases are
carried out in magnetic fields. For the simple case with
one nondegenerate parabolic conduction band the mea-
sured cyclotron effective mass coincides with that ob-
tained from the curvature in the E(k) dispersion at the
band minimum. For the 2D hole gas we have found that
the subband dispersion in the absence of a magnetic field
is far from parabolic, and one can therefore suspect that
the results in a magnetic field can also be complicated.
This has„ in fact, been seen in similar calculations for the
GaAs-AI„Gai „As superlattice. The magnetic field
leads to a quantization of the orbits in the plane perpen-
dicular to the magnetic field 8, which we assume to be
perpendicular to the (001) interface.

To include the magnetic field we make the following
modifications to the Hamiltonian: (1) k is replaced by
k+eA/ch', where A is the vector potential, and (2) a
term proportional to the magnetic field is added along the
diagonal with the weight ~. I uttinger' also derived a
term proportional to the parameter q, but this term is
small and we therefore neglect it. The corresponding
changes are made in the interface functional. In the
Hamiltonian matrix, k~ and kz are now replaced by
harmonic-oscillator operators obeying the usual commuta-
tion rules. If we apply the axial approximation we find by
inspection that the column vector

dA (E)
2m dE E =Ep

(13)

where & (E) is the area in the k~~ plane with constant en-

ergy E. As mentioned earlier, we have taken the self-
consistent potential V(z) from the axial model, in which

'c, (z)P„

cq(z)P„

c3(z)P„+i
&4«)4. +z .

(15)

TABLE I. Parameters used in the calculation.

GaAs AlAs

Valence-band parameters

+I
r2
y3
K

Dielectric constants
Distances between the Fermi levels
and the nearest band edge [see Fig. 1(a)]

6.85'
2.1'
2.9
1.2'

5)——6 meV

3 45"
0.68b

1.29b

0.12'
e2 ——9.56'

62——35 meV

'Reference 26. ~

"Reference 27. Linear interpolation is used for Al„Ga~ As.
'Reference 28.
~Reference 29.
'Assuming that the variation with x at room temperature e(A1„Ga~ „As) = e(CxaAs) —3.0x given in
Ref. 30, p. 219, also holds at T=0.
Reference 1.
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becomes an eigenvector, and if we let the raising and
lowering operators operate on the harmonic-oscillator
functions P; of this eigenvector, the Hamiltonian matrix
becomes

f2
H =E I+ Il',

2%i o

where H is given by

(16)

—(yi —2y2)k.2

—[(y i+ y2)(2n —1)+3a]s

2&6ns yak, 2v'3n (n + 1)sy 0

2&6ns y3k, —(yi+2y2)k'
—[(yi —y2)(2n +1)+a]s

0 2v'3(n +2)(n +1)sy

2v'3n (n + 1)sy 0 —(y i+2yz)k'
—[(y,—yz)(2n+3) —a]s

—2v 6(n +2)s y3k,

0 2v'3(n +2)(n + 1)sy —2V6(n +2)s y3k, —(yi —2y )k,2

—[(yi+y2)(2ii +5)—3a]s

(17)

Here

2e8mo
(18)

We have two heavy-hole and two light-hole solutions at
8 =0 for each n value if n & 1. But for n (0 some of the
coefficients c;(z) must be set equal to zero and we have
fewer solutions. For the ground state, which is a heavy-
hole state, we only have one Landau level for n = —2,
—1, and 0.

We then calculate the cyclotron masses from the al-
lowed transition energies using the definition:

efiB
(19)

hcN,

eB
(20)

In the present case N, =5~10". cm, and we then

where b,E is the energy difference between the two Lan-
dau levels. Two conditions must be fulfilled for a transi-
tion to take place.

(1) The selection rules must be fulfilled. They were
worked out by Suzuki and Hensel and by Trebin,
Rossler, and Ranvaud. In our case we find that we must .
have hn=+m, where m is an odd integer. The transi-
tions with m = 1 are expected to be strong, while the tran-
sition probability for m )3 comes in with the coefficient
(y3 y2) and would be absent if the axial approximation
were exact. Transitions with m =3 and 5 can possibly be
seen, while those with m )7 are expected to be difficult to
detect experimentally.

(2) The transitions must also take place from a filled
level to an empty level. (One of these levels can be par-
tially filled. ) The filling factor v (the number of occupied
Landau levels) is given by

find v=20. 68/8, where 8 is measured in T. The third
level is, e.g., partially filled between 8 =6.89 and 10.34 T.

The levels can be ordered in two series, one starting
with n = —2 and the other one starting with n =1. Tran-
sitions between these two series are in principle possible,
but it turns out that no such transitions with En=+1
have reasonably small transition energies, i.e., reasonably
large effective masses. It should be noted that in the
present case one can hardly define one effective mass cor-
responding to each subband for 8 =0. Instead, different
transitions are possible in different 8 intervals, and for
each transition one can define one effective mass, which
in general is 8 dependent.

III. RESULTS

The results of the calculations depend on a number of
input parameters, some of which are given in Table I.
The doped material is usually assumed to consist of
Alo 5Gao 5As. Some parameters depend on the experimen-
tal conditions and can in some cases be difficult to deter-
-mine experimentally. For this reason we have performed
calculations for different values of the valence-band
discontinuity EE„, the background donor concentration in
the GaAs N~, the acceptor concentration in the
Al„Ga& „As X„and the areal ho1e density X,. The
band-gap difference between GaAs and Al„Chai „As is
fairly well known, but the question of how it is divided
between the valence band and the conduction band has re-
cently been subject to discussion. Different experimental
determinations of the fraction of the band-gap discon-
tinuity in the valence band have given quite different re-
sults, e.g., 15% (Ref. 31), 12% (Ref. 32), 43% (Ref. 33),
35% (Ref. 34), 40% (Ref. 35), and 20% (Ref. 36). In our
previous paper we pointed out that the band bending in
the Al Gaq „As in the heterostructure investigated by
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0

Stormer et al. , which had a spacer layer with d =70 A,
ought to be larger than hE, (using Dingle's rule ') and we
would not have any 2D hole gas in that case. Wang
et al. have used essentiaHy the same approach to deter-
mine a new value AE„=210 meV for the GaAs-
Alo sGao 5As interface. This is about 33%%uo of the band-

gap discontinuity according to Ref. 30. This value lies
roughly in the middle of the suggested values and is sup-
ported by very recent experiments. It will be used in
most of the calculations.

In the paper in which the first observation of the 2D
hole gas was reported, Stormer and Tsang' estimated that
the GaAs had a net donor concentration of 10' cm
We use this value in most of our calculations. In some
subsequent papers, with which we compare our results,
the backgrourid doping concentration was not given and
therefore we have also performed some calculations for
lower donor concentrations. Unless anything else is speci-
fied, we assume that N, =10' cm, that the areal hole
density in the inversion layer is X, =5X10"cm, and
that the spacer-layer width d is zero. Below we will in-

vestigate the effect when one parameter at a time is
varied.

In Fig. 2 we give the subband dispersions (for 8 =0) in
the spherical model' and in the axial model. ' It is seen
that the same general features as were pointed out in our
previous paper ' remain as we change from the spherical
to the axial model: The subbands are split for k&0 (we
will call each of these "spin subbands"), they are strongly
nonparabolic, and the second subband pair even bends up
close to k =0. The main difference is that the subbands
are shifted in energy, but it is also seen that the dispersion
is changed. This has a clear effect on the classical effec-
tive masses, which are given in Table II. The calculation
in the axial model with the parameters given below Fig. 2
will be considered as reference results in the rest. of the pa-
per.

None
AE„=94 meV'

125 meV
269 meV'
2000 meV

Nd ——10'" cm
10' cm

N, =2& 10' cm

y( ——6.98, y2, ——2.25, y3 ——2.88
Spherical approximation
Exact Hamiltonian
Experiment'

0.890
0.981
0.943
0.878
0.818
0.873
0.827
0.852
0.758
0.479
0.990
0.60

. 0.198
0.271
0.231
0.190
0.165
0.195
0.196
0.200
0.190
0.162
0.196
0.38

'AE„ taken from Ref. 31.
Reference 36.

'Reference 33.
Valence-band parameters for GaAs taken from Ref. 40.

'Reference 3.

Using the self-consistent potential from the axial-model
calculation fixed we have also calculated the subband
dispersion using the exact valence-band Hamiltonian (2)
for k values in different directions in the k„-k» plane. In
Fig. 3 we give the dispersions in the [100] and [110]direc-
tions and compare them with the result in the axial
model, which, as expected, lies in between these results.
In Fig. 4 we have shown the Fermi surfaces for the upper-

TABLE II. Classical effective masses for the GaAs-
Alo5Gao5As interface for different input parameters and dif-
ferent models. The results in the first row are for the axial
model and the following parameters: N, =5 &( 10" cm
N =10' crn, Nd ——10' cm, EE„=210 meV, and d =0.
m+ and m* denote the higher and the lower masses corre-
sponding to the upper and the lower filled spin subbands in Fig.
2.

Parameter changes

-30 -40

-35—

-40
OJ

-50,
UJ

-55

-55 -60

-60 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0

kit(106cm ')

FIG. 2. Energy bands as a function of the wave vector paral-
lel to the (001) GaAs-Alo5Gao5As interface, k~I, in the axial
(solid lines) and the spherical (dashed lines) approximations.
The Fermi level is drawn for each case. N, =5)&10" cm
N, =10' cm, N~ ——10' cm, AE„=210meV, d =0.

-65
0.0 0.5 1.0 1.5 2.0 2.5 3.0

{106cm ')

FIG. 3. Energy bands as a function of k~~, for the EsaAs-
A1Q 5GRQ /As interface in the [100]direction (dashed lines), in the
[110]direction (dot-dashed lines), and according to the axial ap-
proximation (solid lines). N„N„Nd, AE„, and d are the same
as in Fig. 2.
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I 1 1 oj

FIG. 4. Fermi surfaces for the uppermost subband pair for
wave vectors parallel to the GaAs-Alo ~Gao5As interface. The
parameters are the same as in Fig. 2.

most subband pair. It is seen that the Fermi surface of
the spin subband corresponding to the higher effective.
mass is strongly anisotropic, while the other one is almost
isotropic. However, it should be noted that also for the
latter spin subband there is a clear difference between the
dispersions in the different directions for wave vectors
larger than the Fermi wave vector, as is seen in Fig. 3.
We have found that about 72% of the charge is in the up-
permost spin subband. This value is higher than the ex-
perimental result, 61%. The better agreement in our pre-
vious calculation was accidental and due to the use of the
less-accurate spherical approximation.

We have also performed calculations for other values of
EE„, including AE„=2 eV, in order to compare with oth-
er calculations where an infinite b,E„value was assumed.
When b,F.„ is varied, it is found that the light-hole bands
are shifted more than the heavy-hole bands. We have also
found that the effective masses are changed. As is seen in
Table II the lower mass changes almost by a factor of 2 as
we go from &&,=94 meV (=0.15&Fs) to b F.„=2eV. In
the latter case we have also found that the inner Fermi
surface becomes almost exactly a circle and that the outer
circle becomes less warped than in Fig. 4, in qualitative
agreement with other calculations. ' *'

The background doping concentration in the GaAs is of
course difficult to measure accurately, but we have found
that it infiuences the results, in particular the intersub-
band separations, significantly. A similar conclusion was
drawn by Stern and Das Sarma for the interface between
GaAs and n-type Al„Gai „As. From Eqs. (6)—(9) one
sees that a decrease in Xd leads to a smaller slope of V„'~
in Fig. 1 and that the total potentia1 thus becomes wider.
Our calculations indicate that the total band bending due
to the inversion layer potential V'"'( —ao ) simultaneously
increases somewhat. The total effect is that the absolute
values of the subband energies decrease and the effective
masses are also affected. We will tell Inore about this ef-
fect when we come to the case with 8&0.

The quantities X„X„and d are clearly interrelated.
%'e have, however, found that the dependence of the sub-
band dispersion on the spacer-layer width d is negHgible
as long as d is in ihe experimentally interesting range.
For this reason we can vary X, or N, separately within
certain limits, assuming that one of these parameters is

-35

FILLING FACTOR

108 6 4 3

EF(8=0)
-40

-SO
0 1 2 3 4 5 6 7 8 9 l0

VAGXETiC FIELD(T)

FIG. 5. Landau levels with indices (3 (shown at each line)
as a function of the magnetic field in the hole gas at the GaAs-
Alo 5Crao qAs interface. The filling factor v [Eq. {20)]is given at
the top of the figure. The thick line indicates the position of the
Fermi level for high magnetic fields. Same parameters as in
Fig. 2.

0

kept fixed by a suitable change of d. If we set d =70 A
to obtain the same structure as in Ref. 3, and compare the
band bending in the Al Ga~ „As to AE, and EJ; in the
inversion layer, we find that our results are consistent
with a value of 52 ——66 meV. The Fermi level in the bulk
Al„Gai „As would be at the acceptor level if it were
lightly p doped and compensated. However, 52 is fairly
uncertain in the present case due to the heavy doping of
the Al Ga& „As. As an input parameter, 5z is only used
in Eq. (7), where the right-hand side is clearly dominated
by Eg.

As is seen in Table II the classical effective masses do
not agree very well with those found experimentally by
Stormer et al. , 0.60 and 0.38 (in units of the free-electron
mass). The agreement becomes much better if we include
the magnetic field in the calculation and compute the
Landau levels. These are shown in Fig 5for. the "refer-
ence material" (same parameters as in Fig. 2). As was
mentioned above the calculations with a magnetic field
are done in the axial approximation. If the subband
dispersion were parabolic one could expect the Landau
levels to vary linearly with the magnetic field. We see,
however, that the dependence is far from linear and that
many of them tend to become horizontal for large mag-
netic fields. This is due to the repulsion between the lev-
els belonging to the first subband pair and those of the
second pair having the same Landau-level index.

To compare with the experimental results we have cal-
culated the energies for transitions obeying the selection
rule b, n =+1 between Landau levels of which one is (par-
tially) filled and one is (partially) empty. In Fig. 6 we
have also included the experimental results from Ref. 3.
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FIG. 6. Calculated transition energies, i.e., Landau-level
separations for transitions obeying the selection rule hn =+1
and the occupation requirements (see text), as a function of
magnetic field for the GaAs-A1056ao 5As interface (solid lines).
The indices of the Landau levels between which the transitions
take place are indicated near the lines. The dots for smaH 8
values are interpolated values. The open circles are the experi-
mental results by Stormer et al. (Ref. 3). Same parameters as in

Fig. 2.

It should be noted that the transitions to an almost-full
level or from an almost-empty level should be weak, but
for most magnetic fields one should expect to see three
strong transitions. These transitions all have b,n=+1
and should be seen together with those with An =—3 and
hn = + 5 (weak transitions) for incident light with one cir-
cular polarization. The transitions with An = —I are all
found to have quite high transition energies. Therefore,
we predict that the spectrum with the opposite circular
polarization should be fairly structureless at not-too-high
energies. For each of the transitions shown in Fig 6we.
have also calculated the corresponding effective mass us-

ing Eq. (19) and have shown the results in Fig. 7. It is
clear that the effective mass depends on the magnetic field
for two reasons: (1) The energy difference between two
given Landau levels varies with magnetic field in a non-
linear way and (2) transitions between different pairs of
Landau levels become possible in different 8 ranges de-
pending on the position of the Fermi level.

The agreement with experiment for the higher mass is
very good. The trend that it increases with decreasing
magnetic field and approaches the classical effective mass
in the hmit B—+0 is also clear. The two experimental
points in Fig. 6 for the highest 8 values are not quite
along the same straight line as the two points for lower 8
values and we suggest that this is a real effect caused by
the change of allowed transitions with magnetic field. We
have found in our calculations that these transition ener-

0 l 2 3 4 5 6 7 8 9 l0
MAGNETIC FIELD (T)

FIG. 7. Effective masses {in units of the free-electron mass
mo) calculated using Eq. (19) for the transitions shown in Fig. 6
(solid lines). The indices for the Landau levels involved in the
transitions are indicated. The crosses for 8 =0 are the classical
effective masses in the axial approximation calculated with the
use of Eq. (14). The dots are interpolated values. The open cir-
cles are the experimental results from Ref. 3. Same parameters
as in Fig. 2.

gies are not very sensitive to the input parameters.
The lower mass is also in quite good agreement with ex-

periment for 8 & 7 T, where it corresponds to a transition
between levels with Landau-level indices I and 2. Be-
tween 5.1 and 6.9 T, where both these levels are filled, we
have found no effective masses in agreement with the ex-
perimental value 0.38. One possible reason for this
disagreement is that we have used the axial approximation
in the Landau-level calculation. If the exact Hamiltonian
is used, Landau levels with n and n+4 are coupled. '

This implies in particular that the Landau levels with
n = —1 and 3 in Fig. 5 should not cross and that these
two levels actually have mixed n = —I and 3 characters.
At still lower magnetic fields we again have some transi-
tions with energies in reasonable agreement with experi-
ment. It should be noted that these levels are quite sensi-
tive to the input parameters in the calculation. The trend
is clear, however, that the lower mass decreases with de-
creasing 8, in contrast to the heavier mass.

This is in good agreement with the recent experimental
results by Eisenstein et al. , where effective masses in the
region 0.25—0.3 were obtained for low magnetic fields.
This sample differed from that in Ref. 3 mainly in that

was 2)& 10' cm instead of 10' cm . We have
performed calculations for the parameters of x, N„K„
and d used in Ref. 5, for Nd ——10' cm and for different
values of EE„The calculated . lower effective masses for
8 =1 T are shown in Table III together with the experi-
mental result. For AE„=90 meV, i.e., the "old" value ac-
cording to Ref. 31, the agreement is quite good. In this
case we have also found that the effective mass is 0.273 at
8 =0.5 T and that 70% of the charge is in the uppermost
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90'
120
201'
258'

Experimentg

0.306
0.266
0.227
0.222, 0.220
0.30

'The sample actually had a spacer layer of width d =140 A.
For small values of h,E„ this would lead to the situation when
no 20 hole gas can be formed. We have ensured that for
dE„=258 meV the difference between the results for d =0 and
140 A is negligible.
As is seen in Figs. 6 and 7 and discussed in the text, we have in

general two m+ values and one m value or one m+ value and
two m * values, depending on the position of the Fermi level.
'EE„ taken from Ref. 31.
dReference 36.
'Reference 37 {or 38).
Reference 33.

'extrapolated value from Ref. 5.

spin subband (for 8=0). Both results agree very well
with experiment. This should not be taken as an attempt
to determine hE, . The effective masses also depend on
other factors.

If we vary different input parameters, we find that the
effective masses are fairly insensitive to the acceptor con-
centration in the A1„Ga~ „As, X, . A change in the
background donor concentration in the GaAs, Xd, has a
clear effect on some transition energies while other transi-
tion energies are almost unaffected, e.g., the transition
considered in Table III. If we change the hole density X„
keeping the other parameters fixed, we can see in Fig. 8
that the cyclotron effective masses at 8 =5 T for each
transition depend only weakly on X, but that the effective
masses change considerably because different transitions
are possible in different ranges of N, since the filling fac-
tor v changes. For comparison we have also shown the
classical effective masses (for 8 =0) calculated according

FILLING FACTOR
1 2 3 4 5 6 7 8 9

1.0 j I I 1 1

0.8—
0.7- /

/
/ 2 3/~

/
/ 1~2

/'

3~4

7 8

5 6 6 7

0.0
0 1 2 3 4 5 6 7

I I I

9 10 11 12

Ns (I011cm 2)
FIG. 8. Cyclotron effective masses for B =5 T (solid lines)

and classical effective masses for B=0 T {dashed lines) as a
function of the areal hole density N, in the inversion layer at the
CxaAs-Ala ~oao 5As interface. The indices for the Landau levels
involved in each transition are indicated. N„Nd, AE„, and d
are the same as in Fig. 2.

TABLE III. Lower cyclotron effective mass {m*)at 8 =1 T
for the CxaAs-A1048Cxaoq2As interface for different values of

Ev Ns=4. 8X10"cm 2~ &a=2X10'8 cm 3, Nd ——10' cm
d =0.'

EE„{me V)

to Eq. (14). They are fairly constant except for a sharp
rise of the higher mass up to N, =4&&10" cm . We
have also noted that the subbands at k =0 do not follow
an X, dependence as is sometimes assumed. We rather
find that E(0) varies as N, with 0.2 (a &0.5, where a is
different for different subbands and different N, ranges.
For N, =1.2)&10' cm the band bending (for d =0) in
the Al„GaI „As is so large that the Fermi level in the
bulk would be just above the valence-band edge instead of
a distance 52 above it. Thus we can conclude that for
N, =10' cm and Nd ——10' cm one cannot reach
higher hole densities than about 10' cm (unless a gate
voltage is applied). Even for the highest N, value con-
sidered we are far from the situation when the second sub-
band starts to get filled. To reach this situation much
heavier doping of the Al„Gai „As is needed.

IV. DISCUSSION

We have seen that for quantitative. calculations for
two-dimensional hole systems one cannot describe the
valence band in terms of a few effective masses but must
take the degeneracy into account. We have made some
approximations of which the most important one prob-
ably is the neglect of many-body effects. Such effects
have been considered for n-channel inversion layers at the
Si-SiOz interface and more recently 'for the GaAs-
Al„Ga, „As interface. ' Ando ' concluded that they
are important in the former case but less important in the
latter case. For p-channel Si inversion layers the experi-
mentally determined effective masses differ by a factor of
2 between two different research groups. Landwehr
et al.~ found good agreement between one set of data and
calculations of the classical cyclotron mass in the Hartree
approximation. It should be noted that X, was fairly
high (10' —10' cm ) in these experiments. On the other
hand, Ohkawa' has calculated the many-body enhance-
ments of the effective hole masses in a p-channel Si inver-
sion layer and found them to be substantial for the com-
paratively small areal hole density considered in the
present paper. We have found quite good agreement for
the GaAs-Al„Gai „As interface without taking many-
body effects into account. More experimental results are
needed before one can conclude whether they are impor-
tant or not.

Another approximation is that the part of the calcula-
tion where the potential V(z) is calculated self-
consistently is done in the axial approximation. %'e have
seen that the classical effective masses did not change
very much when we included the exact matrix (2), and we
expect that V(z) is not strongly dependent on the k~~

dispersion. More serious, perhaps, is that the Landau lev-
els are calculated in the axial approximation, with impli-
cations that have been mentioned above, and that the po-
tential V(z) for 8 =0 was kept fixed. The 8 dependence
of V(z) may be important at large magnetic fields. We
have also neglected effects of Landau-level broadening.

The splitoff band has not been explicitly included in the
Hamiltonian matrix and the terms linear in k have also
been neglected, but we do not beheve that this is a serious
error. . The valence-band parameters are somewhat uncer-
tain, however. In Ref. 13 the parameters determined by
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Skolnick et al. yi ——6.98, y2
——2.25, and y3 ——2.88 for

GaAs were used. These values do not differ very much
from the values that we have used (Table I), but we have
found that the cyclotron effective masses for the 2D hole
gas were about 10%%uo smaller when we used the y's deter-
mined by Skolnick et al.

We have assumed that both the layers are semi-infinite.
In the design of transistors, etc., it is desirable that the
doped layer is depleted. Thus the band bending on the
other side of this layer should start near the same position
as the band bending at the GaAs side. This is a complica-
tion if one tries to deduce AE„ from the design parame-
ters. We have also found that even for the highest N~
value considered (10' cm ) the width of the depletion
layer in the GaAs, l„, would be larger than the width of
the GaAs layer used in Ref. 3, 1 pm. At the opposite side
of this layer the Fermi level should approach a deep level
in the band gap of the Cr-doped semi-insulating GaAs
substrate.

We have used a generalization of the commonly applied
boundary conditions for heterostructures that the envelope
wave function E and (1/m*)(dI'/dz) are continuous.
This is a reasonable assumption since it leads to a con-
served current density. The boundary conditions for the
envelope function are derived using assumptions about the
Bloch functions, which should be examined in more de-
tail. Finally, there are of course numerical errors in con-
nection with the finite basis set and the numerical integra-
tions, but we do not believe that they are significant. As a
check we have modified our program to calculate the en-

ergy levels of a 2D electron gas and found that they agree
very well with the Hartree-approximation results by Stern
and Das Sarma.

We have assumed that the GaAs is slightly n type. If it
is p type we have an accumulation layer rather than an in-
version layer. The main difference is that the Fermi level
then approaches the valence-band edge instead of the
conduction-band edge in the bulk GaAs and the charge
density due to ionized impurities is thus changed. Calcu-
lations for an accumulation layer will be presented else-
where.

We have briefly mentioned that Bangert and
Landwehr' and Broido and Sham' recently have done
quite similar calculations. There are some differences in
the details of the calculations but the results differ in
some cases significantly. Broido and Sham, ' for example
use basis functions which go to zero at the interface, ie.
they take bE„ to be infinite. To compare with these re-
sults we have also done calculations for b,E„=2eV, i.e., a
value which for practical purposes can be considered as
infinite. We then find that the results practically coincide
for k =0 but that their subbands have more dispersion,
which explains their low effective masses. They have
used a much smaller basis set, which probably becomes
less accurate as k increases. Bangert and Landwehr' use
a basis set which probably gives an accuracy comparable
to that of our calculations. A direct comparison is com-
plicated by the fact that they have included the image po-
tential in their calculation for an infinite value of b,E, .
However, if we compare the subband dispersion relative to
the Fermi energy the results agree quite well. They have

In As Ga Sb

EF
CB

VB

sibound
state

VB
EF

e stotes

FIG. 9. Schematic band diagram for the conduction and
valence bands and quasibound states at the InAs-GaSb inter-
face. The hatched areas above the potential well for electrons in
the InAs and below the potential well for holes in the GaSb indi-
cate continuum states.

also done calculations for a finite AE„value but conclud-
ed that the effective masses do not depend very much on
hE„. However, we have found that in particular the
smaller effective mass strongly depends on bE„. A differ-
ence in the treatment of the boundary conditions could
possibly explain the discrepancy.

In any case, it is clear that none of these three calcula-
tions for B=0 gives two effective masses in the neighbor-
hood of the experimental values, which are obtained at
fairly high magnetic fields. The effective mass clearly de-
pends on 8 as described in Sec. III. After the inclusion of
a magnetic field, Bangert and Landwehr' found quite
good agreement for the lower mass 0.38 but no transitions
corresponding to m* 0.6. If we compare their results to
ours we find that the transition for which we found good
agreement with the higher mass is the same as that for
which they found m*=0.38. Thus, they find a larger en-

ergy separation between these two Landau levels than we
do. One possible explanation for this difference is their
neglect of the background char~e density in the GaAs.
This implies that the slope of V„'~ goes to zero and then
the 2D hole gas becomes bound only by V'"'. [See Fig.
1(b).] The strong anticrossing behavior seen in Fig. 5 is
much less pronounced in Ref. 13. The cyclotron effective
masses obtained by Broido and Sham' are only partly in
agreement with experiment, and like Bang crt and
Landwehr they do not reproduce the larger effective mass
0.6. The reason is probably the same as was mentioned
above for 8 =0, the smallness of their basis set.

The method used in this paper is also applicable to
many other heterostructures. However, it cannot immedi-
ately be applied to the so-caHed type-II heterostructures
which can be exemplified by the InAs-GaSb interface.
This system is interesting because the GaSb valence-band
edge lies higher in energy than the InAs conduction-band
edge and a transfer of electrons from the GaSb to the
InAs occurs even in the absence of doping. This situa-
tion is schematically shown in Fig. 9. We see that bound
electron or hole states on one side of the interface are de-
generate with continuum states on the other side. Prelim-
inary calculations suggest that the interaction between
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these two types of states may be important but it cannot
be properly taken into account using the present formal-
ism. This effect does not occur in the InAs-GaSb super-
lattice. 2 It is interesting that the quantized Hall effect
has been observed for the single InAs well, since it ap-
pears that the parallel conduction of electrons and holes in
InAs and GaSb, respectively, would destroy this effect.

We have noted that the effective masses, both for 8 =0
and 8&0, are quite sensitive to the details of the calcula-
tion. For a better comparison with experiment, other ex-
periments than cyclotron resonance would be desirable.
The p-channel Si inversion layer has recently been exam-
ined using inelastic light scattering by Baumgartner
et aI. and using parallel excitation by Wieck et al. ,
and the former method has also been applied by Pinczuk
et al. for multiple GaAs wells between p-type
Al„Gai „As layers. Such experiments for the present
system could give information about more than the
ground subband and thus be a good test of the different
calculations.

V. CONCLUSIONS

We have calculated the subbands for 8 =0 and the
Landau levels for 8&0 for a 2D hole gas in the envelope
function approximation. The finite value of the valence-
band discontinuity and the matching of the wave function
at the interface have been taken into account. The poten-
tial has been calculated self-consistently in the Hartree ap-
proximation. We have found that, although the E(k~~)
dispersion is found to be anisotropic, the subbands and the
classical cyclotron effective masses in the axial approxi-
mation are not far from those using the exact valence-
band structure [Eq. (2)j. We have also found that the axi-
al approximation is considerably more accurate than the
spherical approximation, which was used in an earlier pa-

per. When a magnetic field is included it would be
cumbersome to go beyond the axial approximation.

We have found that the cyclotron effective masses
strongly depend on the magnetic field and that the trends
for this dependence are different for different effective
masses. Thus one cannot expect to obtain good agreement
between the calculated classical cyclotron effective masses
(for 8 =0) and the effective masses measured in a strong
magnetic field. In contrast to other calculations' ' we
have found very good agreement with the higher experi-
mentally determined effective mass 0.60. For the smaller
mass 0.38 found in Ref. 3 we have good agreement at
higher magnetic fields. Our calculation is also in agree-
ment with the trend recently found by Eisenstein et al.
that this mass decreases with decreasing magnetic field.
We have found that the results are quite sensitive to the
valence-band discontinuity hE, and the background im-
purity concentration in the GaAs and have shown how
the effective masses change with the areal hole density
N, . We have also given explanations for the discrepancies
among our calculation, that by Bangert and Landwehr, '

and that by Broido and Sham. ' For a better check of our
results we have proposed some experiments, which also
would give information about excited subbands.¹teadded in proof. Accurate calculations of subbands
and classical cyclotron effective masses have very recently
been published [T. Ando, J. Phys. Soc. Jpn. 54, 1528
(1985)]. These results agree very well with ours.
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