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Spontaneous emission by two atoms with different resonance frequencies near a metal surface

K. C. Liu and Thomas F. George
Department of Chemistry, University of Rochester, Rochester, Xew York 14627

I,'Received 26 December 1984)

The interaction between electromagnetic radiation and two two-level atoms with different reso-

nance frequencies near a perfectly conducting metal surface is considered. The atom-atom and
atom-surface separations are assumed to be smaller than the corresponding mean resonance wave-

length. A quantum-mechanical version of the image method is adopted to study the spontaneous
emission by such an atomic pair. %'ithin the framework of this approach, each individual atom and

its corresponding image are kinematically correlated, while dyna'mically they are in effect indepen-

dent. The total radiation rate of the atomic system is calculated as a function of time for various

values of frequency difference. Explicit results are given for several different initial states of the
atomic system. Some of them exhibit superradiance, and some initially act as photon-trapping
states and eventually are able to undergo radiative decay. Oscillations as a manifestation of beating

appear jn the time evolution of the radiation rate in all cases of the various initial states, when the

frequency difference becomes larger than a critical value given as twice the mean halfwidth of the
atomic resonance lines.

I. INTRODUCTION

Over a decade ago, with the technical advances in
fatty-acid monolayer assembly, ' a series of measure-
ments was successfully made on the fluorescent lifetime
of oriented dye molecules held at well-controlled distances
from a metal mirror. " It was found that for large dis-
tances from the metal surface the fluorescent lifetime os-
cillates as a function of distance, while for small distances
the lifetime approaches zero monotonically. A theoreti-
cal basis for these experimental observations was provided
by Kuhn, ' who utilized Sommerfeld's classical elec-
tromagnetic treatment for radio waves propagating along
the earth's surface. Within the framework of this theory,
the emitting molecule acts as an oscillating dipole near a
partially absorbing and partially reflecting surface. The
interference between the reflected wave and the initial
wave gives rise to the observed oscillations in the lifetime
as a function of distance. A number of researchers'
have further developed the calculations along the same
line of arguments for more detailed energy transfers be-
tween the molecule and various surfaces, obtaining good
agreement with experimental results.

On the other hand, Morawitz' adopted a quantum-
mechanical viewpoint to investigate the emission by a
two-level atom at a distance comparable to the radiation
wavelength from a metal surface. Assuming the metal to
be a perfect conductor, i.e., with an infinite conductivity,
he replaced the metal mirror by an image behind the mir-
ror, at a distance equa1 to that between the source atom
and the mirror. A symmetric or antisymmetric linear
combination of the atomic excited and ground leve1s can
then be used to represent the initia1 state of the emitting
atom in front of the mirror, corresponding to, respective-
ly, the perpendicular (in phase) or parallel (out of phase)
dipole transition to the mirror plane. The associated
physical interpretation is simply that the emitted photon

from the atcm carries no information as to which process
has occurred, be it by either direct emission or by reflec-
tion from the surface, so that it can be considered to be
emitted from a fictitious image atom The. same results
were obtained as those from the classical approach. '

This quantum-mechanical treatment was later extended
by Milonni and Knight' in the consideration of spontane-
ous emission of an atom between two infinite plane mir-
rors parallel to each other. Previous theoretical ap-
proaches' ' for this two-mirror problem usually involve
an expansion of the electromagnetic field in appropriate
mode functions satisfying the boundary conditions im-
posed by the mirrors. Again, both approaches lead to the
identical results, lending support to the quantum-
mechanical treatment for the radiative emission of atoms
near a metal surface. As a matter of fact, it has motivat-
ed the application of the more sophisticated quantum-
electrodynamic theory to such a problem.

In this paper, we shall consider the spontaneous emis-
sion from a system of two atoms with different resonance
frequencies in the presence of a metal surface. It is im-
portant to note that the spontaneous emission of radiation
has interesting properties related to the source atom's en-
vironment. Perhaps the most famous example of such an
environmental influence is Dicke's superradiance, which
has stimulated a large number of investigations, both
theoretica11y and experimentally, on cooperative radiation
for atomic-gas and condensed-matter ' ' systems.
One of our aims here is to study a somewhat related effect
of interest, namely, the influence of images on the radia-
tion of a system of atoms, which may be in a stage of
cooperative radiation, when they are in the neighborhood
of a metal surface. For this purpose, the quantum-
mechanical approach is indispensable. Another important
feature underlying the present problem is that the reso-
nance frequencies of the atoms are different. As shown in
the case of free space, namely, in the absence of the met-
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al, the emission rate of the radiation from two atoms with
different resonance frequencies has distinctively different
patterns, depending on the ratio of frequency difference to
the single-particle decay rate. The situation is expected to
become more complicated when there is a metal surface
nearby. We shall apply the image method' ' to this
problem for which the atom and the corresponding image
are treated on the same footing. In effect, the atoms and
images can be treated as if they were dynamically in-
dependent of each other, as far as the interaction with the
radiation is concerned. The spontaneous emission rate for
the system can thus be calculated by standard methods.
When the frequency difference is set equal to zero, the
case for two identical adatoms on a metal surface ensues
naturally.

This paper is organized as follows. In the next section,
we introduce the atomic and radiation-field operators.
This is followed by the construction of atom-image corre-
lated states and the effective Hamiltonian for the system,
where physical arguments are provided. The equations of
motion are given in Sec. III. Here a conservation law is
established which is useful for expressing the total emis-
sion rate solely in terms of the atomic operators, and sub-
sequently a hierarchy of coupled equations are solved with
the help of appropriate approximations. Finally, we are
able to relate the emission rate to all expectation values of
initial states. For Sec. IV, a variety of possible initial
states which can be prepared experimentally are con-
sidered, and the corresponding emission rates are comput-
ed with respect to time and frequency differences, accom-
panied by a discussion of the results.

II. THEORY

I c„,c„j=1 . (2.1)

A. Two-level atoms and the quantized
electromagnetic field

We shall restrict ourselves to the case where each atom
near a metal surface has just two energy levels. We let

~

—&) denote the ground level for the atom labeled by the
index p and

~ +&) the excited level, where normalization
and orthogonality require that ( +„~ +&)= ( —„~ —„)=1 and (+~ j

—„)=0. We designate the
frequency corresponding to the energy difference between
the two levels as co&, where co&&co&. Although we shall
concentrate on the situation in which the distance between
the atoms is much smaller than their radiation wave-
lengths, we shall assume that the wave functions of the
two atoms -do not overlap, i.e., (+„~+,) =0 for p&v, so
that the atoms are distinguishable. The t'ransitions be-
tween the ground and excited levels can be facilitated by
introducing excitation (raising) and deexcitation (lowering)
operators c& and c„, respectively, with the properties
that cp (

—p) =
( +p), cp ( +p) =0, cp ~

—~) =0, and
c„~ +z) ='

~

—&). As a result, it can be readily recog-
nized that c& and c& obey the anticommutation relation,

a pfn p)=(n p+1)' fn p+1) .

These operators obey the commutation relations

[aap~aa'p'] 5aa'5pp' r (2.3)

and the occupation number states
~

n p) form the ortho-
normal set, namely, (n~p

~
n~ p ) =5«5pp. All atomic

operators c~ and c„commute with all operators (a p
and a~p) for the quantized electromagnetic oscillator.

B. Atom-image correlation in the presence
of a metal surface

In the present work, we shall assume the metal to have
a perfect conductivity. Therefore, the role played by the
metal surface with respect to radiation is nothing more
than a reflecting mirror. The radiation emitted from an
atom close to the surface can reach another atom by either
direct transmission or through reflection from the surface,
as though it were emitted by the image of the first atom
(see Fig. 1). There is therefore a possibility of interference
between the radiation fields from two processes, as in the
case of a Lloyd's mirror. Since thyrse fields carry no in-
formation about which process has occurred, it leads one
to consider the atom and the corresponding image on the
same footing. ' ' Namely, we may describe the emission
by a single atom in the vicinity of a metal surface as a
two-atom problem with complete uncertainty as to which
atom is excited. We can thus write the initial (excited)
state incorporating such ambiguity for atom p as

two atoms that operators representing different atoms
commute, i.e.,

[c„,c„]=[cq,c„]=0,
(2 2)

[c„,c,]=0 for p~v .

Thus the atoms, -according to the above descriptions, can
be modeled as dipoles. Since our main concern here is the
total radiation rate of the system, we shall neglect the
dipole-dipole interaction between the atoms, which is ex-
pected to only shift the emitted radiation frequencies.
Therefore, the atoms are interacting with each other via
the common radiation fields.

Each mode of the radiation field can be treated as a
quantum oscillator with frequency 0 . We further distin-
guish the n different quantum oscillators with the same
frequency Q~ by a second index P. For example, in the
case of a plane wave, a may refer to the frequency (or

~
k ~, where k is the wave vector), while P refers to direc-

tion of k and the polarization. Transitions between occu-
pation number states

~
n~p) are described by annihilation

and creation operators a~p and a ~ with the well-known
properties

a~p
~
n~p) =(n~p)

~ n~p —1 )

It is also required by the nonoverlapping property of the icy)+ (i++ ) ( gp)+ i gp) i+I ))P (2.4)



3624 K. C. LIU AND THOMAS F. GEORGE 32

atom

n

Hatt =Pl g co&(c&&c&&+cz&cz&)+Pi+A~ g (a~palp+ —, )
p=l a P=l

&II II/ I / I I ( ( i

—&gg g g[aap(~wp+~tp)+(~ap+~sp)aapI
p, a P

(2.6)
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FIG. 1. Two two-level atoms with different resonance fre-
quencies coI and m2 located near a perfectly conducting metal
surface. Both electronic transition di.poles are assumed to be
perpendicular to the surface plane. (a) Direct photon transmis-
sion; (b) photon transmission via reflection from the surface.

where the indices A and I refer to the atom and image,
respectively, while the meanings of

~
+ ),

~

—) are the
same as those given in Sec. II A. State

~ e&)+ is used if
the atomic transition dipole is perpendicular to the plane
of the metal surface, because the dipoles of the atom and
its image have the same phase. On the other hand, state

~ e& ) is used when the transition dipole is parallel to the
plane of the metal surface where dipole has a phase oppo-
site to that of its image. The physical picture embedded
in Eq. (2.4) represents a quantum-mechanical version of
the classical description of an oscillating dipole and its
image. The ground state is given by

(2.5)

C. Hamiltonian and emission rate

From the preceding discussion, we see that the effect of
the metal surface can be cast in terms of the correlation
between the atoms and their corresponding images. The
latter can be treated effectively as independent but identi-
cal to their respective source atoms, in the sense that the
source atom and its image are kinematically correlated but
in effect dynamically independent. Thus, one can immedi-
ately write down an effective Hamiltonian for the system
of two atoms with different frequencies to& and co2 near a
metal surface as

1(t)=—g g(a.'p(t)a. p(t) ),
dt

(2.7)

where a p and a ~ are expressed in the Heisenberg pic-
ture. (From hereon, for simplicity of presentation, the
time dependence of the operators will not be displayed un-
less necessary. ) The advantage of working in the Heisen-
berg picture is that the expectation value in Eq. (2.7) is
taken on the initial state of the whole system,

~

C&(0)),
which consists of the atomic and radiation-field states.
Since we are only interested in the spontaneous emission,
it is understood that the radiation-field part of the state
involved here is the vacuum state. Thus, we only have to
pay attention to the various atomic initial states of the
system.

III. CALCULATIONS
A. Equations of motion

Using the effective Hamiltonian of Eq. (2.6) and
Heisenberg's equation of motion, one can obtain the fol-
lowing equations of motion:

a~p+l 0~a(zp=igg(cgp+ et'),
P

cAp+ ~pcAIM tg[cAp~cAp, lg gaap ~

a P

ct~ + E co~ctp = lg [et~,ct~ ]~ Qa~p
a P

(3.1)

(3.2)

(3.3)

where the dot over an operator signifies the time deriva-
tive. In order to simplify the calculation, we begin by
eliminating the rapidly oscillating part in the operator by
choosing a frequency ~0 between col and co2 and defirung
the operators M and K through the relations

Pl

g a~p(t) =M~(t)e
P=l

(3.4)

where g is the radiation-atom coupling constant and cz&
(cz„) is the excitation (deexcitation) operator for the pth
atom and cq& (ct&) for the corresponding image, which
obey the operator algebras given in Sec. IIA. In writing
Eq. (2.6) we have assumed that the atom-atom and atom-
surface separations are both smaller than any of the radia-
tion wavelengths, so that there is no phase difference at
different positions of atoms and images. Equation (2.6),
in fact, describes effectively the same physical properties
as those of four atoms, two of them with resonance fre-
quency co& and the other two with a different resonance
frequency co2, except that two with the same frequency are
correlated to each other rather than completely free
atoms.

The quantity of central interest is the total emission
rate of the system, I (t), which is given by
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c„„(t)= ÃA„(t)e

cr„(t)=Xr„(t)e

(3.5)

(3.6)

multiply Eq. (3.1) on the left by Qap and the Hermitian
adjoint of Eq. (3.1) on the right by Q p, and the two re-
sults are summed to give

These new operators are clearly less oscillatory in time.
To write Eqs. (3.1)—(3.3) in terms of these new operators,
we sum (3.1) over P,

X X -p -p= gX X X[ -p( +" )
dt

ga p+iQ gQ p ign——g(CA„+cr„), (3.7)
(CA—,+Cr, )Q.pl . (3.17)

and then transform it by using Eqs. (3.4)—(3.6) into

M +i (Q pro)—M =ign g(ÃA„+XI„), (3.8)

Substituting Eq. (3.16) and its Hermitian adjoint into Eq.
(3.17) and taking the expectation value on the initial state,
we obtain

and, from Eq. (3.3),

&rl +l'(~l O2O)&r—l ='g[&rl ~ &rl ]2~a . (3.10)

Equation (3.8) can be integrated to give

'W (0)

+lgn g I dt'e' "' (@A„+&I~). (311)
P

Summing over all a, we obtain

+Ma=pe Ma(0)+igF(t), (3.12)

where we have used the fact that there are na modes of
radiation oscillators having the same frequency 0 . Simi-
larly, we have, from Eq. (3.2),

&A„+l (~„—~o)&A„=ig[&A„&A„]+~a,

g g(QtpQ p) =2m.g2P(coo)
dt

Xg g ( (CAp +CIp )(CAv+ Crv) )

=yg g ((CA„+col. )(CA, +cr ) )

(3.18)

where y =2ng2p(coo) is the transition rate for spontaneous
elnlsslon by an isolated excited atom. ' Equation (3.18)
can be further written as

I

d y y. &..~., ) =yy&.,„.,„+.,„.,„)dt p

+ygg&(CAp+Cr~)(CA +Cr ))

+y(CA lcr 1 +CA 2CI2+CI ICA I +CI2CA 2) ~

where

F(t)=g J dt'(KA&+Kr&) fdA~(O )e whose solution then yields the total emission rate.

(3.19)

and p(Qa) is the density of radiation oscillators per unit
frequency. Following the arguments of Dillard and
Robl " that the interaction is confined to some frequency
range ~0—$~&Qa(coo+5co with 6co((~0, the double
integrals in Eq. (3.13) can be performed to yield

I'(t) =2tp(too)g(C'A„+ Kr„) . (3.14)

or, with Eqs. (3.4)—(3.6),

g QQap ——ge QQ p(D)+i2rgP(COO)g(CA„+Cr„) .
a p a p P

(3.16)

At this stage we are ready to obtain the total emission
rate by determining a means of finding the expectation
value of Q pQ p [see the right-hand side of Eq. (2.7)]. We

Consequently, Eq. (3.12) becomes

+Ma=pe Ma(0)+imgP(pro)g(CA&+cr„),
a a P

(3.15)

B. Conservation law

We digress for a moment here to derive a conservation
law, which will prove to be helpful solving the overall
problem. From Eq. (3.2) and its adjoint, one can write

+CA~CA~ =lg+CA~ [CA~, CA~ ]p QQap
P a p

—lgg QQapg[CAp~cAp]cAp . (3.20)
a p p

From Sec. IIA, we know that CA„[CA„,CA&]=CA„and
[cA„,cA„]cA„CA& As ——a co.nsequence, Eq. (3.20) be-
comes

+CA&CA&=lg+CApg g ap —lgg QQapg Ap '"' p p a p a p p,

(3.21)

Similarly, from Eq. (3.3) and its adjoint, we obtain

QCI&CI& ——lg+Cr&g QQap —lgg QQap+Crp .
p p a p . a p p

(3.22)
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The addition of Eqs. (3.21) and (3.22) gives Furthermore, by combining Eqs. (3.19) and (3.28) we have
an equation involving only the atomic operators,

g(CA„CA&+CI~CIq) ——igg g g(CA&+CI&)a~p
dt . p

—igg g ga p(cA„+cI„) .
a P p

(3.23)

g (CApcAp+CIpClp ) +'Yg ( CA@CA p+CI~CIp ~"'
p p

= —gag((. ,'„+.,'„)(...+...)
p+v

—|( CA 1Cj1+CA 2CI2+ CI 1CA 1+CI2CA 2 ) (3.30)
In comparison with Eq. (3.17), we find the following con-
servation law:

dt
(N h+XA+XI)=0 . (3.24)

X~h represents the total number of photons, defined as

+1h X Xa~P P
a P

(3.25)

XA represents the total number of excited atoms, defined
as

(3.26)

C. So1utions

and Xi represents the total number of excited images, de-
fined as

cVI =QCIpCIp . (3.27)

Equation (3.24) states that the total number of the pho-
tons and the excited atoms and images is constant. Note
that it is an operator equation and therefore holds for ex-
pectation values on any states. In other words,
Xph+Xz+Xi is a constant of motion.

(3.32)

and

At this point, it should be emphasized that the expecta-
tion value of off-diagonal terms on the right-hand side of
the above equation does not necessarily vanish. This is
the place where the coherence comes into play. It is in the
form of a dipole-dipole interaction between atoms and im-
ages, as induced by the common radiation with which the
atoms interact in phase, resulting from the fact that the
atom-atom and atom-surface separations are smaller than
the mean resonance wavelength. Were we to include the
direct dipole-dipole interaction, we would have an addi-
tional term of the same form but with a direct dipole-
dipole coupling coefficient other than y on the right-hand
side of Eq (3.3.0). However, one should note that the ex-
pectation value of the direct dipole-dipole interaction van-
ishes, since it only has nonvanishing off-diagonal matrix
elements due to the selection rule of electric dipole transI-
tions. The direct dipole-dipole interaction is therefore ex-
pected to affect the frequency shift only.

To solve Eq. (3.30), we define M, I', and Q:

M =g(CA~CAp+CIpcI ), (3.31)

I =Cg )Cg P+Cg tCI2+CI ICg2+CI ICy2

Having set up the conservation law, we immediately
recognize that, from Eqs. (3.24)—(3.27),

Q =cA 1cI1+CA 2CIZ+cI 1CA 1+cI2CA 2 .

Thus, Eq. (3.30) becomes

(3.33)

dt
&

dt „gaapaap g(CA&CA&+CI&CI&) . (3.28) m +pm = —y(p +p'+q), (3.34)

I ( t) = — g(cA„cA„+CIpcIp ~
dt

(3.29)

Thus, with Eq. (2.7), we have the total radiation rate given
by

where the lower-ease letters represent the expectation
values of the corresponding operators of capital letters de-
fined in Eqs. (3.31)—(3.33), i.e., p = (P ), etc.

In order to obtain p and q, we consider the equations of
motion satisfied by I' and Q,

P + (21 + l 6 )P = —) [M +Q —cA 1cA 1(cA 2 +cI 1 +cI2 )(cA 2+ct2) —cI 1cI1(cA 1 +cA 2 +ct2 )(cA 2+cI2)

—(CA 1 +CI1 )(CA 1+CA Z+CI1)CI2CI2 —(CA 1 +CI1 )(CA 1+CI1+CI2)CA 2CA2] (3.35)

and

Q +Q = —1 [M +P +P —CA 1CA 1(CA 2 +CI 1 +CI2 )CI 1
—CA 2CA 2(CA 1 +CI 2 +CI 1 )CA 2 —CI 1CI 1(CA 1 +CA 2 +CI2 )CA 1

—CIZCI2(CA 1 +CA 2 +CI 1 )CIZ —CA 1(CA 1+CA 2+CIZ)CI 1CI1—CA 2(CA 1+CA 2+CI 1)CI2CI2

—CI 1 (CA 2+ CI 1+CI2)CA 1CA 1
—

CI 1 (CA 1 +CI 1+CI2)CA 2CA 2] (3.36)
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where 6=c02—co~.
The off-diagonal terms of four multiplicative atomic

operators in the last two equations, such as cq ~c~ ~c~2cq2,
etc., are nonvanishing provided that the two atoms ex-
change a photon with a third one in its excited level. If
we neglect such terms, it is equivalent to saying that we
are neglecting small terms on the order of y/coo&1.
Under this approximation we have

As shown in the Appendix, r, = r1(0)e r' and
r2 ——r2(0)e '. Equation (3.48) then becomes

s'+4ys+b, s = —4y r2(0)e (3.49)

s "(ItI)+4s'(p)+A, s(p) = —4r2(0)e (3.50)

To simplify the above expression, we further introduce the
dimensionless variables P =yt and A, =b, /y . Equation
(3.49) then takes the new form as

and

P+ (2y+i b, )P = —y(M +Q —2R1)

Q+yQ = y(M—+P+P 2R2)—,

(3.37)

(3.38)

where the primes refer to the derivatives with respect to P.
The general solution of this equation is immediately given
by

s(p)=K1e + +K2e +,r, (0)e
4 —2

4—A.
(3.51)

and

1 (CA 1CA 1+CI 1CI1)(CA 2CA 2+ CI2CI2) (3.39)

R2 =2(CA1CA1CI 1CI1+CA2CA 2CI2CI2) (3.40)

Here we have made use of the fact that
[cA CA, CI~CI~]=D, etc , to w. rite R1 and R2, respectively,
in the compact form in Eqs. (3.39) and (3.40). The corre-
sponding equations for the expectation values of Eqs.
(3.37) and (3.38) are

I ( t) = —ym'(P),
' m'(P)+ m (P) = —[s (P)+q(P)],

(3.52)

(3.53)

where g+ ——2+(4—A, )'I, except for the special case A, =2
which gives rise to a divergent solution. K& and K2 are
determined by the initial conditions s(0) and s'(0) and
will be given later on for the different cases of A, .

Having obtained the solution for s (P), we now proceed
to solve the other equations. In terms of the new variable
P, Eqs. (3.29), (3.34), and (3.38) become, respectively,

and

p+(2y+i b, )p = —y(m +q —2r1) (3.41)
and

q'(p)+q(p)= —[m(p)+s(p) —2r2(0)e ~] . (3.54)
q+yq = —y(m +p +p 2r2) . —

From Eq. (3A1), we further obtain

(3.42)
Our goal is to find out m'(P). For this purpose, we sub-.
tract Eq. (3.54) from Eq. (3.53) and obtain

and

s+2ys+i b,d = y(2m +—q +q*—2r1 —2r*, ) (3.43}
d

[m(P) —q(P)] = —2r2(0)e

which gives the result

(3.55)

d+2yd+ibs = —2y(r*, r, ), — (3.44)

where s =p+p* and d =p —p*. Taking the time deriva-
tive of Eq. (3.43), we get

s+2ys+i bd = —y(2m+q+q —2r1 2r 1 } . —(3.45)

s'+ 2ys +i b,d = —2y( m +q —r1 r1 ) . —(3A6)

Substituting Eqs. (3.34), (3.42), and (3.44) into Eq. (3.46),
we have

s'+2ys+b. S=2y[ib.d+ib, (r; r1)—
+2y(m +s +q) —2yr2+r1+r 1]

We note here that q =q*, since q and q* satisfy the same
equation (3.42), due to the fact that R2, as defined in Eq.
(3.40), is a Hermitian operator and therefore r2 r2. ——
Thus we can rewrite Eq. (3.45) as

m'(p)+2m (p) = —[s (It ) m(0)+q—(0)

+(1—e ~)r2(0)] . (3.57)

Thus, the solution of Eq. (3.57) can be obtained straight-
forwardly.

The properties of s (P) as expressed in Eq. (3.51) depend
on the values of the parameter A. . Let us consider the fol-
lowing cases.

1. 0&A. (2
Writing g=(4 —A. )', we first determine K1 and K2

from the initial conditions s (0) and s'(0):

q (p) =m (p) —m (0)+q (0)+(1—e ~)r2(0) . (3.56)

Substituting Eq. (3.56) into Eq. (3.53), we have

(3.47)

Furthermore, using Eqs. (3A3) and (3.47) to eliminate
~Ad, we obtain

K, = — —r2(0)+(2 —g)s(0)+s'(0).
1- 4

2g
(3.58)

s +4ys +6 s =2y[2y(r1+r1 )+ r1 + I'
1

+id, (r1 r, ) —2yr2] . —
1 4—r, (0)—(2+/)s (0)—s'(0) (3.59)
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where s'(0) can be obtained directly from Eq. (3.43),

s'(0) = —2m (0)—2q (0)+4r1(0)
—2s(0) i—(4—g )' d(0) . (3.60)

Thus, Eq. (3.57) can be integrated with the expression
(3.51) given for A(P) and Eqs. (3.58)—(3.60). The desired
quantity can then be obtained as

m'(P) =e g —4 m(0)+ q(0)+ r1(0)—i d(0) + —2 p r2(0)g —4 8 . 2(4—g )'/ 4 4—g

4 8 4 g2)1/2
+ 2 m (0)+ q(0) — r1(0)— r2(0)+s(Q)+i d(0) cosh(gp)

'2 2 4 8 2 (4—g)'—m (0)+—q(0) ——r, (0)— 3 r2(0)+ —s(0)+i d(0) sinh(g) . . (3.61)

Writing 2l =(A, —4)', we can use the above results directly with g replaced by i':
—m'(P) =e 8 . 2(4+q')'/2 „ri2+4 q2+4I +

7l 7l

———m (0)—4

q(0)— 4 4—g
2

—2 p r2(0)

8 4 (4+ 2) 1/2

2 q (0)+ 2 r, (0)+ 2 r2(0)+ s (0)—i, d (0) cos(rip)

—m(0)+. —q(0) ——r1(0)+ 3 r2(0)+ —s(0) i — d(0) sin(rip) . .2 2 4 8 2 . (4+g')'"
(3.62)

3. jli. =2

For this special case, we have to reconsider the solution s (P) for Eq. (3.50), where the characteristic polynomial has a
root of double multiplicity and the inhomogeneous term has the same exponential of the homogeneous solution as well.
Accordingly, the general solution is sought to be

s (p) =(E3+K4$)e ~ —2r2(0)p e (3.63)

where K3 and Xz are again to be determined by the initial conditions s (0) and s (0). Following the same procedures as
before, we have

m'(p) =e —~Im (0)+q(0)+s (0)—2[m (0)+q (0)+s (0)—2r, (0) r2(0)+id—(0)]p

+2[m (0)+.q(0) —2r1(0)—r2(0)+id(0)]p + —,r2(0)p I . (3.64)

The total radiation rate I (t) for the system is, as given
by Eq. (3.52), proportional to the quantity —m'(P), which
is seen for every case to be determined by the initial values
m(0), q(0), r1(0), r2(0), s(0), and d(0). These quanti-
ties, being, the expectation values of at;omic operators on
the initial state of the whole system, depend on the initial
states of the system and are considered for a variety of
different initial states in the next section.

IV. NUMERICAL RESULTS AND DISCUSSIO'N

where both atoms are initially in their excited states, and

e(O) & =
I
e1&

I g2& (4.2)

where one atom is in its excited state while the other is in
its ground state. Without loss of generality, we focus on
the case in which the atom with resonance frequency co& is
in its excited state and the one with ~2 is in its ground
state. The solution will be identical to

I
+(0) &=

I g1 & I e2 & since, as can be seen from Eqs. (3.61), (3.62),
and (3.64), it depends only on 6 . Next, we consider

The following initial states for the system in which
both atoms have transition dipoles oriented perpendicular
to the metal surface are chosen for specific consideration:

(
I
e1&

I g2 &+
I
e2 & I g1&»

1

2
(4.3)

where only one atom is in its excited state while the whole
system is in a symmetric combination. We have(a) I+(0)&= Ie1& Ie2& (4.1)
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{
I
ei & I gz& —

I e2& igi &)
1

2
(4 4)

where only one atom is in its excited state while the whole
system is in an antisymmetric combination. Then, we
look at

where the atom with frequency co& is in an in-phase super-
position of the excited and ground levels while the one
with frequency co2 is in an out-of-phase superposition of
levels. For the same reason as in case (b), the solution is
identical to the initial state,

e(0) &
= (

I
e& &+

I g
1

2

x (le&&+ lgz&)
1

(4.5)

I
+(0) &

= (
I
e$ &

—
I g$) )

1

2

Also,

{
I
ez&+ lgz&)

1

2

where each atom of the system is in an in-phase super-
position of states. Next,

(f)
I
q'(0) & = (

I
ei &+ I g& &)

2

(g) I
alp(0)) = ( lgp)+e "Iep)) @=1,2 (4.7)

(4.6)
where each atom is in an equal and random-phase super-
position of levels. The density operator representing this
situation is thus given by

p(0)= — f d6& f 152[
I
%,(0))&%,(0)

I
]43[

I
Vz(0))&qI2(0)

I ]

=[2 lgi&&gal+2 Iei&&eel][~ lg2&&g2I+~ e2&&e2I]. (4.8)

In this case, the expectation value of an operator 0 is in-
terpreted as

& 0 ) =Tr[p{0)O] . {4.9)

We list in Table I all the expectation values necessary
for evaluating the emission rate, I (t). The normalized
emission rate, I (t)/y, for the different initial states of
Eqs. (4.1)—(4.7), is plotted in Figs. 2—8 with respect to
the normalized time, P=yt, and the parameter character-
izing the frequency difference, A, =b/y. The special case
of two identical atoms is represented by the curves with
A, =O. These results can be roughly divided into two re-
gions of different behavior for the time evolution of the
emission rate. For 6 &2y the emission rate exponentially
decays towards zero, while for b, & 2y, the rate shows os-
cillations before decaying to zero. %'e see that the divid-
ing frequency occurs at b, =2@. The physical explanation

can be given as follows. For an excited atom with its
transition dipole perpendicular to the metal surface, the
half-width is doubly broadened as in the case of Dicke's
superradiance, since it is described by the state

I
e ) + of

Eq. (2.4) as a result of phase coherence between the atom
and its image. Therefore, if b, &2y, the two atoms are
hardly distinguishable from each other, and they undergo
radiative emission as if there were two identical atoms.
Only when 5 & 2y does the difference of the two reso-
nance frequencies become pronounced, and beating takes
place as manifested in the oscillation of I'(t).

Let us now examine closely the initial values of the
emission rate, I (0), which are used as a measure of the
radiative intensity in the usual sense, in order to gain a
better understanding of the problem. At t =0, I (0) can
be immediately written from Eqs. (3.29)—(3.34) in the
form

TABLE I. Initial expectation values for I (0), q(0}, rI(0), r2(0), s(0), and d(0) for the initial states
given in Eqs. (4.1)—(4.7).

I
e{o))
(a)
(b}
(c)

{d)
(e)

(g)

rl(0)

1

4
1

4
1

4

r2(0) s(0) d(0)
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The excitaion stored initially in the atomic system is the
same as in cases (e) and (f), since the radiation energy has
nothing to do with phase relation in the atomic states.
However, there is no coherence resulting from the interac-
tion with the radiation because of a null effect of random
phases. In summary, in comparison with the correspond-
ing cases of two different atoms in free space, the emis-
sion rates of such an atomic pair with dipole transitions
perpendicular to a metal surface are doubled in magnitude
because of the induced images participating in phase with
the emission from the source atoms, giving rise to a
"superradiative" enhancement in the emission rate. This
effect is completely due to the presence of the metal sur-
face.

As a final remark, we note that the method of solution

presented in this paper is based on the assumption that the
interaction of electromagnetic radiation and the atoms is
confined to a frequency too between coi and coz, with a
range roughly equal to 5to. Therefore, the method is valid
only under the condition 6 (5co.
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APPENDIX

To see the time dependence of r (it)=( R(it)) and rz(t)=(Rz(t)), one has to examine the equations of motion for
R &(t) and Rz(t). A typical term in R i and Rz, as given by Eqs. (3.39) and (3.40), is c; c;cjcj with i&j, where i and j
represent the double indices AiM or Ip. The equation of motion is

iiii (ci c;cjcj ) = [c;c;cjcl, ~tt]

fig+ ga p[—c; c;,c;]cjcj
a p

fig+ g[c; c;,c; ]a—~pcj cJ fig+ gaQpcici[c—J cJpcj. ] fig+ +etc/[cJ cJpcj ]aQp
f

~

a p a p a p
(Al)

Making use of the anticommutation and commutation re-
lations (2.1) and (2.2), we have

[c;c;,c;)=c; [c;,c;]+[c;,c;]c;=—c; (A2)

i fi — (c; ctcJ cq ) = 4i Mg p(—too ) ( c; c;c~ cz )
dt

(A5)

and

[C; Ci, Ci ]=Ci [Cr'ici ]+[Cr',Ci ]C; =Ci (A3)
dt

(ci c;cjcl ) = —41rg p(coo) (c; c( cJ cl )

so that Eq. (Al) becomes
= —2p(c; c;cz cj ) (A6)

i A (c;c;cjcj ) =egg ga p(c;cj cj.+c;c;cj ) Thus, we conclude that

Agg g(c; c,cj +c; c,c, )a p .
a p

(A4) r) = —2/7') (A7)

Next, we substitute Eq. (3.16) and its Hermitian conjugate
for a p and a p in the above equation and take the expec-
tation value to obtain "2= —21r2 ~

~H. Kuhn, Pure Appl. Chem. 11, 345 (1965).
H. Kuhn, Naturwissenschaften 54, 429.(1967).
H. Kuhn, D. Mobius, and H. Bucher, in Physical Methods of

Chemistry, edited by A. Weissberger and B. Rossiter (Wiley,
New York, 1972), Vol. 1, pt. 38, p. 577ff.

4K. H. Drexhage, H. Kuhn, and F. P. Schafer, Ber. Bunsenges.

Phys. Chem. 72, 329 (1968).
5K. H. Drexhage, J. Lumin. 1-2, 693 (1970).
6K. H. Drexhage, in Progress in Optics, edited by E. Wo1f

(North-Ho11and, Amsterdam, 1974), Vol. XII, pp. 165ff.
7R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1

(1978).



32 SPONTANEOUS EMISSION BY TWO ATOMS %'ITH. . . 3633

H. Kuhn, J. Chem. Phys. 53, 101 (1970).
A. Sommerfeld, Ann. Phys. (Leipzig) 28, 665 (1909); see, also,

A. Sommerfeld, Partial Differential Equations of Physics
(Academic, New York, 1949), Chap. VI.

~OK. H. Tews, Ann. Phys. (Leipzig) 29, 97 (1973).
~~R. R. Chance, A. Prock, and R. Silbey, J. Chem. Phys. 60,

2184 (1974); 60, 2744 (1974); 62, 2245 (1975); Phys. Rev. A
12, 1448 (1975).

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, Chem.
Phys. Lett. 33, 590 (1975);J. Chem. Phys. 63, 1589 (1975).
P. K. Aravind and H. Metiu, Surf. Sci. 124, 506 (1983).

"P. M. Whitmore, A. P. Alivisatos, and C. B. Harris, Phys.
Rev. Lett. 50, 1092 (1983).

5W. R. Holland and D. G. Hall, Phys. Rev. Lett. 52, 1041
(1984}.
H. Morawitz, Phys. Rev. 187, 1792 (1969).
P. W. Milonni and P, L. Knight, Opt. Commun. 9, 119 (1973).
G. Barton, Proc. R. Soc. London, Ser. A 320, 251 (1970).
M. R. Philpott, Chem Phys. Lett. 19, 435 (1973).

OG. S. Agarwal, Phys. Rev. Lett. 32, 703 (1974); Phys. Rev. A
11, 230; 243 (1975).

J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984).
R. H. Dicke, Phys. Rev. 93, 99 {1954).
V. Ernst and P. Stehle, Phys. Rev. 176, 1456 {1968).
M. Dillard and H. R. Robl, Phys. Rev. 184, 312 (1969).
J. H. Eberly 'and N. E. Rehler, Phys. Lett. 29A, 142 (1969);
Phys. Rev. A 2, 1607 (1970); N. E. Rehler and J. H. Eberly,
ibid. 3, 1735 (1971).

2~R. Bonifacio, P. Schwendimann, and F. Haake, Phys. Rev. A
4, 302 (1971);4, 854 (1971).

7C. R. Stroud, Jr., J. H. Eberly, W. L. Lama, and L. Mandel,
Phys. Rev. A 5, 1094 (1972).
R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507 {1975);
12, 587 (1975).

29J. C. MacGillivray and M. S. Feld, Contemp. Phys. 22, 299
(1981),and references therein.
K. C. Liu, Y. C. Lee, and Y. Shan, Phys. Rev. 8 11, 978
(1975); K. C. Liu and Y. C. Lee, Physica 102A, 131 (1980); Y.
C. Lee and K. C. Liu, J. Phys. C 14, L281 {1981).
R. Florian, L. O. Schwan, and D. Schmid, Solid State Com-
mun. 42, 55 (1982); Phys. Rev. A 29, 2709 (1984).

~2M. T. Raiford, Phys. Rev. A 9, 1257 (1974).
~~See, for example, L. Allen and J. H. Eberly, Optical Resonance

and Tao-LeUel Atoms (Wiley, New York, 1975), Chap. 2.
& K. C. Liu, Chin. J. Phys. (Taiwan) 13, 161 (1975).
~5See, for example, M. Sargent III, M. O. Scully, and %. E.

Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass. ,
1974), Chap. 14.

~~M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon,
Oxford, 1980), Chap. 7.
V. F. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930).
See, for example, G. Birkhoff and G.-C. Rota, Ordinary Dif-
ferential Equations, 3rd ed. (Wiley, New York, 1978), Chap.
3.

~9H. Haken, in Handbuch der Physik (Springer, Berlin, 1970),
Vol. XXV/2c, Sec. VII.12.


